mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-21 10:05:00 +08:00
ed26aacfb5
Loops-per-jiffies is a special number which represents a number of noop-loop cycles per CPU-scheduler quantum - jiffies. As you understand aside from CPU-specific implementation it depends on the CPU frequency. So when a platform has the CPU frequency fixed, we have no problem and the current udelay interface will work just fine. But as soon as CPU-freq driver is enabled and the cores frequency changes, we'll end up with distorted udelay's. In order to fix this we have to accordinly adjust the per-CPU udelay_val (the same as the global loops_per_jiffy) number. This can be done in the CPU-freq transition event handler. We subscribe to that event in the MIPS arch time-inititalization method. Co-developed-by: Alexey Malahov <Alexey.Malahov@baikalelectronics.ru> Signed-off-by: Alexey Malahov <Alexey.Malahov@baikalelectronics.ru> Signed-off-by: Serge Semin <Sergey.Semin@baikalelectronics.ru> Reviewed-by: Jiaxun Yang <jiaxun.yang@flygoat.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Paul Burton <paulburton@kernel.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Rob Herring <robh+dt@kernel.org> Cc: devicetree@vger.kernel.org Signed-off-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
173 lines
4.1 KiB
C
173 lines
4.1 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Copyright 2001 MontaVista Software Inc.
|
|
* Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
|
|
* Copyright (c) 2003, 2004 Maciej W. Rozycki
|
|
*
|
|
* Common time service routines for MIPS machines.
|
|
*/
|
|
#include <linux/bug.h>
|
|
#include <linux/clockchips.h>
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/param.h>
|
|
#include <linux/time.h>
|
|
#include <linux/timex.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/export.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/delay.h>
|
|
|
|
#include <asm/cpu-features.h>
|
|
#include <asm/cpu-type.h>
|
|
#include <asm/div64.h>
|
|
#include <asm/time.h>
|
|
|
|
#ifdef CONFIG_CPU_FREQ
|
|
|
|
static DEFINE_PER_CPU(unsigned long, pcp_lpj_ref);
|
|
static DEFINE_PER_CPU(unsigned long, pcp_lpj_ref_freq);
|
|
static unsigned long glb_lpj_ref;
|
|
static unsigned long glb_lpj_ref_freq;
|
|
|
|
static int cpufreq_callback(struct notifier_block *nb,
|
|
unsigned long val, void *data)
|
|
{
|
|
struct cpufreq_freqs *freq = data;
|
|
struct cpumask *cpus = freq->policy->cpus;
|
|
unsigned long lpj;
|
|
int cpu;
|
|
|
|
/*
|
|
* Skip lpj numbers adjustment if the CPU-freq transition is safe for
|
|
* the loops delay. (Is this possible?)
|
|
*/
|
|
if (freq->flags & CPUFREQ_CONST_LOOPS)
|
|
return NOTIFY_OK;
|
|
|
|
/* Save the initial values of the lpjes for future scaling. */
|
|
if (!glb_lpj_ref) {
|
|
glb_lpj_ref = boot_cpu_data.udelay_val;
|
|
glb_lpj_ref_freq = freq->old;
|
|
|
|
for_each_online_cpu(cpu) {
|
|
per_cpu(pcp_lpj_ref, cpu) =
|
|
cpu_data[cpu].udelay_val;
|
|
per_cpu(pcp_lpj_ref_freq, cpu) = freq->old;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Adjust global lpj variable and per-CPU udelay_val number in
|
|
* accordance with the new CPU frequency.
|
|
*/
|
|
if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
|
|
(val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
|
|
loops_per_jiffy = cpufreq_scale(glb_lpj_ref,
|
|
glb_lpj_ref_freq,
|
|
freq->new);
|
|
|
|
for_each_cpu(cpu, cpus) {
|
|
lpj = cpufreq_scale(per_cpu(pcp_lpj_ref, cpu),
|
|
per_cpu(pcp_lpj_ref_freq, cpu),
|
|
freq->new);
|
|
cpu_data[cpu].udelay_val = (unsigned int)lpj;
|
|
}
|
|
}
|
|
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block cpufreq_notifier = {
|
|
.notifier_call = cpufreq_callback,
|
|
};
|
|
|
|
static int __init register_cpufreq_notifier(void)
|
|
{
|
|
return cpufreq_register_notifier(&cpufreq_notifier,
|
|
CPUFREQ_TRANSITION_NOTIFIER);
|
|
}
|
|
core_initcall(register_cpufreq_notifier);
|
|
|
|
#endif /* CONFIG_CPU_FREQ */
|
|
|
|
/*
|
|
* forward reference
|
|
*/
|
|
DEFINE_SPINLOCK(rtc_lock);
|
|
EXPORT_SYMBOL(rtc_lock);
|
|
|
|
static int null_perf_irq(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int (*perf_irq)(void) = null_perf_irq;
|
|
|
|
EXPORT_SYMBOL(perf_irq);
|
|
|
|
/*
|
|
* time_init() - it does the following things.
|
|
*
|
|
* 1) plat_time_init() -
|
|
* a) (optional) set up RTC routines,
|
|
* b) (optional) calibrate and set the mips_hpt_frequency
|
|
* (only needed if you intended to use cpu counter as timer interrupt
|
|
* source)
|
|
* 2) calculate a couple of cached variables for later usage
|
|
*/
|
|
|
|
unsigned int mips_hpt_frequency;
|
|
EXPORT_SYMBOL_GPL(mips_hpt_frequency);
|
|
|
|
static __init int cpu_has_mfc0_count_bug(void)
|
|
{
|
|
switch (current_cpu_type()) {
|
|
case CPU_R4000PC:
|
|
case CPU_R4000SC:
|
|
case CPU_R4000MC:
|
|
/*
|
|
* V3.0 is documented as suffering from the mfc0 from count bug.
|
|
* Afaik this is the last version of the R4000. Later versions
|
|
* were marketed as R4400.
|
|
*/
|
|
return 1;
|
|
|
|
case CPU_R4400PC:
|
|
case CPU_R4400SC:
|
|
case CPU_R4400MC:
|
|
/*
|
|
* The published errata for the R4400 up to 3.0 say the CPU
|
|
* has the mfc0 from count bug.
|
|
*/
|
|
if ((current_cpu_data.processor_id & 0xff) <= 0x30)
|
|
return 1;
|
|
|
|
/*
|
|
* we assume newer revisions are ok
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void __init time_init(void)
|
|
{
|
|
plat_time_init();
|
|
|
|
/*
|
|
* The use of the R4k timer as a clock event takes precedence;
|
|
* if reading the Count register might interfere with the timer
|
|
* interrupt, then we don't use the timer as a clock source.
|
|
* We may still use the timer as a clock source though if the
|
|
* timer interrupt isn't reliable; the interference doesn't
|
|
* matter then, because we don't use the interrupt.
|
|
*/
|
|
if (mips_clockevent_init() != 0 || !cpu_has_mfc0_count_bug())
|
|
init_mips_clocksource();
|
|
}
|