linux/arch/x86/xen/enlighten.c
Jeremy Fitzhardinge 8a22b9996b xen: drop xen_sched_clock in favour of using plain wallclock time
xen_sched_clock only counts unstolen time.  In principle this should
be useful to the Linux scheduler so that it knows how much time a process
actually consumed.  But in practice this doesn't work very well as the
scheduler expects the sched_clock time to be synchronized between
cpus.  It also uses sched_clock to measure the time a task spends
sleeping, in which case "unstolen time" isn't meaningful.

So just use plain xen_clocksource_read to return wallclock nanoseconds
for sched_clock.

Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2010-08-04 14:47:29 -07:00

1208 lines
28 KiB
C

/*
* Core of Xen paravirt_ops implementation.
*
* This file contains the xen_paravirt_ops structure itself, and the
* implementations for:
* - privileged instructions
* - interrupt flags
* - segment operations
* - booting and setup
*
* Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/smp.h>
#include <linux/preempt.h>
#include <linux/hardirq.h>
#include <linux/percpu.h>
#include <linux/delay.h>
#include <linux/start_kernel.h>
#include <linux/sched.h>
#include <linux/kprobes.h>
#include <linux/bootmem.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/page-flags.h>
#include <linux/highmem.h>
#include <linux/console.h>
#include <linux/pci.h>
#include <linux/gfp.h>
#include <xen/xen.h>
#include <xen/interface/xen.h>
#include <xen/interface/version.h>
#include <xen/interface/physdev.h>
#include <xen/interface/vcpu.h>
#include <xen/features.h>
#include <xen/page.h>
#include <xen/hvc-console.h>
#include <asm/paravirt.h>
#include <asm/apic.h>
#include <asm/page.h>
#include <asm/xen/hypercall.h>
#include <asm/xen/hypervisor.h>
#include <asm/fixmap.h>
#include <asm/processor.h>
#include <asm/proto.h>
#include <asm/msr-index.h>
#include <asm/traps.h>
#include <asm/setup.h>
#include <asm/desc.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
#include <asm/reboot.h>
#include <asm/stackprotector.h>
#include "xen-ops.h"
#include "mmu.h"
#include "multicalls.h"
EXPORT_SYMBOL_GPL(hypercall_page);
DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
enum xen_domain_type xen_domain_type = XEN_NATIVE;
EXPORT_SYMBOL_GPL(xen_domain_type);
struct start_info *xen_start_info;
EXPORT_SYMBOL_GPL(xen_start_info);
struct shared_info xen_dummy_shared_info;
void *xen_initial_gdt;
/*
* Point at some empty memory to start with. We map the real shared_info
* page as soon as fixmap is up and running.
*/
struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
/*
* Flag to determine whether vcpu info placement is available on all
* VCPUs. We assume it is to start with, and then set it to zero on
* the first failure. This is because it can succeed on some VCPUs
* and not others, since it can involve hypervisor memory allocation,
* or because the guest failed to guarantee all the appropriate
* constraints on all VCPUs (ie buffer can't cross a page boundary).
*
* Note that any particular CPU may be using a placed vcpu structure,
* but we can only optimise if the all are.
*
* 0: not available, 1: available
*/
static int have_vcpu_info_placement = 1;
static void xen_vcpu_setup(int cpu)
{
struct vcpu_register_vcpu_info info;
int err;
struct vcpu_info *vcpup;
BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
if (!have_vcpu_info_placement)
return; /* already tested, not available */
vcpup = &per_cpu(xen_vcpu_info, cpu);
info.mfn = arbitrary_virt_to_mfn(vcpup);
info.offset = offset_in_page(vcpup);
printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
cpu, vcpup, info.mfn, info.offset);
/* Check to see if the hypervisor will put the vcpu_info
structure where we want it, which allows direct access via
a percpu-variable. */
err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
if (err) {
printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
have_vcpu_info_placement = 0;
} else {
/* This cpu is using the registered vcpu info, even if
later ones fail to. */
per_cpu(xen_vcpu, cpu) = vcpup;
printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
cpu, vcpup);
}
}
/*
* On restore, set the vcpu placement up again.
* If it fails, then we're in a bad state, since
* we can't back out from using it...
*/
void xen_vcpu_restore(void)
{
int cpu;
for_each_online_cpu(cpu) {
bool other_cpu = (cpu != smp_processor_id());
if (other_cpu &&
HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
BUG();
xen_setup_runstate_info(cpu);
if (have_vcpu_info_placement)
xen_vcpu_setup(cpu);
if (other_cpu &&
HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
BUG();
}
}
static void __init xen_banner(void)
{
unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
struct xen_extraversion extra;
HYPERVISOR_xen_version(XENVER_extraversion, &extra);
printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
pv_info.name);
printk(KERN_INFO "Xen version: %d.%d%s%s\n",
version >> 16, version & 0xffff, extra.extraversion,
xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
}
static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
static void xen_cpuid(unsigned int *ax, unsigned int *bx,
unsigned int *cx, unsigned int *dx)
{
unsigned maskebx = ~0;
unsigned maskecx = ~0;
unsigned maskedx = ~0;
/*
* Mask out inconvenient features, to try and disable as many
* unsupported kernel subsystems as possible.
*/
switch (*ax) {
case 1:
maskecx = cpuid_leaf1_ecx_mask;
maskedx = cpuid_leaf1_edx_mask;
break;
case 0xb:
/* Suppress extended topology stuff */
maskebx = 0;
break;
}
asm(XEN_EMULATE_PREFIX "cpuid"
: "=a" (*ax),
"=b" (*bx),
"=c" (*cx),
"=d" (*dx)
: "0" (*ax), "2" (*cx));
*bx &= maskebx;
*cx &= maskecx;
*dx &= maskedx;
}
static __init void xen_init_cpuid_mask(void)
{
unsigned int ax, bx, cx, dx;
cpuid_leaf1_edx_mask =
~((1 << X86_FEATURE_MCE) | /* disable MCE */
(1 << X86_FEATURE_MCA) | /* disable MCA */
(1 << X86_FEATURE_ACC)); /* thermal monitoring */
if (!xen_initial_domain())
cpuid_leaf1_edx_mask &=
~((1 << X86_FEATURE_APIC) | /* disable local APIC */
(1 << X86_FEATURE_ACPI)); /* disable ACPI */
ax = 1;
cx = 0;
xen_cpuid(&ax, &bx, &cx, &dx);
/* cpuid claims we support xsave; try enabling it to see what happens */
if (cx & (1 << (X86_FEATURE_XSAVE % 32))) {
unsigned long cr4;
set_in_cr4(X86_CR4_OSXSAVE);
cr4 = read_cr4();
if ((cr4 & X86_CR4_OSXSAVE) == 0)
cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_XSAVE % 32));
clear_in_cr4(X86_CR4_OSXSAVE);
}
}
static void xen_set_debugreg(int reg, unsigned long val)
{
HYPERVISOR_set_debugreg(reg, val);
}
static unsigned long xen_get_debugreg(int reg)
{
return HYPERVISOR_get_debugreg(reg);
}
static void xen_end_context_switch(struct task_struct *next)
{
xen_mc_flush();
paravirt_end_context_switch(next);
}
static unsigned long xen_store_tr(void)
{
return 0;
}
/*
* Set the page permissions for a particular virtual address. If the
* address is a vmalloc mapping (or other non-linear mapping), then
* find the linear mapping of the page and also set its protections to
* match.
*/
static void set_aliased_prot(void *v, pgprot_t prot)
{
int level;
pte_t *ptep;
pte_t pte;
unsigned long pfn;
struct page *page;
ptep = lookup_address((unsigned long)v, &level);
BUG_ON(ptep == NULL);
pfn = pte_pfn(*ptep);
page = pfn_to_page(pfn);
pte = pfn_pte(pfn, prot);
if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
BUG();
if (!PageHighMem(page)) {
void *av = __va(PFN_PHYS(pfn));
if (av != v)
if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
BUG();
} else
kmap_flush_unused();
}
static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
{
const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
int i;
for(i = 0; i < entries; i += entries_per_page)
set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
}
static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
{
const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
int i;
for(i = 0; i < entries; i += entries_per_page)
set_aliased_prot(ldt + i, PAGE_KERNEL);
}
static void xen_set_ldt(const void *addr, unsigned entries)
{
struct mmuext_op *op;
struct multicall_space mcs = xen_mc_entry(sizeof(*op));
op = mcs.args;
op->cmd = MMUEXT_SET_LDT;
op->arg1.linear_addr = (unsigned long)addr;
op->arg2.nr_ents = entries;
MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
xen_mc_issue(PARAVIRT_LAZY_CPU);
}
static void xen_load_gdt(const struct desc_ptr *dtr)
{
unsigned long va = dtr->address;
unsigned int size = dtr->size + 1;
unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
unsigned long frames[pages];
int f;
/*
* A GDT can be up to 64k in size, which corresponds to 8192
* 8-byte entries, or 16 4k pages..
*/
BUG_ON(size > 65536);
BUG_ON(va & ~PAGE_MASK);
for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
int level;
pte_t *ptep;
unsigned long pfn, mfn;
void *virt;
/*
* The GDT is per-cpu and is in the percpu data area.
* That can be virtually mapped, so we need to do a
* page-walk to get the underlying MFN for the
* hypercall. The page can also be in the kernel's
* linear range, so we need to RO that mapping too.
*/
ptep = lookup_address(va, &level);
BUG_ON(ptep == NULL);
pfn = pte_pfn(*ptep);
mfn = pfn_to_mfn(pfn);
virt = __va(PFN_PHYS(pfn));
frames[f] = mfn;
make_lowmem_page_readonly((void *)va);
make_lowmem_page_readonly(virt);
}
if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
BUG();
}
/*
* load_gdt for early boot, when the gdt is only mapped once
*/
static __init void xen_load_gdt_boot(const struct desc_ptr *dtr)
{
unsigned long va = dtr->address;
unsigned int size = dtr->size + 1;
unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
unsigned long frames[pages];
int f;
/*
* A GDT can be up to 64k in size, which corresponds to 8192
* 8-byte entries, or 16 4k pages..
*/
BUG_ON(size > 65536);
BUG_ON(va & ~PAGE_MASK);
for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
pte_t pte;
unsigned long pfn, mfn;
pfn = virt_to_pfn(va);
mfn = pfn_to_mfn(pfn);
pte = pfn_pte(pfn, PAGE_KERNEL_RO);
if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
BUG();
frames[f] = mfn;
}
if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
BUG();
}
static void load_TLS_descriptor(struct thread_struct *t,
unsigned int cpu, unsigned int i)
{
struct desc_struct *gdt = get_cpu_gdt_table(cpu);
xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
struct multicall_space mc = __xen_mc_entry(0);
MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
}
static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
{
/*
* XXX sleazy hack: If we're being called in a lazy-cpu zone
* and lazy gs handling is enabled, it means we're in a
* context switch, and %gs has just been saved. This means we
* can zero it out to prevent faults on exit from the
* hypervisor if the next process has no %gs. Either way, it
* has been saved, and the new value will get loaded properly.
* This will go away as soon as Xen has been modified to not
* save/restore %gs for normal hypercalls.
*
* On x86_64, this hack is not used for %gs, because gs points
* to KERNEL_GS_BASE (and uses it for PDA references), so we
* must not zero %gs on x86_64
*
* For x86_64, we need to zero %fs, otherwise we may get an
* exception between the new %fs descriptor being loaded and
* %fs being effectively cleared at __switch_to().
*/
if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
#ifdef CONFIG_X86_32
lazy_load_gs(0);
#else
loadsegment(fs, 0);
#endif
}
xen_mc_batch();
load_TLS_descriptor(t, cpu, 0);
load_TLS_descriptor(t, cpu, 1);
load_TLS_descriptor(t, cpu, 2);
xen_mc_issue(PARAVIRT_LAZY_CPU);
}
#ifdef CONFIG_X86_64
static void xen_load_gs_index(unsigned int idx)
{
if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
BUG();
}
#endif
static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
const void *ptr)
{
xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
u64 entry = *(u64 *)ptr;
preempt_disable();
xen_mc_flush();
if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
BUG();
preempt_enable();
}
static int cvt_gate_to_trap(int vector, const gate_desc *val,
struct trap_info *info)
{
unsigned long addr;
if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
return 0;
info->vector = vector;
addr = gate_offset(*val);
#ifdef CONFIG_X86_64
/*
* Look for known traps using IST, and substitute them
* appropriately. The debugger ones are the only ones we care
* about. Xen will handle faults like double_fault and
* machine_check, so we should never see them. Warn if
* there's an unexpected IST-using fault handler.
*/
if (addr == (unsigned long)debug)
addr = (unsigned long)xen_debug;
else if (addr == (unsigned long)int3)
addr = (unsigned long)xen_int3;
else if (addr == (unsigned long)stack_segment)
addr = (unsigned long)xen_stack_segment;
else if (addr == (unsigned long)double_fault ||
addr == (unsigned long)nmi) {
/* Don't need to handle these */
return 0;
#ifdef CONFIG_X86_MCE
} else if (addr == (unsigned long)machine_check) {
return 0;
#endif
} else {
/* Some other trap using IST? */
if (WARN_ON(val->ist != 0))
return 0;
}
#endif /* CONFIG_X86_64 */
info->address = addr;
info->cs = gate_segment(*val);
info->flags = val->dpl;
/* interrupt gates clear IF */
if (val->type == GATE_INTERRUPT)
info->flags |= 1 << 2;
return 1;
}
/* Locations of each CPU's IDT */
static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
/* Set an IDT entry. If the entry is part of the current IDT, then
also update Xen. */
static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
{
unsigned long p = (unsigned long)&dt[entrynum];
unsigned long start, end;
preempt_disable();
start = __get_cpu_var(idt_desc).address;
end = start + __get_cpu_var(idt_desc).size + 1;
xen_mc_flush();
native_write_idt_entry(dt, entrynum, g);
if (p >= start && (p + 8) <= end) {
struct trap_info info[2];
info[1].address = 0;
if (cvt_gate_to_trap(entrynum, g, &info[0]))
if (HYPERVISOR_set_trap_table(info))
BUG();
}
preempt_enable();
}
static void xen_convert_trap_info(const struct desc_ptr *desc,
struct trap_info *traps)
{
unsigned in, out, count;
count = (desc->size+1) / sizeof(gate_desc);
BUG_ON(count > 256);
for (in = out = 0; in < count; in++) {
gate_desc *entry = (gate_desc*)(desc->address) + in;
if (cvt_gate_to_trap(in, entry, &traps[out]))
out++;
}
traps[out].address = 0;
}
void xen_copy_trap_info(struct trap_info *traps)
{
const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
xen_convert_trap_info(desc, traps);
}
/* Load a new IDT into Xen. In principle this can be per-CPU, so we
hold a spinlock to protect the static traps[] array (static because
it avoids allocation, and saves stack space). */
static void xen_load_idt(const struct desc_ptr *desc)
{
static DEFINE_SPINLOCK(lock);
static struct trap_info traps[257];
spin_lock(&lock);
__get_cpu_var(idt_desc) = *desc;
xen_convert_trap_info(desc, traps);
xen_mc_flush();
if (HYPERVISOR_set_trap_table(traps))
BUG();
spin_unlock(&lock);
}
/* Write a GDT descriptor entry. Ignore LDT descriptors, since
they're handled differently. */
static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
const void *desc, int type)
{
preempt_disable();
switch (type) {
case DESC_LDT:
case DESC_TSS:
/* ignore */
break;
default: {
xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
xen_mc_flush();
if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
BUG();
}
}
preempt_enable();
}
/*
* Version of write_gdt_entry for use at early boot-time needed to
* update an entry as simply as possible.
*/
static __init void xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
const void *desc, int type)
{
switch (type) {
case DESC_LDT:
case DESC_TSS:
/* ignore */
break;
default: {
xmaddr_t maddr = virt_to_machine(&dt[entry]);
if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
dt[entry] = *(struct desc_struct *)desc;
}
}
}
static void xen_load_sp0(struct tss_struct *tss,
struct thread_struct *thread)
{
struct multicall_space mcs = xen_mc_entry(0);
MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
xen_mc_issue(PARAVIRT_LAZY_CPU);
}
static void xen_set_iopl_mask(unsigned mask)
{
struct physdev_set_iopl set_iopl;
/* Force the change at ring 0. */
set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
}
static void xen_io_delay(void)
{
}
#ifdef CONFIG_X86_LOCAL_APIC
static u32 xen_apic_read(u32 reg)
{
return 0;
}
static void xen_apic_write(u32 reg, u32 val)
{
/* Warn to see if there's any stray references */
WARN_ON(1);
}
static u64 xen_apic_icr_read(void)
{
return 0;
}
static void xen_apic_icr_write(u32 low, u32 id)
{
/* Warn to see if there's any stray references */
WARN_ON(1);
}
static void xen_apic_wait_icr_idle(void)
{
return;
}
static u32 xen_safe_apic_wait_icr_idle(void)
{
return 0;
}
static void set_xen_basic_apic_ops(void)
{
apic->read = xen_apic_read;
apic->write = xen_apic_write;
apic->icr_read = xen_apic_icr_read;
apic->icr_write = xen_apic_icr_write;
apic->wait_icr_idle = xen_apic_wait_icr_idle;
apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
}
#endif
static void xen_clts(void)
{
struct multicall_space mcs;
mcs = xen_mc_entry(0);
MULTI_fpu_taskswitch(mcs.mc, 0);
xen_mc_issue(PARAVIRT_LAZY_CPU);
}
static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
static unsigned long xen_read_cr0(void)
{
unsigned long cr0 = percpu_read(xen_cr0_value);
if (unlikely(cr0 == 0)) {
cr0 = native_read_cr0();
percpu_write(xen_cr0_value, cr0);
}
return cr0;
}
static void xen_write_cr0(unsigned long cr0)
{
struct multicall_space mcs;
percpu_write(xen_cr0_value, cr0);
/* Only pay attention to cr0.TS; everything else is
ignored. */
mcs = xen_mc_entry(0);
MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
xen_mc_issue(PARAVIRT_LAZY_CPU);
}
static void xen_write_cr4(unsigned long cr4)
{
cr4 &= ~X86_CR4_PGE;
cr4 &= ~X86_CR4_PSE;
native_write_cr4(cr4);
}
static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
{
int ret;
ret = 0;
switch (msr) {
#ifdef CONFIG_X86_64
unsigned which;
u64 base;
case MSR_FS_BASE: which = SEGBASE_FS; goto set;
case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
set:
base = ((u64)high << 32) | low;
if (HYPERVISOR_set_segment_base(which, base) != 0)
ret = -EIO;
break;
#endif
case MSR_STAR:
case MSR_CSTAR:
case MSR_LSTAR:
case MSR_SYSCALL_MASK:
case MSR_IA32_SYSENTER_CS:
case MSR_IA32_SYSENTER_ESP:
case MSR_IA32_SYSENTER_EIP:
/* Fast syscall setup is all done in hypercalls, so
these are all ignored. Stub them out here to stop
Xen console noise. */
break;
default:
ret = native_write_msr_safe(msr, low, high);
}
return ret;
}
void xen_setup_shared_info(void)
{
if (!xen_feature(XENFEAT_auto_translated_physmap)) {
set_fixmap(FIX_PARAVIRT_BOOTMAP,
xen_start_info->shared_info);
HYPERVISOR_shared_info =
(struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
} else
HYPERVISOR_shared_info =
(struct shared_info *)__va(xen_start_info->shared_info);
#ifndef CONFIG_SMP
/* In UP this is as good a place as any to set up shared info */
xen_setup_vcpu_info_placement();
#endif
xen_setup_mfn_list_list();
}
/* This is called once we have the cpu_possible_map */
void xen_setup_vcpu_info_placement(void)
{
int cpu;
for_each_possible_cpu(cpu)
xen_vcpu_setup(cpu);
/* xen_vcpu_setup managed to place the vcpu_info within the
percpu area for all cpus, so make use of it */
if (have_vcpu_info_placement) {
printk(KERN_INFO "Xen: using vcpu_info placement\n");
pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
}
}
static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
unsigned long addr, unsigned len)
{
char *start, *end, *reloc;
unsigned ret;
start = end = reloc = NULL;
#define SITE(op, x) \
case PARAVIRT_PATCH(op.x): \
if (have_vcpu_info_placement) { \
start = (char *)xen_##x##_direct; \
end = xen_##x##_direct_end; \
reloc = xen_##x##_direct_reloc; \
} \
goto patch_site
switch (type) {
SITE(pv_irq_ops, irq_enable);
SITE(pv_irq_ops, irq_disable);
SITE(pv_irq_ops, save_fl);
SITE(pv_irq_ops, restore_fl);
#undef SITE
patch_site:
if (start == NULL || (end-start) > len)
goto default_patch;
ret = paravirt_patch_insns(insnbuf, len, start, end);
/* Note: because reloc is assigned from something that
appears to be an array, gcc assumes it's non-null,
but doesn't know its relationship with start and
end. */
if (reloc > start && reloc < end) {
int reloc_off = reloc - start;
long *relocp = (long *)(insnbuf + reloc_off);
long delta = start - (char *)addr;
*relocp += delta;
}
break;
default_patch:
default:
ret = paravirt_patch_default(type, clobbers, insnbuf,
addr, len);
break;
}
return ret;
}
static const struct pv_info xen_info __initdata = {
.paravirt_enabled = 1,
.shared_kernel_pmd = 0,
.name = "Xen",
};
static const struct pv_init_ops xen_init_ops __initdata = {
.patch = xen_patch,
};
static const struct pv_time_ops xen_time_ops __initdata = {
.sched_clock = xen_clocksource_read,
};
static const struct pv_cpu_ops xen_cpu_ops __initdata = {
.cpuid = xen_cpuid,
.set_debugreg = xen_set_debugreg,
.get_debugreg = xen_get_debugreg,
.clts = xen_clts,
.read_cr0 = xen_read_cr0,
.write_cr0 = xen_write_cr0,
.read_cr4 = native_read_cr4,
.read_cr4_safe = native_read_cr4_safe,
.write_cr4 = xen_write_cr4,
.wbinvd = native_wbinvd,
.read_msr = native_read_msr_safe,
.write_msr = xen_write_msr_safe,
.read_tsc = native_read_tsc,
.read_pmc = native_read_pmc,
.iret = xen_iret,
.irq_enable_sysexit = xen_sysexit,
#ifdef CONFIG_X86_64
.usergs_sysret32 = xen_sysret32,
.usergs_sysret64 = xen_sysret64,
#endif
.load_tr_desc = paravirt_nop,
.set_ldt = xen_set_ldt,
.load_gdt = xen_load_gdt,
.load_idt = xen_load_idt,
.load_tls = xen_load_tls,
#ifdef CONFIG_X86_64
.load_gs_index = xen_load_gs_index,
#endif
.alloc_ldt = xen_alloc_ldt,
.free_ldt = xen_free_ldt,
.store_gdt = native_store_gdt,
.store_idt = native_store_idt,
.store_tr = xen_store_tr,
.write_ldt_entry = xen_write_ldt_entry,
.write_gdt_entry = xen_write_gdt_entry,
.write_idt_entry = xen_write_idt_entry,
.load_sp0 = xen_load_sp0,
.set_iopl_mask = xen_set_iopl_mask,
.io_delay = xen_io_delay,
/* Xen takes care of %gs when switching to usermode for us */
.swapgs = paravirt_nop,
.start_context_switch = paravirt_start_context_switch,
.end_context_switch = xen_end_context_switch,
};
static const struct pv_apic_ops xen_apic_ops __initdata = {
#ifdef CONFIG_X86_LOCAL_APIC
.startup_ipi_hook = paravirt_nop,
#endif
};
static void xen_reboot(int reason)
{
struct sched_shutdown r = { .reason = reason };
#ifdef CONFIG_SMP
smp_send_stop();
#endif
if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
BUG();
}
static void xen_restart(char *msg)
{
xen_reboot(SHUTDOWN_reboot);
}
static void xen_emergency_restart(void)
{
xen_reboot(SHUTDOWN_reboot);
}
static void xen_machine_halt(void)
{
xen_reboot(SHUTDOWN_poweroff);
}
static void xen_crash_shutdown(struct pt_regs *regs)
{
xen_reboot(SHUTDOWN_crash);
}
static const struct machine_ops __initdata xen_machine_ops = {
.restart = xen_restart,
.halt = xen_machine_halt,
.power_off = xen_machine_halt,
.shutdown = xen_machine_halt,
.crash_shutdown = xen_crash_shutdown,
.emergency_restart = xen_emergency_restart,
};
/*
* Set up the GDT and segment registers for -fstack-protector. Until
* we do this, we have to be careful not to call any stack-protected
* function, which is most of the kernel.
*/
static void __init xen_setup_stackprotector(void)
{
pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
pv_cpu_ops.load_gdt = xen_load_gdt_boot;
setup_stack_canary_segment(0);
switch_to_new_gdt(0);
pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
pv_cpu_ops.load_gdt = xen_load_gdt;
}
/* First C function to be called on Xen boot */
asmlinkage void __init xen_start_kernel(void)
{
pgd_t *pgd;
if (!xen_start_info)
return;
xen_domain_type = XEN_PV_DOMAIN;
/* Install Xen paravirt ops */
pv_info = xen_info;
pv_init_ops = xen_init_ops;
pv_time_ops = xen_time_ops;
pv_cpu_ops = xen_cpu_ops;
pv_apic_ops = xen_apic_ops;
x86_init.resources.memory_setup = xen_memory_setup;
x86_init.oem.arch_setup = xen_arch_setup;
x86_init.oem.banner = xen_banner;
x86_init.timers.timer_init = xen_time_init;
x86_init.timers.setup_percpu_clockev = x86_init_noop;
x86_cpuinit.setup_percpu_clockev = x86_init_noop;
x86_platform.calibrate_tsc = xen_tsc_khz;
x86_platform.get_wallclock = xen_get_wallclock;
x86_platform.set_wallclock = xen_set_wallclock;
/*
* Set up some pagetable state before starting to set any ptes.
*/
xen_init_mmu_ops();
/* Prevent unwanted bits from being set in PTEs. */
__supported_pte_mask &= ~_PAGE_GLOBAL;
if (!xen_initial_domain())
__supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
__supported_pte_mask |= _PAGE_IOMAP;
/*
* Prevent page tables from being allocated in highmem, even
* if CONFIG_HIGHPTE is enabled.
*/
__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
/* Work out if we support NX */
x86_configure_nx();
xen_setup_features();
/* Get mfn list */
if (!xen_feature(XENFEAT_auto_translated_physmap))
xen_build_dynamic_phys_to_machine();
/*
* Set up kernel GDT and segment registers, mainly so that
* -fstack-protector code can be executed.
*/
xen_setup_stackprotector();
xen_init_irq_ops();
xen_init_cpuid_mask();
#ifdef CONFIG_X86_LOCAL_APIC
/*
* set up the basic apic ops.
*/
set_xen_basic_apic_ops();
#endif
if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
}
machine_ops = xen_machine_ops;
/*
* The only reliable way to retain the initial address of the
* percpu gdt_page is to remember it here, so we can go and
* mark it RW later, when the initial percpu area is freed.
*/
xen_initial_gdt = &per_cpu(gdt_page, 0);
xen_smp_init();
pgd = (pgd_t *)xen_start_info->pt_base;
/* Don't do the full vcpu_info placement stuff until we have a
possible map and a non-dummy shared_info. */
per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
local_irq_disable();
early_boot_irqs_off();
xen_raw_console_write("mapping kernel into physical memory\n");
pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
init_mm.pgd = pgd;
/* keep using Xen gdt for now; no urgent need to change it */
#ifdef CONFIG_X86_32
pv_info.kernel_rpl = 1;
if (xen_feature(XENFEAT_supervisor_mode_kernel))
pv_info.kernel_rpl = 0;
#else
pv_info.kernel_rpl = 0;
#endif
/* set the limit of our address space */
xen_reserve_top();
#ifdef CONFIG_X86_32
/* set up basic CPUID stuff */
cpu_detect(&new_cpu_data);
new_cpu_data.hard_math = 1;
new_cpu_data.wp_works_ok = 1;
new_cpu_data.x86_capability[0] = cpuid_edx(1);
#endif
/* Poke various useful things into boot_params */
boot_params.hdr.type_of_loader = (9 << 4) | 0;
boot_params.hdr.ramdisk_image = xen_start_info->mod_start
? __pa(xen_start_info->mod_start) : 0;
boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
if (!xen_initial_domain()) {
add_preferred_console("xenboot", 0, NULL);
add_preferred_console("tty", 0, NULL);
add_preferred_console("hvc", 0, NULL);
} else {
/* Make sure ACS will be enabled */
pci_request_acs();
}
xen_raw_console_write("about to get started...\n");
xen_setup_runstate_info(0);
/* Start the world */
#ifdef CONFIG_X86_32
i386_start_kernel();
#else
x86_64_start_reservations((char *)__pa_symbol(&boot_params));
#endif
}