mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-23 19:14:30 +08:00
89cbc76768
__get_cpu_var() is used for multiple purposes in the kernel source. One of them is address calculation via the form &__get_cpu_var(x). This calculates the address for the instance of the percpu variable of the current processor based on an offset. Other use cases are for storing and retrieving data from the current processors percpu area. __get_cpu_var() can be used as an lvalue when writing data or on the right side of an assignment. __get_cpu_var() is defined as : #define __get_cpu_var(var) (*this_cpu_ptr(&(var))) __get_cpu_var() always only does an address determination. However, store and retrieve operations could use a segment prefix (or global register on other platforms) to avoid the address calculation. this_cpu_write() and this_cpu_read() can directly take an offset into a percpu area and use optimized assembly code to read and write per cpu variables. This patch converts __get_cpu_var into either an explicit address calculation using this_cpu_ptr() or into a use of this_cpu operations that use the offset. Thereby address calculations are avoided and less registers are used when code is generated. Transformations done to __get_cpu_var() 1. Determine the address of the percpu instance of the current processor. DEFINE_PER_CPU(int, y); int *x = &__get_cpu_var(y); Converts to int *x = this_cpu_ptr(&y); 2. Same as #1 but this time an array structure is involved. DEFINE_PER_CPU(int, y[20]); int *x = __get_cpu_var(y); Converts to int *x = this_cpu_ptr(y); 3. Retrieve the content of the current processors instance of a per cpu variable. DEFINE_PER_CPU(int, y); int x = __get_cpu_var(y) Converts to int x = __this_cpu_read(y); 4. Retrieve the content of a percpu struct DEFINE_PER_CPU(struct mystruct, y); struct mystruct x = __get_cpu_var(y); Converts to memcpy(&x, this_cpu_ptr(&y), sizeof(x)); 5. Assignment to a per cpu variable DEFINE_PER_CPU(int, y) __get_cpu_var(y) = x; Converts to __this_cpu_write(y, x); 6. Increment/Decrement etc of a per cpu variable DEFINE_PER_CPU(int, y); __get_cpu_var(y)++ Converts to __this_cpu_inc(y) Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86@kernel.org Acked-by: H. Peter Anvin <hpa@linux.intel.com> Acked-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Tejun Heo <tj@kernel.org>
349 lines
8.2 KiB
C
349 lines
8.2 KiB
C
/*
|
|
* Split spinlock implementation out into its own file, so it can be
|
|
* compiled in a FTRACE-compatible way.
|
|
*/
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/log2.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <asm/paravirt.h>
|
|
|
|
#include <xen/interface/xen.h>
|
|
#include <xen/events.h>
|
|
|
|
#include "xen-ops.h"
|
|
#include "debugfs.h"
|
|
|
|
enum xen_contention_stat {
|
|
TAKEN_SLOW,
|
|
TAKEN_SLOW_PICKUP,
|
|
TAKEN_SLOW_SPURIOUS,
|
|
RELEASED_SLOW,
|
|
RELEASED_SLOW_KICKED,
|
|
NR_CONTENTION_STATS
|
|
};
|
|
|
|
|
|
#ifdef CONFIG_XEN_DEBUG_FS
|
|
#define HISTO_BUCKETS 30
|
|
static struct xen_spinlock_stats
|
|
{
|
|
u32 contention_stats[NR_CONTENTION_STATS];
|
|
u32 histo_spin_blocked[HISTO_BUCKETS+1];
|
|
u64 time_blocked;
|
|
} spinlock_stats;
|
|
|
|
static u8 zero_stats;
|
|
|
|
static inline void check_zero(void)
|
|
{
|
|
u8 ret;
|
|
u8 old = ACCESS_ONCE(zero_stats);
|
|
if (unlikely(old)) {
|
|
ret = cmpxchg(&zero_stats, old, 0);
|
|
/* This ensures only one fellow resets the stat */
|
|
if (ret == old)
|
|
memset(&spinlock_stats, 0, sizeof(spinlock_stats));
|
|
}
|
|
}
|
|
|
|
static inline void add_stats(enum xen_contention_stat var, u32 val)
|
|
{
|
|
check_zero();
|
|
spinlock_stats.contention_stats[var] += val;
|
|
}
|
|
|
|
static inline u64 spin_time_start(void)
|
|
{
|
|
return xen_clocksource_read();
|
|
}
|
|
|
|
static void __spin_time_accum(u64 delta, u32 *array)
|
|
{
|
|
unsigned index = ilog2(delta);
|
|
|
|
check_zero();
|
|
|
|
if (index < HISTO_BUCKETS)
|
|
array[index]++;
|
|
else
|
|
array[HISTO_BUCKETS]++;
|
|
}
|
|
|
|
static inline void spin_time_accum_blocked(u64 start)
|
|
{
|
|
u32 delta = xen_clocksource_read() - start;
|
|
|
|
__spin_time_accum(delta, spinlock_stats.histo_spin_blocked);
|
|
spinlock_stats.time_blocked += delta;
|
|
}
|
|
#else /* !CONFIG_XEN_DEBUG_FS */
|
|
static inline void add_stats(enum xen_contention_stat var, u32 val)
|
|
{
|
|
}
|
|
|
|
static inline u64 spin_time_start(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void spin_time_accum_blocked(u64 start)
|
|
{
|
|
}
|
|
#endif /* CONFIG_XEN_DEBUG_FS */
|
|
|
|
struct xen_lock_waiting {
|
|
struct arch_spinlock *lock;
|
|
__ticket_t want;
|
|
};
|
|
|
|
static DEFINE_PER_CPU(int, lock_kicker_irq) = -1;
|
|
static DEFINE_PER_CPU(char *, irq_name);
|
|
static DEFINE_PER_CPU(struct xen_lock_waiting, lock_waiting);
|
|
static cpumask_t waiting_cpus;
|
|
|
|
static bool xen_pvspin = true;
|
|
__visible void xen_lock_spinning(struct arch_spinlock *lock, __ticket_t want)
|
|
{
|
|
int irq = __this_cpu_read(lock_kicker_irq);
|
|
struct xen_lock_waiting *w = this_cpu_ptr(&lock_waiting);
|
|
int cpu = smp_processor_id();
|
|
u64 start;
|
|
unsigned long flags;
|
|
|
|
/* If kicker interrupts not initialized yet, just spin */
|
|
if (irq == -1)
|
|
return;
|
|
|
|
start = spin_time_start();
|
|
|
|
/*
|
|
* Make sure an interrupt handler can't upset things in a
|
|
* partially setup state.
|
|
*/
|
|
local_irq_save(flags);
|
|
/*
|
|
* We don't really care if we're overwriting some other
|
|
* (lock,want) pair, as that would mean that we're currently
|
|
* in an interrupt context, and the outer context had
|
|
* interrupts enabled. That has already kicked the VCPU out
|
|
* of xen_poll_irq(), so it will just return spuriously and
|
|
* retry with newly setup (lock,want).
|
|
*
|
|
* The ordering protocol on this is that the "lock" pointer
|
|
* may only be set non-NULL if the "want" ticket is correct.
|
|
* If we're updating "want", we must first clear "lock".
|
|
*/
|
|
w->lock = NULL;
|
|
smp_wmb();
|
|
w->want = want;
|
|
smp_wmb();
|
|
w->lock = lock;
|
|
|
|
/* This uses set_bit, which atomic and therefore a barrier */
|
|
cpumask_set_cpu(cpu, &waiting_cpus);
|
|
add_stats(TAKEN_SLOW, 1);
|
|
|
|
/* clear pending */
|
|
xen_clear_irq_pending(irq);
|
|
|
|
/* Only check lock once pending cleared */
|
|
barrier();
|
|
|
|
/*
|
|
* Mark entry to slowpath before doing the pickup test to make
|
|
* sure we don't deadlock with an unlocker.
|
|
*/
|
|
__ticket_enter_slowpath(lock);
|
|
|
|
/*
|
|
* check again make sure it didn't become free while
|
|
* we weren't looking
|
|
*/
|
|
if (ACCESS_ONCE(lock->tickets.head) == want) {
|
|
add_stats(TAKEN_SLOW_PICKUP, 1);
|
|
goto out;
|
|
}
|
|
|
|
/* Allow interrupts while blocked */
|
|
local_irq_restore(flags);
|
|
|
|
/*
|
|
* If an interrupt happens here, it will leave the wakeup irq
|
|
* pending, which will cause xen_poll_irq() to return
|
|
* immediately.
|
|
*/
|
|
|
|
/* Block until irq becomes pending (or perhaps a spurious wakeup) */
|
|
xen_poll_irq(irq);
|
|
add_stats(TAKEN_SLOW_SPURIOUS, !xen_test_irq_pending(irq));
|
|
|
|
local_irq_save(flags);
|
|
|
|
kstat_incr_irq_this_cpu(irq);
|
|
out:
|
|
cpumask_clear_cpu(cpu, &waiting_cpus);
|
|
w->lock = NULL;
|
|
|
|
local_irq_restore(flags);
|
|
|
|
spin_time_accum_blocked(start);
|
|
}
|
|
PV_CALLEE_SAVE_REGS_THUNK(xen_lock_spinning);
|
|
|
|
static void xen_unlock_kick(struct arch_spinlock *lock, __ticket_t next)
|
|
{
|
|
int cpu;
|
|
|
|
add_stats(RELEASED_SLOW, 1);
|
|
|
|
for_each_cpu(cpu, &waiting_cpus) {
|
|
const struct xen_lock_waiting *w = &per_cpu(lock_waiting, cpu);
|
|
|
|
/* Make sure we read lock before want */
|
|
if (ACCESS_ONCE(w->lock) == lock &&
|
|
ACCESS_ONCE(w->want) == next) {
|
|
add_stats(RELEASED_SLOW_KICKED, 1);
|
|
xen_send_IPI_one(cpu, XEN_SPIN_UNLOCK_VECTOR);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static irqreturn_t dummy_handler(int irq, void *dev_id)
|
|
{
|
|
BUG();
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
void xen_init_lock_cpu(int cpu)
|
|
{
|
|
int irq;
|
|
char *name;
|
|
|
|
if (!xen_pvspin)
|
|
return;
|
|
|
|
WARN(per_cpu(lock_kicker_irq, cpu) >= 0, "spinlock on CPU%d exists on IRQ%d!\n",
|
|
cpu, per_cpu(lock_kicker_irq, cpu));
|
|
|
|
name = kasprintf(GFP_KERNEL, "spinlock%d", cpu);
|
|
irq = bind_ipi_to_irqhandler(XEN_SPIN_UNLOCK_VECTOR,
|
|
cpu,
|
|
dummy_handler,
|
|
IRQF_PERCPU|IRQF_NOBALANCING,
|
|
name,
|
|
NULL);
|
|
|
|
if (irq >= 0) {
|
|
disable_irq(irq); /* make sure it's never delivered */
|
|
per_cpu(lock_kicker_irq, cpu) = irq;
|
|
per_cpu(irq_name, cpu) = name;
|
|
}
|
|
|
|
printk("cpu %d spinlock event irq %d\n", cpu, irq);
|
|
}
|
|
|
|
void xen_uninit_lock_cpu(int cpu)
|
|
{
|
|
if (!xen_pvspin)
|
|
return;
|
|
|
|
unbind_from_irqhandler(per_cpu(lock_kicker_irq, cpu), NULL);
|
|
per_cpu(lock_kicker_irq, cpu) = -1;
|
|
kfree(per_cpu(irq_name, cpu));
|
|
per_cpu(irq_name, cpu) = NULL;
|
|
}
|
|
|
|
|
|
/*
|
|
* Our init of PV spinlocks is split in two init functions due to us
|
|
* using paravirt patching and jump labels patching and having to do
|
|
* all of this before SMP code is invoked.
|
|
*
|
|
* The paravirt patching needs to be done _before_ the alternative asm code
|
|
* is started, otherwise we would not patch the core kernel code.
|
|
*/
|
|
void __init xen_init_spinlocks(void)
|
|
{
|
|
|
|
if (!xen_pvspin) {
|
|
printk(KERN_DEBUG "xen: PV spinlocks disabled\n");
|
|
return;
|
|
}
|
|
printk(KERN_DEBUG "xen: PV spinlocks enabled\n");
|
|
pv_lock_ops.lock_spinning = PV_CALLEE_SAVE(xen_lock_spinning);
|
|
pv_lock_ops.unlock_kick = xen_unlock_kick;
|
|
}
|
|
|
|
/*
|
|
* While the jump_label init code needs to happend _after_ the jump labels are
|
|
* enabled and before SMP is started. Hence we use pre-SMP initcall level
|
|
* init. We cannot do it in xen_init_spinlocks as that is done before
|
|
* jump labels are activated.
|
|
*/
|
|
static __init int xen_init_spinlocks_jump(void)
|
|
{
|
|
if (!xen_pvspin)
|
|
return 0;
|
|
|
|
if (!xen_domain())
|
|
return 0;
|
|
|
|
static_key_slow_inc(¶virt_ticketlocks_enabled);
|
|
return 0;
|
|
}
|
|
early_initcall(xen_init_spinlocks_jump);
|
|
|
|
static __init int xen_parse_nopvspin(char *arg)
|
|
{
|
|
xen_pvspin = false;
|
|
return 0;
|
|
}
|
|
early_param("xen_nopvspin", xen_parse_nopvspin);
|
|
|
|
#ifdef CONFIG_XEN_DEBUG_FS
|
|
|
|
static struct dentry *d_spin_debug;
|
|
|
|
static int __init xen_spinlock_debugfs(void)
|
|
{
|
|
struct dentry *d_xen = xen_init_debugfs();
|
|
|
|
if (d_xen == NULL)
|
|
return -ENOMEM;
|
|
|
|
if (!xen_pvspin)
|
|
return 0;
|
|
|
|
d_spin_debug = debugfs_create_dir("spinlocks", d_xen);
|
|
|
|
debugfs_create_u8("zero_stats", 0644, d_spin_debug, &zero_stats);
|
|
|
|
debugfs_create_u32("taken_slow", 0444, d_spin_debug,
|
|
&spinlock_stats.contention_stats[TAKEN_SLOW]);
|
|
debugfs_create_u32("taken_slow_pickup", 0444, d_spin_debug,
|
|
&spinlock_stats.contention_stats[TAKEN_SLOW_PICKUP]);
|
|
debugfs_create_u32("taken_slow_spurious", 0444, d_spin_debug,
|
|
&spinlock_stats.contention_stats[TAKEN_SLOW_SPURIOUS]);
|
|
|
|
debugfs_create_u32("released_slow", 0444, d_spin_debug,
|
|
&spinlock_stats.contention_stats[RELEASED_SLOW]);
|
|
debugfs_create_u32("released_slow_kicked", 0444, d_spin_debug,
|
|
&spinlock_stats.contention_stats[RELEASED_SLOW_KICKED]);
|
|
|
|
debugfs_create_u64("time_blocked", 0444, d_spin_debug,
|
|
&spinlock_stats.time_blocked);
|
|
|
|
debugfs_create_u32_array("histo_blocked", 0444, d_spin_debug,
|
|
spinlock_stats.histo_spin_blocked, HISTO_BUCKETS + 1);
|
|
|
|
return 0;
|
|
}
|
|
fs_initcall(xen_spinlock_debugfs);
|
|
|
|
#endif /* CONFIG_XEN_DEBUG_FS */
|