mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-20 21:04:40 +08:00
334872a091
vDSO functions can now leverage an exception fixup mechanism similar to kernel exception fixup. For vDSO exception fixup, the initial user is Intel's Software Guard Extensions (SGX), which will wrap the low-level transitions to/from the enclave, i.e. EENTER and ERESUME instructions, in a vDSO function and leverage fixup to intercept exceptions that would otherwise generate a signal. This allows the vDSO wrapper to return the fault information directly to its caller, obviating the need for SGX applications and libraries to juggle signal handlers. Attempt to fixup vDSO exceptions immediately prior to populating and sending signal information. Except for the delivery mechanism, an exception in a vDSO function should be treated like any other exception in userspace, e.g. any fault that is successfully handled by the kernel should not be directly visible to userspace. Although it's debatable whether or not all exceptions are of interest to enclaves, defer to the vDSO fixup to decide whether to do fixup or generate a signal. Future users of vDSO fixup, if there ever are any, will undoubtedly have different requirements than SGX enclaves, e.g. the fixup vs. signal logic can be made function specific if/when necessary. Suggested-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Jethro Beekman <jethro@fortanix.com> Link: https://lkml.kernel.org/r/20201112220135.165028-19-jarkko@kernel.org
1511 lines
41 KiB
C
1511 lines
41 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 1995 Linus Torvalds
|
|
* Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
|
|
* Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
|
|
*/
|
|
#include <linux/sched.h> /* test_thread_flag(), ... */
|
|
#include <linux/sched/task_stack.h> /* task_stack_*(), ... */
|
|
#include <linux/kdebug.h> /* oops_begin/end, ... */
|
|
#include <linux/extable.h> /* search_exception_tables */
|
|
#include <linux/memblock.h> /* max_low_pfn */
|
|
#include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
|
|
#include <linux/mmiotrace.h> /* kmmio_handler, ... */
|
|
#include <linux/perf_event.h> /* perf_sw_event */
|
|
#include <linux/hugetlb.h> /* hstate_index_to_shift */
|
|
#include <linux/prefetch.h> /* prefetchw */
|
|
#include <linux/context_tracking.h> /* exception_enter(), ... */
|
|
#include <linux/uaccess.h> /* faulthandler_disabled() */
|
|
#include <linux/efi.h> /* efi_recover_from_page_fault()*/
|
|
#include <linux/mm_types.h>
|
|
|
|
#include <asm/cpufeature.h> /* boot_cpu_has, ... */
|
|
#include <asm/traps.h> /* dotraplinkage, ... */
|
|
#include <asm/fixmap.h> /* VSYSCALL_ADDR */
|
|
#include <asm/vsyscall.h> /* emulate_vsyscall */
|
|
#include <asm/vm86.h> /* struct vm86 */
|
|
#include <asm/mmu_context.h> /* vma_pkey() */
|
|
#include <asm/efi.h> /* efi_recover_from_page_fault()*/
|
|
#include <asm/desc.h> /* store_idt(), ... */
|
|
#include <asm/cpu_entry_area.h> /* exception stack */
|
|
#include <asm/pgtable_areas.h> /* VMALLOC_START, ... */
|
|
#include <asm/kvm_para.h> /* kvm_handle_async_pf */
|
|
#include <asm/vdso.h> /* fixup_vdso_exception() */
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <asm/trace/exceptions.h>
|
|
|
|
/*
|
|
* Returns 0 if mmiotrace is disabled, or if the fault is not
|
|
* handled by mmiotrace:
|
|
*/
|
|
static nokprobe_inline int
|
|
kmmio_fault(struct pt_regs *regs, unsigned long addr)
|
|
{
|
|
if (unlikely(is_kmmio_active()))
|
|
if (kmmio_handler(regs, addr) == 1)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Prefetch quirks:
|
|
*
|
|
* 32-bit mode:
|
|
*
|
|
* Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
|
|
* Check that here and ignore it.
|
|
*
|
|
* 64-bit mode:
|
|
*
|
|
* Sometimes the CPU reports invalid exceptions on prefetch.
|
|
* Check that here and ignore it.
|
|
*
|
|
* Opcode checker based on code by Richard Brunner.
|
|
*/
|
|
static inline int
|
|
check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
|
|
unsigned char opcode, int *prefetch)
|
|
{
|
|
unsigned char instr_hi = opcode & 0xf0;
|
|
unsigned char instr_lo = opcode & 0x0f;
|
|
|
|
switch (instr_hi) {
|
|
case 0x20:
|
|
case 0x30:
|
|
/*
|
|
* Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
|
|
* In X86_64 long mode, the CPU will signal invalid
|
|
* opcode if some of these prefixes are present so
|
|
* X86_64 will never get here anyway
|
|
*/
|
|
return ((instr_lo & 7) == 0x6);
|
|
#ifdef CONFIG_X86_64
|
|
case 0x40:
|
|
/*
|
|
* In AMD64 long mode 0x40..0x4F are valid REX prefixes
|
|
* Need to figure out under what instruction mode the
|
|
* instruction was issued. Could check the LDT for lm,
|
|
* but for now it's good enough to assume that long
|
|
* mode only uses well known segments or kernel.
|
|
*/
|
|
return (!user_mode(regs) || user_64bit_mode(regs));
|
|
#endif
|
|
case 0x60:
|
|
/* 0x64 thru 0x67 are valid prefixes in all modes. */
|
|
return (instr_lo & 0xC) == 0x4;
|
|
case 0xF0:
|
|
/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
|
|
return !instr_lo || (instr_lo>>1) == 1;
|
|
case 0x00:
|
|
/* Prefetch instruction is 0x0F0D or 0x0F18 */
|
|
if (get_kernel_nofault(opcode, instr))
|
|
return 0;
|
|
|
|
*prefetch = (instr_lo == 0xF) &&
|
|
(opcode == 0x0D || opcode == 0x18);
|
|
return 0;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int
|
|
is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
|
|
{
|
|
unsigned char *max_instr;
|
|
unsigned char *instr;
|
|
int prefetch = 0;
|
|
|
|
/*
|
|
* If it was a exec (instruction fetch) fault on NX page, then
|
|
* do not ignore the fault:
|
|
*/
|
|
if (error_code & X86_PF_INSTR)
|
|
return 0;
|
|
|
|
instr = (void *)convert_ip_to_linear(current, regs);
|
|
max_instr = instr + 15;
|
|
|
|
if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
|
|
return 0;
|
|
|
|
while (instr < max_instr) {
|
|
unsigned char opcode;
|
|
|
|
if (get_kernel_nofault(opcode, instr))
|
|
break;
|
|
|
|
instr++;
|
|
|
|
if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
|
|
break;
|
|
}
|
|
return prefetch;
|
|
}
|
|
|
|
DEFINE_SPINLOCK(pgd_lock);
|
|
LIST_HEAD(pgd_list);
|
|
|
|
#ifdef CONFIG_X86_32
|
|
static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
|
|
{
|
|
unsigned index = pgd_index(address);
|
|
pgd_t *pgd_k;
|
|
p4d_t *p4d, *p4d_k;
|
|
pud_t *pud, *pud_k;
|
|
pmd_t *pmd, *pmd_k;
|
|
|
|
pgd += index;
|
|
pgd_k = init_mm.pgd + index;
|
|
|
|
if (!pgd_present(*pgd_k))
|
|
return NULL;
|
|
|
|
/*
|
|
* set_pgd(pgd, *pgd_k); here would be useless on PAE
|
|
* and redundant with the set_pmd() on non-PAE. As would
|
|
* set_p4d/set_pud.
|
|
*/
|
|
p4d = p4d_offset(pgd, address);
|
|
p4d_k = p4d_offset(pgd_k, address);
|
|
if (!p4d_present(*p4d_k))
|
|
return NULL;
|
|
|
|
pud = pud_offset(p4d, address);
|
|
pud_k = pud_offset(p4d_k, address);
|
|
if (!pud_present(*pud_k))
|
|
return NULL;
|
|
|
|
pmd = pmd_offset(pud, address);
|
|
pmd_k = pmd_offset(pud_k, address);
|
|
|
|
if (pmd_present(*pmd) != pmd_present(*pmd_k))
|
|
set_pmd(pmd, *pmd_k);
|
|
|
|
if (!pmd_present(*pmd_k))
|
|
return NULL;
|
|
else
|
|
BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
|
|
|
|
return pmd_k;
|
|
}
|
|
|
|
/*
|
|
* Handle a fault on the vmalloc or module mapping area
|
|
*
|
|
* This is needed because there is a race condition between the time
|
|
* when the vmalloc mapping code updates the PMD to the point in time
|
|
* where it synchronizes this update with the other page-tables in the
|
|
* system.
|
|
*
|
|
* In this race window another thread/CPU can map an area on the same
|
|
* PMD, finds it already present and does not synchronize it with the
|
|
* rest of the system yet. As a result v[mz]alloc might return areas
|
|
* which are not mapped in every page-table in the system, causing an
|
|
* unhandled page-fault when they are accessed.
|
|
*/
|
|
static noinline int vmalloc_fault(unsigned long address)
|
|
{
|
|
unsigned long pgd_paddr;
|
|
pmd_t *pmd_k;
|
|
pte_t *pte_k;
|
|
|
|
/* Make sure we are in vmalloc area: */
|
|
if (!(address >= VMALLOC_START && address < VMALLOC_END))
|
|
return -1;
|
|
|
|
/*
|
|
* Synchronize this task's top level page-table
|
|
* with the 'reference' page table.
|
|
*
|
|
* Do _not_ use "current" here. We might be inside
|
|
* an interrupt in the middle of a task switch..
|
|
*/
|
|
pgd_paddr = read_cr3_pa();
|
|
pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
|
|
if (!pmd_k)
|
|
return -1;
|
|
|
|
if (pmd_large(*pmd_k))
|
|
return 0;
|
|
|
|
pte_k = pte_offset_kernel(pmd_k, address);
|
|
if (!pte_present(*pte_k))
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
NOKPROBE_SYMBOL(vmalloc_fault);
|
|
|
|
void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
|
|
{
|
|
unsigned long addr;
|
|
|
|
for (addr = start & PMD_MASK;
|
|
addr >= TASK_SIZE_MAX && addr < VMALLOC_END;
|
|
addr += PMD_SIZE) {
|
|
struct page *page;
|
|
|
|
spin_lock(&pgd_lock);
|
|
list_for_each_entry(page, &pgd_list, lru) {
|
|
spinlock_t *pgt_lock;
|
|
|
|
/* the pgt_lock only for Xen */
|
|
pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
|
|
|
|
spin_lock(pgt_lock);
|
|
vmalloc_sync_one(page_address(page), addr);
|
|
spin_unlock(pgt_lock);
|
|
}
|
|
spin_unlock(&pgd_lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Did it hit the DOS screen memory VA from vm86 mode?
|
|
*/
|
|
static inline void
|
|
check_v8086_mode(struct pt_regs *regs, unsigned long address,
|
|
struct task_struct *tsk)
|
|
{
|
|
#ifdef CONFIG_VM86
|
|
unsigned long bit;
|
|
|
|
if (!v8086_mode(regs) || !tsk->thread.vm86)
|
|
return;
|
|
|
|
bit = (address - 0xA0000) >> PAGE_SHIFT;
|
|
if (bit < 32)
|
|
tsk->thread.vm86->screen_bitmap |= 1 << bit;
|
|
#endif
|
|
}
|
|
|
|
static bool low_pfn(unsigned long pfn)
|
|
{
|
|
return pfn < max_low_pfn;
|
|
}
|
|
|
|
static void dump_pagetable(unsigned long address)
|
|
{
|
|
pgd_t *base = __va(read_cr3_pa());
|
|
pgd_t *pgd = &base[pgd_index(address)];
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
#ifdef CONFIG_X86_PAE
|
|
pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
|
|
if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
|
|
goto out;
|
|
#define pr_pde pr_cont
|
|
#else
|
|
#define pr_pde pr_info
|
|
#endif
|
|
p4d = p4d_offset(pgd, address);
|
|
pud = pud_offset(p4d, address);
|
|
pmd = pmd_offset(pud, address);
|
|
pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
|
|
#undef pr_pde
|
|
|
|
/*
|
|
* We must not directly access the pte in the highpte
|
|
* case if the page table is located in highmem.
|
|
* And let's rather not kmap-atomic the pte, just in case
|
|
* it's allocated already:
|
|
*/
|
|
if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
|
|
goto out;
|
|
|
|
pte = pte_offset_kernel(pmd, address);
|
|
pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
|
|
out:
|
|
pr_cont("\n");
|
|
}
|
|
|
|
#else /* CONFIG_X86_64: */
|
|
|
|
#ifdef CONFIG_CPU_SUP_AMD
|
|
static const char errata93_warning[] =
|
|
KERN_ERR
|
|
"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
|
|
"******* Working around it, but it may cause SEGVs or burn power.\n"
|
|
"******* Please consider a BIOS update.\n"
|
|
"******* Disabling USB legacy in the BIOS may also help.\n";
|
|
#endif
|
|
|
|
/*
|
|
* No vm86 mode in 64-bit mode:
|
|
*/
|
|
static inline void
|
|
check_v8086_mode(struct pt_regs *regs, unsigned long address,
|
|
struct task_struct *tsk)
|
|
{
|
|
}
|
|
|
|
static int bad_address(void *p)
|
|
{
|
|
unsigned long dummy;
|
|
|
|
return get_kernel_nofault(dummy, (unsigned long *)p);
|
|
}
|
|
|
|
static void dump_pagetable(unsigned long address)
|
|
{
|
|
pgd_t *base = __va(read_cr3_pa());
|
|
pgd_t *pgd = base + pgd_index(address);
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
if (bad_address(pgd))
|
|
goto bad;
|
|
|
|
pr_info("PGD %lx ", pgd_val(*pgd));
|
|
|
|
if (!pgd_present(*pgd))
|
|
goto out;
|
|
|
|
p4d = p4d_offset(pgd, address);
|
|
if (bad_address(p4d))
|
|
goto bad;
|
|
|
|
pr_cont("P4D %lx ", p4d_val(*p4d));
|
|
if (!p4d_present(*p4d) || p4d_large(*p4d))
|
|
goto out;
|
|
|
|
pud = pud_offset(p4d, address);
|
|
if (bad_address(pud))
|
|
goto bad;
|
|
|
|
pr_cont("PUD %lx ", pud_val(*pud));
|
|
if (!pud_present(*pud) || pud_large(*pud))
|
|
goto out;
|
|
|
|
pmd = pmd_offset(pud, address);
|
|
if (bad_address(pmd))
|
|
goto bad;
|
|
|
|
pr_cont("PMD %lx ", pmd_val(*pmd));
|
|
if (!pmd_present(*pmd) || pmd_large(*pmd))
|
|
goto out;
|
|
|
|
pte = pte_offset_kernel(pmd, address);
|
|
if (bad_address(pte))
|
|
goto bad;
|
|
|
|
pr_cont("PTE %lx", pte_val(*pte));
|
|
out:
|
|
pr_cont("\n");
|
|
return;
|
|
bad:
|
|
pr_info("BAD\n");
|
|
}
|
|
|
|
#endif /* CONFIG_X86_64 */
|
|
|
|
/*
|
|
* Workaround for K8 erratum #93 & buggy BIOS.
|
|
*
|
|
* BIOS SMM functions are required to use a specific workaround
|
|
* to avoid corruption of the 64bit RIP register on C stepping K8.
|
|
*
|
|
* A lot of BIOS that didn't get tested properly miss this.
|
|
*
|
|
* The OS sees this as a page fault with the upper 32bits of RIP cleared.
|
|
* Try to work around it here.
|
|
*
|
|
* Note we only handle faults in kernel here.
|
|
* Does nothing on 32-bit.
|
|
*/
|
|
static int is_errata93(struct pt_regs *regs, unsigned long address)
|
|
{
|
|
#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
|
|
if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
|
|
|| boot_cpu_data.x86 != 0xf)
|
|
return 0;
|
|
|
|
if (address != regs->ip)
|
|
return 0;
|
|
|
|
if ((address >> 32) != 0)
|
|
return 0;
|
|
|
|
address |= 0xffffffffUL << 32;
|
|
if ((address >= (u64)_stext && address <= (u64)_etext) ||
|
|
(address >= MODULES_VADDR && address <= MODULES_END)) {
|
|
printk_once(errata93_warning);
|
|
regs->ip = address;
|
|
return 1;
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Work around K8 erratum #100 K8 in compat mode occasionally jumps
|
|
* to illegal addresses >4GB.
|
|
*
|
|
* We catch this in the page fault handler because these addresses
|
|
* are not reachable. Just detect this case and return. Any code
|
|
* segment in LDT is compatibility mode.
|
|
*/
|
|
static int is_errata100(struct pt_regs *regs, unsigned long address)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
|
|
return 1;
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/* Pentium F0 0F C7 C8 bug workaround: */
|
|
static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
|
|
{
|
|
#ifdef CONFIG_X86_F00F_BUG
|
|
if (boot_cpu_has_bug(X86_BUG_F00F) && idt_is_f00f_address(address)) {
|
|
handle_invalid_op(regs);
|
|
return 1;
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
|
|
{
|
|
u32 offset = (index >> 3) * sizeof(struct desc_struct);
|
|
unsigned long addr;
|
|
struct ldttss_desc desc;
|
|
|
|
if (index == 0) {
|
|
pr_alert("%s: NULL\n", name);
|
|
return;
|
|
}
|
|
|
|
if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
|
|
pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
|
|
return;
|
|
}
|
|
|
|
if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset),
|
|
sizeof(struct ldttss_desc))) {
|
|
pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
|
|
name, index);
|
|
return;
|
|
}
|
|
|
|
addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
|
|
#ifdef CONFIG_X86_64
|
|
addr |= ((u64)desc.base3 << 32);
|
|
#endif
|
|
pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
|
|
name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
|
|
}
|
|
|
|
static void
|
|
show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
|
|
{
|
|
if (!oops_may_print())
|
|
return;
|
|
|
|
if (error_code & X86_PF_INSTR) {
|
|
unsigned int level;
|
|
pgd_t *pgd;
|
|
pte_t *pte;
|
|
|
|
pgd = __va(read_cr3_pa());
|
|
pgd += pgd_index(address);
|
|
|
|
pte = lookup_address_in_pgd(pgd, address, &level);
|
|
|
|
if (pte && pte_present(*pte) && !pte_exec(*pte))
|
|
pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
|
|
from_kuid(&init_user_ns, current_uid()));
|
|
if (pte && pte_present(*pte) && pte_exec(*pte) &&
|
|
(pgd_flags(*pgd) & _PAGE_USER) &&
|
|
(__read_cr4() & X86_CR4_SMEP))
|
|
pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
|
|
from_kuid(&init_user_ns, current_uid()));
|
|
}
|
|
|
|
if (address < PAGE_SIZE && !user_mode(regs))
|
|
pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
|
|
(void *)address);
|
|
else
|
|
pr_alert("BUG: unable to handle page fault for address: %px\n",
|
|
(void *)address);
|
|
|
|
pr_alert("#PF: %s %s in %s mode\n",
|
|
(error_code & X86_PF_USER) ? "user" : "supervisor",
|
|
(error_code & X86_PF_INSTR) ? "instruction fetch" :
|
|
(error_code & X86_PF_WRITE) ? "write access" :
|
|
"read access",
|
|
user_mode(regs) ? "user" : "kernel");
|
|
pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
|
|
!(error_code & X86_PF_PROT) ? "not-present page" :
|
|
(error_code & X86_PF_RSVD) ? "reserved bit violation" :
|
|
(error_code & X86_PF_PK) ? "protection keys violation" :
|
|
"permissions violation");
|
|
|
|
if (!(error_code & X86_PF_USER) && user_mode(regs)) {
|
|
struct desc_ptr idt, gdt;
|
|
u16 ldtr, tr;
|
|
|
|
/*
|
|
* This can happen for quite a few reasons. The more obvious
|
|
* ones are faults accessing the GDT, or LDT. Perhaps
|
|
* surprisingly, if the CPU tries to deliver a benign or
|
|
* contributory exception from user code and gets a page fault
|
|
* during delivery, the page fault can be delivered as though
|
|
* it originated directly from user code. This could happen
|
|
* due to wrong permissions on the IDT, GDT, LDT, TSS, or
|
|
* kernel or IST stack.
|
|
*/
|
|
store_idt(&idt);
|
|
|
|
/* Usable even on Xen PV -- it's just slow. */
|
|
native_store_gdt(&gdt);
|
|
|
|
pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
|
|
idt.address, idt.size, gdt.address, gdt.size);
|
|
|
|
store_ldt(ldtr);
|
|
show_ldttss(&gdt, "LDTR", ldtr);
|
|
|
|
store_tr(tr);
|
|
show_ldttss(&gdt, "TR", tr);
|
|
}
|
|
|
|
dump_pagetable(address);
|
|
}
|
|
|
|
static noinline void
|
|
pgtable_bad(struct pt_regs *regs, unsigned long error_code,
|
|
unsigned long address)
|
|
{
|
|
struct task_struct *tsk;
|
|
unsigned long flags;
|
|
int sig;
|
|
|
|
flags = oops_begin();
|
|
tsk = current;
|
|
sig = SIGKILL;
|
|
|
|
printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
|
|
tsk->comm, address);
|
|
dump_pagetable(address);
|
|
|
|
if (__die("Bad pagetable", regs, error_code))
|
|
sig = 0;
|
|
|
|
oops_end(flags, regs, sig);
|
|
}
|
|
|
|
static void sanitize_error_code(unsigned long address,
|
|
unsigned long *error_code)
|
|
{
|
|
/*
|
|
* To avoid leaking information about the kernel page
|
|
* table layout, pretend that user-mode accesses to
|
|
* kernel addresses are always protection faults.
|
|
*
|
|
* NB: This means that failed vsyscalls with vsyscall=none
|
|
* will have the PROT bit. This doesn't leak any
|
|
* information and does not appear to cause any problems.
|
|
*/
|
|
if (address >= TASK_SIZE_MAX)
|
|
*error_code |= X86_PF_PROT;
|
|
}
|
|
|
|
static void set_signal_archinfo(unsigned long address,
|
|
unsigned long error_code)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
|
|
tsk->thread.trap_nr = X86_TRAP_PF;
|
|
tsk->thread.error_code = error_code | X86_PF_USER;
|
|
tsk->thread.cr2 = address;
|
|
}
|
|
|
|
static noinline void
|
|
no_context(struct pt_regs *regs, unsigned long error_code,
|
|
unsigned long address, int signal, int si_code)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
unsigned long flags;
|
|
int sig;
|
|
|
|
if (user_mode(regs)) {
|
|
/*
|
|
* This is an implicit supervisor-mode access from user
|
|
* mode. Bypass all the kernel-mode recovery code and just
|
|
* OOPS.
|
|
*/
|
|
goto oops;
|
|
}
|
|
|
|
/* Are we prepared to handle this kernel fault? */
|
|
if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) {
|
|
/*
|
|
* Any interrupt that takes a fault gets the fixup. This makes
|
|
* the below recursive fault logic only apply to a faults from
|
|
* task context.
|
|
*/
|
|
if (in_interrupt())
|
|
return;
|
|
|
|
/*
|
|
* Per the above we're !in_interrupt(), aka. task context.
|
|
*
|
|
* In this case we need to make sure we're not recursively
|
|
* faulting through the emulate_vsyscall() logic.
|
|
*/
|
|
if (current->thread.sig_on_uaccess_err && signal) {
|
|
sanitize_error_code(address, &error_code);
|
|
|
|
set_signal_archinfo(address, error_code);
|
|
|
|
/* XXX: hwpoison faults will set the wrong code. */
|
|
force_sig_fault(signal, si_code, (void __user *)address);
|
|
}
|
|
|
|
/*
|
|
* Barring that, we can do the fixup and be happy.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
#ifdef CONFIG_VMAP_STACK
|
|
/*
|
|
* Stack overflow? During boot, we can fault near the initial
|
|
* stack in the direct map, but that's not an overflow -- check
|
|
* that we're in vmalloc space to avoid this.
|
|
*/
|
|
if (is_vmalloc_addr((void *)address) &&
|
|
(((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
|
|
address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
|
|
unsigned long stack = __this_cpu_ist_top_va(DF) - sizeof(void *);
|
|
/*
|
|
* We're likely to be running with very little stack space
|
|
* left. It's plausible that we'd hit this condition but
|
|
* double-fault even before we get this far, in which case
|
|
* we're fine: the double-fault handler will deal with it.
|
|
*
|
|
* We don't want to make it all the way into the oops code
|
|
* and then double-fault, though, because we're likely to
|
|
* break the console driver and lose most of the stack dump.
|
|
*/
|
|
asm volatile ("movq %[stack], %%rsp\n\t"
|
|
"call handle_stack_overflow\n\t"
|
|
"1: jmp 1b"
|
|
: ASM_CALL_CONSTRAINT
|
|
: "D" ("kernel stack overflow (page fault)"),
|
|
"S" (regs), "d" (address),
|
|
[stack] "rm" (stack));
|
|
unreachable();
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* 32-bit:
|
|
*
|
|
* Valid to do another page fault here, because if this fault
|
|
* had been triggered by is_prefetch fixup_exception would have
|
|
* handled it.
|
|
*
|
|
* 64-bit:
|
|
*
|
|
* Hall of shame of CPU/BIOS bugs.
|
|
*/
|
|
if (is_prefetch(regs, error_code, address))
|
|
return;
|
|
|
|
if (is_errata93(regs, address))
|
|
return;
|
|
|
|
/*
|
|
* Buggy firmware could access regions which might page fault, try to
|
|
* recover from such faults.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_EFI))
|
|
efi_recover_from_page_fault(address);
|
|
|
|
oops:
|
|
/*
|
|
* Oops. The kernel tried to access some bad page. We'll have to
|
|
* terminate things with extreme prejudice:
|
|
*/
|
|
flags = oops_begin();
|
|
|
|
show_fault_oops(regs, error_code, address);
|
|
|
|
if (task_stack_end_corrupted(tsk))
|
|
printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
|
|
|
|
sig = SIGKILL;
|
|
if (__die("Oops", regs, error_code))
|
|
sig = 0;
|
|
|
|
/* Executive summary in case the body of the oops scrolled away */
|
|
printk(KERN_DEFAULT "CR2: %016lx\n", address);
|
|
|
|
oops_end(flags, regs, sig);
|
|
}
|
|
|
|
/*
|
|
* Print out info about fatal segfaults, if the show_unhandled_signals
|
|
* sysctl is set:
|
|
*/
|
|
static inline void
|
|
show_signal_msg(struct pt_regs *regs, unsigned long error_code,
|
|
unsigned long address, struct task_struct *tsk)
|
|
{
|
|
const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
|
|
|
|
if (!unhandled_signal(tsk, SIGSEGV))
|
|
return;
|
|
|
|
if (!printk_ratelimit())
|
|
return;
|
|
|
|
printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
|
|
loglvl, tsk->comm, task_pid_nr(tsk), address,
|
|
(void *)regs->ip, (void *)regs->sp, error_code);
|
|
|
|
print_vma_addr(KERN_CONT " in ", regs->ip);
|
|
|
|
printk(KERN_CONT "\n");
|
|
|
|
show_opcodes(regs, loglvl);
|
|
}
|
|
|
|
/*
|
|
* The (legacy) vsyscall page is the long page in the kernel portion
|
|
* of the address space that has user-accessible permissions.
|
|
*/
|
|
static bool is_vsyscall_vaddr(unsigned long vaddr)
|
|
{
|
|
return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR);
|
|
}
|
|
|
|
static void
|
|
__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
|
|
unsigned long address, u32 pkey, int si_code)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
|
|
/* User mode accesses just cause a SIGSEGV */
|
|
if (user_mode(regs) && (error_code & X86_PF_USER)) {
|
|
/*
|
|
* It's possible to have interrupts off here:
|
|
*/
|
|
local_irq_enable();
|
|
|
|
/*
|
|
* Valid to do another page fault here because this one came
|
|
* from user space:
|
|
*/
|
|
if (is_prefetch(regs, error_code, address))
|
|
return;
|
|
|
|
if (is_errata100(regs, address))
|
|
return;
|
|
|
|
sanitize_error_code(address, &error_code);
|
|
|
|
if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
|
|
return;
|
|
|
|
if (likely(show_unhandled_signals))
|
|
show_signal_msg(regs, error_code, address, tsk);
|
|
|
|
set_signal_archinfo(address, error_code);
|
|
|
|
if (si_code == SEGV_PKUERR)
|
|
force_sig_pkuerr((void __user *)address, pkey);
|
|
|
|
force_sig_fault(SIGSEGV, si_code, (void __user *)address);
|
|
|
|
local_irq_disable();
|
|
|
|
return;
|
|
}
|
|
|
|
if (is_f00f_bug(regs, address))
|
|
return;
|
|
|
|
no_context(regs, error_code, address, SIGSEGV, si_code);
|
|
}
|
|
|
|
static noinline void
|
|
bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
|
|
unsigned long address)
|
|
{
|
|
__bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
|
|
}
|
|
|
|
static void
|
|
__bad_area(struct pt_regs *regs, unsigned long error_code,
|
|
unsigned long address, u32 pkey, int si_code)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
/*
|
|
* Something tried to access memory that isn't in our memory map..
|
|
* Fix it, but check if it's kernel or user first..
|
|
*/
|
|
mmap_read_unlock(mm);
|
|
|
|
__bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
|
|
}
|
|
|
|
static noinline void
|
|
bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
|
|
{
|
|
__bad_area(regs, error_code, address, 0, SEGV_MAPERR);
|
|
}
|
|
|
|
static inline bool bad_area_access_from_pkeys(unsigned long error_code,
|
|
struct vm_area_struct *vma)
|
|
{
|
|
/* This code is always called on the current mm */
|
|
bool foreign = false;
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_OSPKE))
|
|
return false;
|
|
if (error_code & X86_PF_PK)
|
|
return true;
|
|
/* this checks permission keys on the VMA: */
|
|
if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
|
|
(error_code & X86_PF_INSTR), foreign))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static noinline void
|
|
bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
|
|
unsigned long address, struct vm_area_struct *vma)
|
|
{
|
|
/*
|
|
* This OSPKE check is not strictly necessary at runtime.
|
|
* But, doing it this way allows compiler optimizations
|
|
* if pkeys are compiled out.
|
|
*/
|
|
if (bad_area_access_from_pkeys(error_code, vma)) {
|
|
/*
|
|
* A protection key fault means that the PKRU value did not allow
|
|
* access to some PTE. Userspace can figure out what PKRU was
|
|
* from the XSAVE state. This function captures the pkey from
|
|
* the vma and passes it to userspace so userspace can discover
|
|
* which protection key was set on the PTE.
|
|
*
|
|
* If we get here, we know that the hardware signaled a X86_PF_PK
|
|
* fault and that there was a VMA once we got in the fault
|
|
* handler. It does *not* guarantee that the VMA we find here
|
|
* was the one that we faulted on.
|
|
*
|
|
* 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
|
|
* 2. T1 : set PKRU to deny access to pkey=4, touches page
|
|
* 3. T1 : faults...
|
|
* 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
|
|
* 5. T1 : enters fault handler, takes mmap_lock, etc...
|
|
* 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
|
|
* faulted on a pte with its pkey=4.
|
|
*/
|
|
u32 pkey = vma_pkey(vma);
|
|
|
|
__bad_area(regs, error_code, address, pkey, SEGV_PKUERR);
|
|
} else {
|
|
__bad_area(regs, error_code, address, 0, SEGV_ACCERR);
|
|
}
|
|
}
|
|
|
|
static void
|
|
do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
|
|
vm_fault_t fault)
|
|
{
|
|
/* Kernel mode? Handle exceptions or die: */
|
|
if (!(error_code & X86_PF_USER)) {
|
|
no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
|
|
return;
|
|
}
|
|
|
|
/* User-space => ok to do another page fault: */
|
|
if (is_prefetch(regs, error_code, address))
|
|
return;
|
|
|
|
sanitize_error_code(address, &error_code);
|
|
|
|
if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
|
|
return;
|
|
|
|
set_signal_archinfo(address, error_code);
|
|
|
|
#ifdef CONFIG_MEMORY_FAILURE
|
|
if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
|
|
struct task_struct *tsk = current;
|
|
unsigned lsb = 0;
|
|
|
|
pr_err(
|
|
"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
|
|
tsk->comm, tsk->pid, address);
|
|
if (fault & VM_FAULT_HWPOISON_LARGE)
|
|
lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
|
|
if (fault & VM_FAULT_HWPOISON)
|
|
lsb = PAGE_SHIFT;
|
|
force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
|
|
return;
|
|
}
|
|
#endif
|
|
force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
|
|
}
|
|
|
|
static noinline void
|
|
mm_fault_error(struct pt_regs *regs, unsigned long error_code,
|
|
unsigned long address, vm_fault_t fault)
|
|
{
|
|
if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) {
|
|
no_context(regs, error_code, address, 0, 0);
|
|
return;
|
|
}
|
|
|
|
if (fault & VM_FAULT_OOM) {
|
|
/* Kernel mode? Handle exceptions or die: */
|
|
if (!(error_code & X86_PF_USER)) {
|
|
no_context(regs, error_code, address,
|
|
SIGSEGV, SEGV_MAPERR);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* We ran out of memory, call the OOM killer, and return the
|
|
* userspace (which will retry the fault, or kill us if we got
|
|
* oom-killed):
|
|
*/
|
|
pagefault_out_of_memory();
|
|
} else {
|
|
if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
|
|
VM_FAULT_HWPOISON_LARGE))
|
|
do_sigbus(regs, error_code, address, fault);
|
|
else if (fault & VM_FAULT_SIGSEGV)
|
|
bad_area_nosemaphore(regs, error_code, address);
|
|
else
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
|
|
{
|
|
if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
|
|
return 0;
|
|
|
|
if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Handle a spurious fault caused by a stale TLB entry.
|
|
*
|
|
* This allows us to lazily refresh the TLB when increasing the
|
|
* permissions of a kernel page (RO -> RW or NX -> X). Doing it
|
|
* eagerly is very expensive since that implies doing a full
|
|
* cross-processor TLB flush, even if no stale TLB entries exist
|
|
* on other processors.
|
|
*
|
|
* Spurious faults may only occur if the TLB contains an entry with
|
|
* fewer permission than the page table entry. Non-present (P = 0)
|
|
* and reserved bit (R = 1) faults are never spurious.
|
|
*
|
|
* There are no security implications to leaving a stale TLB when
|
|
* increasing the permissions on a page.
|
|
*
|
|
* Returns non-zero if a spurious fault was handled, zero otherwise.
|
|
*
|
|
* See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
|
|
* (Optional Invalidation).
|
|
*/
|
|
static noinline int
|
|
spurious_kernel_fault(unsigned long error_code, unsigned long address)
|
|
{
|
|
pgd_t *pgd;
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
int ret;
|
|
|
|
/*
|
|
* Only writes to RO or instruction fetches from NX may cause
|
|
* spurious faults.
|
|
*
|
|
* These could be from user or supervisor accesses but the TLB
|
|
* is only lazily flushed after a kernel mapping protection
|
|
* change, so user accesses are not expected to cause spurious
|
|
* faults.
|
|
*/
|
|
if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
|
|
error_code != (X86_PF_INSTR | X86_PF_PROT))
|
|
return 0;
|
|
|
|
pgd = init_mm.pgd + pgd_index(address);
|
|
if (!pgd_present(*pgd))
|
|
return 0;
|
|
|
|
p4d = p4d_offset(pgd, address);
|
|
if (!p4d_present(*p4d))
|
|
return 0;
|
|
|
|
if (p4d_large(*p4d))
|
|
return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
|
|
|
|
pud = pud_offset(p4d, address);
|
|
if (!pud_present(*pud))
|
|
return 0;
|
|
|
|
if (pud_large(*pud))
|
|
return spurious_kernel_fault_check(error_code, (pte_t *) pud);
|
|
|
|
pmd = pmd_offset(pud, address);
|
|
if (!pmd_present(*pmd))
|
|
return 0;
|
|
|
|
if (pmd_large(*pmd))
|
|
return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
|
|
|
|
pte = pte_offset_kernel(pmd, address);
|
|
if (!pte_present(*pte))
|
|
return 0;
|
|
|
|
ret = spurious_kernel_fault_check(error_code, pte);
|
|
if (!ret)
|
|
return 0;
|
|
|
|
/*
|
|
* Make sure we have permissions in PMD.
|
|
* If not, then there's a bug in the page tables:
|
|
*/
|
|
ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
|
|
WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
|
|
|
|
return ret;
|
|
}
|
|
NOKPROBE_SYMBOL(spurious_kernel_fault);
|
|
|
|
int show_unhandled_signals = 1;
|
|
|
|
static inline int
|
|
access_error(unsigned long error_code, struct vm_area_struct *vma)
|
|
{
|
|
/* This is only called for the current mm, so: */
|
|
bool foreign = false;
|
|
|
|
/*
|
|
* Read or write was blocked by protection keys. This is
|
|
* always an unconditional error and can never result in
|
|
* a follow-up action to resolve the fault, like a COW.
|
|
*/
|
|
if (error_code & X86_PF_PK)
|
|
return 1;
|
|
|
|
/*
|
|
* SGX hardware blocked the access. This usually happens
|
|
* when the enclave memory contents have been destroyed, like
|
|
* after a suspend/resume cycle. In any case, the kernel can't
|
|
* fix the cause of the fault. Handle the fault as an access
|
|
* error even in cases where no actual access violation
|
|
* occurred. This allows userspace to rebuild the enclave in
|
|
* response to the signal.
|
|
*/
|
|
if (unlikely(error_code & X86_PF_SGX))
|
|
return 1;
|
|
|
|
/*
|
|
* Make sure to check the VMA so that we do not perform
|
|
* faults just to hit a X86_PF_PK as soon as we fill in a
|
|
* page.
|
|
*/
|
|
if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
|
|
(error_code & X86_PF_INSTR), foreign))
|
|
return 1;
|
|
|
|
if (error_code & X86_PF_WRITE) {
|
|
/* write, present and write, not present: */
|
|
if (unlikely(!(vma->vm_flags & VM_WRITE)))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/* read, present: */
|
|
if (unlikely(error_code & X86_PF_PROT))
|
|
return 1;
|
|
|
|
/* read, not present: */
|
|
if (unlikely(!vma_is_accessible(vma)))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool fault_in_kernel_space(unsigned long address)
|
|
{
|
|
/*
|
|
* On 64-bit systems, the vsyscall page is at an address above
|
|
* TASK_SIZE_MAX, but is not considered part of the kernel
|
|
* address space.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
|
|
return false;
|
|
|
|
return address >= TASK_SIZE_MAX;
|
|
}
|
|
|
|
/*
|
|
* Called for all faults where 'address' is part of the kernel address
|
|
* space. Might get called for faults that originate from *code* that
|
|
* ran in userspace or the kernel.
|
|
*/
|
|
static void
|
|
do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
|
|
unsigned long address)
|
|
{
|
|
/*
|
|
* Protection keys exceptions only happen on user pages. We
|
|
* have no user pages in the kernel portion of the address
|
|
* space, so do not expect them here.
|
|
*/
|
|
WARN_ON_ONCE(hw_error_code & X86_PF_PK);
|
|
|
|
#ifdef CONFIG_X86_32
|
|
/*
|
|
* We can fault-in kernel-space virtual memory on-demand. The
|
|
* 'reference' page table is init_mm.pgd.
|
|
*
|
|
* NOTE! We MUST NOT take any locks for this case. We may
|
|
* be in an interrupt or a critical region, and should
|
|
* only copy the information from the master page table,
|
|
* nothing more.
|
|
*
|
|
* Before doing this on-demand faulting, ensure that the
|
|
* fault is not any of the following:
|
|
* 1. A fault on a PTE with a reserved bit set.
|
|
* 2. A fault caused by a user-mode access. (Do not demand-
|
|
* fault kernel memory due to user-mode accesses).
|
|
* 3. A fault caused by a page-level protection violation.
|
|
* (A demand fault would be on a non-present page which
|
|
* would have X86_PF_PROT==0).
|
|
*
|
|
* This is only needed to close a race condition on x86-32 in
|
|
* the vmalloc mapping/unmapping code. See the comment above
|
|
* vmalloc_fault() for details. On x86-64 the race does not
|
|
* exist as the vmalloc mappings don't need to be synchronized
|
|
* there.
|
|
*/
|
|
if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
|
|
if (vmalloc_fault(address) >= 0)
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
/* Was the fault spurious, caused by lazy TLB invalidation? */
|
|
if (spurious_kernel_fault(hw_error_code, address))
|
|
return;
|
|
|
|
/* kprobes don't want to hook the spurious faults: */
|
|
if (kprobe_page_fault(regs, X86_TRAP_PF))
|
|
return;
|
|
|
|
/*
|
|
* Note, despite being a "bad area", there are quite a few
|
|
* acceptable reasons to get here, such as erratum fixups
|
|
* and handling kernel code that can fault, like get_user().
|
|
*
|
|
* Don't take the mm semaphore here. If we fixup a prefetch
|
|
* fault we could otherwise deadlock:
|
|
*/
|
|
bad_area_nosemaphore(regs, hw_error_code, address);
|
|
}
|
|
NOKPROBE_SYMBOL(do_kern_addr_fault);
|
|
|
|
/* Handle faults in the user portion of the address space */
|
|
static inline
|
|
void do_user_addr_fault(struct pt_regs *regs,
|
|
unsigned long hw_error_code,
|
|
unsigned long address)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
struct task_struct *tsk;
|
|
struct mm_struct *mm;
|
|
vm_fault_t fault;
|
|
unsigned int flags = FAULT_FLAG_DEFAULT;
|
|
|
|
tsk = current;
|
|
mm = tsk->mm;
|
|
|
|
/* kprobes don't want to hook the spurious faults: */
|
|
if (unlikely(kprobe_page_fault(regs, X86_TRAP_PF)))
|
|
return;
|
|
|
|
/*
|
|
* Reserved bits are never expected to be set on
|
|
* entries in the user portion of the page tables.
|
|
*/
|
|
if (unlikely(hw_error_code & X86_PF_RSVD))
|
|
pgtable_bad(regs, hw_error_code, address);
|
|
|
|
/*
|
|
* If SMAP is on, check for invalid kernel (supervisor) access to user
|
|
* pages in the user address space. The odd case here is WRUSS,
|
|
* which, according to the preliminary documentation, does not respect
|
|
* SMAP and will have the USER bit set so, in all cases, SMAP
|
|
* enforcement appears to be consistent with the USER bit.
|
|
*/
|
|
if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
|
|
!(hw_error_code & X86_PF_USER) &&
|
|
!(regs->flags & X86_EFLAGS_AC)))
|
|
{
|
|
bad_area_nosemaphore(regs, hw_error_code, address);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If we're in an interrupt, have no user context or are running
|
|
* in a region with pagefaults disabled then we must not take the fault
|
|
*/
|
|
if (unlikely(faulthandler_disabled() || !mm)) {
|
|
bad_area_nosemaphore(regs, hw_error_code, address);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* It's safe to allow irq's after cr2 has been saved and the
|
|
* vmalloc fault has been handled.
|
|
*
|
|
* User-mode registers count as a user access even for any
|
|
* potential system fault or CPU buglet:
|
|
*/
|
|
if (user_mode(regs)) {
|
|
local_irq_enable();
|
|
flags |= FAULT_FLAG_USER;
|
|
} else {
|
|
if (regs->flags & X86_EFLAGS_IF)
|
|
local_irq_enable();
|
|
}
|
|
|
|
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
|
|
|
|
if (hw_error_code & X86_PF_WRITE)
|
|
flags |= FAULT_FLAG_WRITE;
|
|
if (hw_error_code & X86_PF_INSTR)
|
|
flags |= FAULT_FLAG_INSTRUCTION;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
/*
|
|
* Faults in the vsyscall page might need emulation. The
|
|
* vsyscall page is at a high address (>PAGE_OFFSET), but is
|
|
* considered to be part of the user address space.
|
|
*
|
|
* The vsyscall page does not have a "real" VMA, so do this
|
|
* emulation before we go searching for VMAs.
|
|
*
|
|
* PKRU never rejects instruction fetches, so we don't need
|
|
* to consider the PF_PK bit.
|
|
*/
|
|
if (is_vsyscall_vaddr(address)) {
|
|
if (emulate_vsyscall(hw_error_code, regs, address))
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Kernel-mode access to the user address space should only occur
|
|
* on well-defined single instructions listed in the exception
|
|
* tables. But, an erroneous kernel fault occurring outside one of
|
|
* those areas which also holds mmap_lock might deadlock attempting
|
|
* to validate the fault against the address space.
|
|
*
|
|
* Only do the expensive exception table search when we might be at
|
|
* risk of a deadlock. This happens if we
|
|
* 1. Failed to acquire mmap_lock, and
|
|
* 2. The access did not originate in userspace.
|
|
*/
|
|
if (unlikely(!mmap_read_trylock(mm))) {
|
|
if (!user_mode(regs) && !search_exception_tables(regs->ip)) {
|
|
/*
|
|
* Fault from code in kernel from
|
|
* which we do not expect faults.
|
|
*/
|
|
bad_area_nosemaphore(regs, hw_error_code, address);
|
|
return;
|
|
}
|
|
retry:
|
|
mmap_read_lock(mm);
|
|
} else {
|
|
/*
|
|
* The above down_read_trylock() might have succeeded in
|
|
* which case we'll have missed the might_sleep() from
|
|
* down_read():
|
|
*/
|
|
might_sleep();
|
|
}
|
|
|
|
vma = find_vma(mm, address);
|
|
if (unlikely(!vma)) {
|
|
bad_area(regs, hw_error_code, address);
|
|
return;
|
|
}
|
|
if (likely(vma->vm_start <= address))
|
|
goto good_area;
|
|
if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
|
|
bad_area(regs, hw_error_code, address);
|
|
return;
|
|
}
|
|
if (unlikely(expand_stack(vma, address))) {
|
|
bad_area(regs, hw_error_code, address);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Ok, we have a good vm_area for this memory access, so
|
|
* we can handle it..
|
|
*/
|
|
good_area:
|
|
if (unlikely(access_error(hw_error_code, vma))) {
|
|
bad_area_access_error(regs, hw_error_code, address, vma);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If for any reason at all we couldn't handle the fault,
|
|
* make sure we exit gracefully rather than endlessly redo
|
|
* the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
|
|
* we get VM_FAULT_RETRY back, the mmap_lock has been unlocked.
|
|
*
|
|
* Note that handle_userfault() may also release and reacquire mmap_lock
|
|
* (and not return with VM_FAULT_RETRY), when returning to userland to
|
|
* repeat the page fault later with a VM_FAULT_NOPAGE retval
|
|
* (potentially after handling any pending signal during the return to
|
|
* userland). The return to userland is identified whenever
|
|
* FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
|
|
*/
|
|
fault = handle_mm_fault(vma, address, flags, regs);
|
|
|
|
/* Quick path to respond to signals */
|
|
if (fault_signal_pending(fault, regs)) {
|
|
if (!user_mode(regs))
|
|
no_context(regs, hw_error_code, address, SIGBUS,
|
|
BUS_ADRERR);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If we need to retry the mmap_lock has already been released,
|
|
* and if there is a fatal signal pending there is no guarantee
|
|
* that we made any progress. Handle this case first.
|
|
*/
|
|
if (unlikely((fault & VM_FAULT_RETRY) &&
|
|
(flags & FAULT_FLAG_ALLOW_RETRY))) {
|
|
flags |= FAULT_FLAG_TRIED;
|
|
goto retry;
|
|
}
|
|
|
|
mmap_read_unlock(mm);
|
|
if (unlikely(fault & VM_FAULT_ERROR)) {
|
|
mm_fault_error(regs, hw_error_code, address, fault);
|
|
return;
|
|
}
|
|
|
|
check_v8086_mode(regs, address, tsk);
|
|
}
|
|
NOKPROBE_SYMBOL(do_user_addr_fault);
|
|
|
|
static __always_inline void
|
|
trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
|
|
unsigned long address)
|
|
{
|
|
if (!trace_pagefault_enabled())
|
|
return;
|
|
|
|
if (user_mode(regs))
|
|
trace_page_fault_user(address, regs, error_code);
|
|
else
|
|
trace_page_fault_kernel(address, regs, error_code);
|
|
}
|
|
|
|
static __always_inline void
|
|
handle_page_fault(struct pt_regs *regs, unsigned long error_code,
|
|
unsigned long address)
|
|
{
|
|
trace_page_fault_entries(regs, error_code, address);
|
|
|
|
if (unlikely(kmmio_fault(regs, address)))
|
|
return;
|
|
|
|
/* Was the fault on kernel-controlled part of the address space? */
|
|
if (unlikely(fault_in_kernel_space(address))) {
|
|
do_kern_addr_fault(regs, error_code, address);
|
|
} else {
|
|
do_user_addr_fault(regs, error_code, address);
|
|
/*
|
|
* User address page fault handling might have reenabled
|
|
* interrupts. Fixing up all potential exit points of
|
|
* do_user_addr_fault() and its leaf functions is just not
|
|
* doable w/o creating an unholy mess or turning the code
|
|
* upside down.
|
|
*/
|
|
local_irq_disable();
|
|
}
|
|
}
|
|
|
|
DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)
|
|
{
|
|
unsigned long address = read_cr2();
|
|
irqentry_state_t state;
|
|
|
|
prefetchw(¤t->mm->mmap_lock);
|
|
|
|
/*
|
|
* KVM uses #PF vector to deliver 'page not present' events to guests
|
|
* (asynchronous page fault mechanism). The event happens when a
|
|
* userspace task is trying to access some valid (from guest's point of
|
|
* view) memory which is not currently mapped by the host (e.g. the
|
|
* memory is swapped out). Note, the corresponding "page ready" event
|
|
* which is injected when the memory becomes available, is delived via
|
|
* an interrupt mechanism and not a #PF exception
|
|
* (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()).
|
|
*
|
|
* We are relying on the interrupted context being sane (valid RSP,
|
|
* relevant locks not held, etc.), which is fine as long as the
|
|
* interrupted context had IF=1. We are also relying on the KVM
|
|
* async pf type field and CR2 being read consistently instead of
|
|
* getting values from real and async page faults mixed up.
|
|
*
|
|
* Fingers crossed.
|
|
*
|
|
* The async #PF handling code takes care of idtentry handling
|
|
* itself.
|
|
*/
|
|
if (kvm_handle_async_pf(regs, (u32)address))
|
|
return;
|
|
|
|
/*
|
|
* Entry handling for valid #PF from kernel mode is slightly
|
|
* different: RCU is already watching and rcu_irq_enter() must not
|
|
* be invoked because a kernel fault on a user space address might
|
|
* sleep.
|
|
*
|
|
* In case the fault hit a RCU idle region the conditional entry
|
|
* code reenabled RCU to avoid subsequent wreckage which helps
|
|
* debugability.
|
|
*/
|
|
state = irqentry_enter(regs);
|
|
|
|
instrumentation_begin();
|
|
handle_page_fault(regs, error_code, address);
|
|
instrumentation_end();
|
|
|
|
irqentry_exit(regs, state);
|
|
}
|