mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-27 04:54:41 +08:00
9c9211a3fc
Since commit 94dd016ae5
("bond: pass get_ts_info and SIOC[SG]HWTSTAMP
ioctl to active device") the user could get bond active interface's
PHC index directly. But when there is a failover, the bond active
interface will change, thus the PHC index is also changed. This may
break the user's program if they did not update the PHC timely.
This patch adds a new hwtstamp_config flag HWTSTAMP_FLAG_BONDED_PHC_INDEX.
When the user wants to get the bond active interface's PHC, they need to
add this flag and be aware the PHC index may be changed.
With the new flag. All flag checks in current drivers are removed. Only
the checking in net_hwtstamp_validate() is kept.
Suggested-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Hangbin Liu <liuhangbin@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
1596 lines
46 KiB
C
1596 lines
46 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* Copyright(c) 2013 - 2018 Intel Corporation. */
|
|
|
|
#include "i40e.h"
|
|
#include <linux/ptp_classify.h>
|
|
#include <linux/posix-clock.h>
|
|
|
|
/* The XL710 timesync is very much like Intel's 82599 design when it comes to
|
|
* the fundamental clock design. However, the clock operations are much simpler
|
|
* in the XL710 because the device supports a full 64 bits of nanoseconds.
|
|
* Because the field is so wide, we can forgo the cycle counter and just
|
|
* operate with the nanosecond field directly without fear of overflow.
|
|
*
|
|
* Much like the 82599, the update period is dependent upon the link speed:
|
|
* At 40Gb, 25Gb, or no link, the period is 1.6ns.
|
|
* At 10Gb or 5Gb link, the period is multiplied by 2. (3.2ns)
|
|
* At 1Gb link, the period is multiplied by 20. (32ns)
|
|
* 1588 functionality is not supported at 100Mbps.
|
|
*/
|
|
#define I40E_PTP_40GB_INCVAL 0x0199999999ULL
|
|
#define I40E_PTP_10GB_INCVAL_MULT 2
|
|
#define I40E_PTP_5GB_INCVAL_MULT 2
|
|
#define I40E_PTP_1GB_INCVAL_MULT 20
|
|
#define I40E_ISGN 0x80000000
|
|
|
|
#define I40E_PRTTSYN_CTL1_TSYNTYPE_V1 BIT(I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
|
|
#define I40E_PRTTSYN_CTL1_TSYNTYPE_V2 (2 << \
|
|
I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
|
|
#define I40E_SUBDEV_ID_25G_PTP_PIN 0xB
|
|
#define to_dev(obj) container_of(obj, struct device, kobj)
|
|
|
|
enum i40e_ptp_pin {
|
|
SDP3_2 = 0,
|
|
SDP3_3,
|
|
GPIO_4
|
|
};
|
|
|
|
enum i40e_can_set_pins_t {
|
|
CANT_DO_PINS = -1,
|
|
CAN_SET_PINS,
|
|
CAN_DO_PINS
|
|
};
|
|
|
|
static struct ptp_pin_desc sdp_desc[] = {
|
|
/* name idx func chan */
|
|
{"SDP3_2", SDP3_2, PTP_PF_NONE, 0},
|
|
{"SDP3_3", SDP3_3, PTP_PF_NONE, 1},
|
|
{"GPIO_4", GPIO_4, PTP_PF_NONE, 1},
|
|
};
|
|
|
|
enum i40e_ptp_gpio_pin_state {
|
|
end = -2,
|
|
invalid,
|
|
off,
|
|
in_A,
|
|
in_B,
|
|
out_A,
|
|
out_B,
|
|
};
|
|
|
|
static const char * const i40e_ptp_gpio_pin_state2str[] = {
|
|
"off", "in_A", "in_B", "out_A", "out_B"
|
|
};
|
|
|
|
enum i40e_ptp_led_pin_state {
|
|
led_end = -2,
|
|
low = 0,
|
|
high,
|
|
};
|
|
|
|
struct i40e_ptp_pins_settings {
|
|
enum i40e_ptp_gpio_pin_state sdp3_2;
|
|
enum i40e_ptp_gpio_pin_state sdp3_3;
|
|
enum i40e_ptp_gpio_pin_state gpio_4;
|
|
enum i40e_ptp_led_pin_state led2_0;
|
|
enum i40e_ptp_led_pin_state led2_1;
|
|
enum i40e_ptp_led_pin_state led3_0;
|
|
enum i40e_ptp_led_pin_state led3_1;
|
|
};
|
|
|
|
static const struct i40e_ptp_pins_settings
|
|
i40e_ptp_pin_led_allowed_states[] = {
|
|
{off, off, off, high, high, high, high},
|
|
{off, in_A, off, high, high, high, low},
|
|
{off, out_A, off, high, low, high, high},
|
|
{off, in_B, off, high, high, high, low},
|
|
{off, out_B, off, high, low, high, high},
|
|
{in_A, off, off, high, high, high, low},
|
|
{in_A, in_B, off, high, high, high, low},
|
|
{in_A, out_B, off, high, low, high, high},
|
|
{out_A, off, off, high, low, high, high},
|
|
{out_A, in_B, off, high, low, high, high},
|
|
{in_B, off, off, high, high, high, low},
|
|
{in_B, in_A, off, high, high, high, low},
|
|
{in_B, out_A, off, high, low, high, high},
|
|
{out_B, off, off, high, low, high, high},
|
|
{out_B, in_A, off, high, low, high, high},
|
|
{off, off, in_A, high, high, low, high},
|
|
{off, out_A, in_A, high, low, low, high},
|
|
{off, in_B, in_A, high, high, low, low},
|
|
{off, out_B, in_A, high, low, low, high},
|
|
{out_A, off, in_A, high, low, low, high},
|
|
{out_A, in_B, in_A, high, low, low, high},
|
|
{in_B, off, in_A, high, high, low, low},
|
|
{in_B, out_A, in_A, high, low, low, high},
|
|
{out_B, off, in_A, high, low, low, high},
|
|
{off, off, out_A, low, high, high, high},
|
|
{off, in_A, out_A, low, high, high, low},
|
|
{off, in_B, out_A, low, high, high, low},
|
|
{off, out_B, out_A, low, low, high, high},
|
|
{in_A, off, out_A, low, high, high, low},
|
|
{in_A, in_B, out_A, low, high, high, low},
|
|
{in_A, out_B, out_A, low, low, high, high},
|
|
{in_B, off, out_A, low, high, high, low},
|
|
{in_B, in_A, out_A, low, high, high, low},
|
|
{out_B, off, out_A, low, low, high, high},
|
|
{out_B, in_A, out_A, low, low, high, high},
|
|
{off, off, in_B, high, high, low, high},
|
|
{off, in_A, in_B, high, high, low, low},
|
|
{off, out_A, in_B, high, low, low, high},
|
|
{off, out_B, in_B, high, low, low, high},
|
|
{in_A, off, in_B, high, high, low, low},
|
|
{in_A, out_B, in_B, high, low, low, high},
|
|
{out_A, off, in_B, high, low, low, high},
|
|
{out_B, off, in_B, high, low, low, high},
|
|
{out_B, in_A, in_B, high, low, low, high},
|
|
{off, off, out_B, low, high, high, high},
|
|
{off, in_A, out_B, low, high, high, low},
|
|
{off, out_A, out_B, low, low, high, high},
|
|
{off, in_B, out_B, low, high, high, low},
|
|
{in_A, off, out_B, low, high, high, low},
|
|
{in_A, in_B, out_B, low, high, high, low},
|
|
{out_A, off, out_B, low, low, high, high},
|
|
{out_A, in_B, out_B, low, low, high, high},
|
|
{in_B, off, out_B, low, high, high, low},
|
|
{in_B, in_A, out_B, low, high, high, low},
|
|
{in_B, out_A, out_B, low, low, high, high},
|
|
{end, end, end, led_end, led_end, led_end, led_end}
|
|
};
|
|
|
|
static int i40e_ptp_set_pins(struct i40e_pf *pf,
|
|
struct i40e_ptp_pins_settings *pins);
|
|
|
|
/**
|
|
* i40e_ptp_extts0_work - workqueue task function
|
|
* @work: workqueue task structure
|
|
*
|
|
* Service for PTP external clock event
|
|
**/
|
|
static void i40e_ptp_extts0_work(struct work_struct *work)
|
|
{
|
|
struct i40e_pf *pf = container_of(work, struct i40e_pf,
|
|
ptp_extts0_work);
|
|
struct i40e_hw *hw = &pf->hw;
|
|
struct ptp_clock_event event;
|
|
u32 hi, lo;
|
|
|
|
/* Event time is captured by one of the two matched registers
|
|
* PRTTSYN_EVNT_L: 32 LSB of sampled time event
|
|
* PRTTSYN_EVNT_H: 32 MSB of sampled time event
|
|
* Event is defined in PRTTSYN_EVNT_0 register
|
|
*/
|
|
lo = rd32(hw, I40E_PRTTSYN_EVNT_L(0));
|
|
hi = rd32(hw, I40E_PRTTSYN_EVNT_H(0));
|
|
|
|
event.timestamp = (((u64)hi) << 32) | lo;
|
|
|
|
event.type = PTP_CLOCK_EXTTS;
|
|
event.index = hw->pf_id;
|
|
|
|
/* fire event */
|
|
ptp_clock_event(pf->ptp_clock, &event);
|
|
}
|
|
|
|
/**
|
|
* i40e_is_ptp_pin_dev - check if device supports PTP pins
|
|
* @hw: pointer to the hardware structure
|
|
*
|
|
* Return true if device supports PTP pins, false otherwise.
|
|
**/
|
|
static bool i40e_is_ptp_pin_dev(struct i40e_hw *hw)
|
|
{
|
|
return hw->device_id == I40E_DEV_ID_25G_SFP28 &&
|
|
hw->subsystem_device_id == I40E_SUBDEV_ID_25G_PTP_PIN;
|
|
}
|
|
|
|
/**
|
|
* i40e_can_set_pins - check possibility of manipulating the pins
|
|
* @pf: board private structure
|
|
*
|
|
* Check if all conditions are satisfied to manipulate PTP pins.
|
|
* Return CAN_SET_PINS if pins can be set on a specific PF or
|
|
* return CAN_DO_PINS if pins can be manipulated within a NIC or
|
|
* return CANT_DO_PINS otherwise.
|
|
**/
|
|
static enum i40e_can_set_pins_t i40e_can_set_pins(struct i40e_pf *pf)
|
|
{
|
|
if (!i40e_is_ptp_pin_dev(&pf->hw)) {
|
|
dev_warn(&pf->pdev->dev,
|
|
"PTP external clock not supported.\n");
|
|
return CANT_DO_PINS;
|
|
}
|
|
|
|
if (!pf->ptp_pins) {
|
|
dev_warn(&pf->pdev->dev,
|
|
"PTP PIN manipulation not allowed.\n");
|
|
return CANT_DO_PINS;
|
|
}
|
|
|
|
if (pf->hw.pf_id) {
|
|
dev_warn(&pf->pdev->dev,
|
|
"PTP PINs should be accessed via PF0.\n");
|
|
return CAN_DO_PINS;
|
|
}
|
|
|
|
return CAN_SET_PINS;
|
|
}
|
|
|
|
/**
|
|
* i40_ptp_reset_timing_events - Reset PTP timing events
|
|
* @pf: Board private structure
|
|
*
|
|
* This function resets timing events for pf.
|
|
**/
|
|
static void i40_ptp_reset_timing_events(struct i40e_pf *pf)
|
|
{
|
|
u32 i;
|
|
|
|
spin_lock_bh(&pf->ptp_rx_lock);
|
|
for (i = 0; i <= I40E_PRTTSYN_RXTIME_L_MAX_INDEX; i++) {
|
|
/* reading and automatically clearing timing events registers */
|
|
rd32(&pf->hw, I40E_PRTTSYN_RXTIME_L(i));
|
|
rd32(&pf->hw, I40E_PRTTSYN_RXTIME_H(i));
|
|
pf->latch_events[i] = 0;
|
|
}
|
|
/* reading and automatically clearing timing events registers */
|
|
rd32(&pf->hw, I40E_PRTTSYN_TXTIME_L);
|
|
rd32(&pf->hw, I40E_PRTTSYN_TXTIME_H);
|
|
|
|
pf->tx_hwtstamp_timeouts = 0;
|
|
pf->tx_hwtstamp_skipped = 0;
|
|
pf->rx_hwtstamp_cleared = 0;
|
|
pf->latch_event_flags = 0;
|
|
spin_unlock_bh(&pf->ptp_rx_lock);
|
|
}
|
|
|
|
/**
|
|
* i40e_ptp_verify - check pins
|
|
* @ptp: ptp clock
|
|
* @pin: pin index
|
|
* @func: assigned function
|
|
* @chan: channel
|
|
*
|
|
* Check pins consistency.
|
|
* Return 0 on success or error on failure.
|
|
**/
|
|
static int i40e_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin,
|
|
enum ptp_pin_function func, unsigned int chan)
|
|
{
|
|
switch (func) {
|
|
case PTP_PF_NONE:
|
|
case PTP_PF_EXTTS:
|
|
case PTP_PF_PEROUT:
|
|
break;
|
|
case PTP_PF_PHYSYNC:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* i40e_ptp_read - Read the PHC time from the device
|
|
* @pf: Board private structure
|
|
* @ts: timespec structure to hold the current time value
|
|
* @sts: structure to hold the system time before and after reading the PHC
|
|
*
|
|
* This function reads the PRTTSYN_TIME registers and stores them in a
|
|
* timespec. However, since the registers are 64 bits of nanoseconds, we must
|
|
* convert the result to a timespec before we can return.
|
|
**/
|
|
static void i40e_ptp_read(struct i40e_pf *pf, struct timespec64 *ts,
|
|
struct ptp_system_timestamp *sts)
|
|
{
|
|
struct i40e_hw *hw = &pf->hw;
|
|
u32 hi, lo;
|
|
u64 ns;
|
|
|
|
/* The timer latches on the lowest register read. */
|
|
ptp_read_system_prets(sts);
|
|
lo = rd32(hw, I40E_PRTTSYN_TIME_L);
|
|
ptp_read_system_postts(sts);
|
|
hi = rd32(hw, I40E_PRTTSYN_TIME_H);
|
|
|
|
ns = (((u64)hi) << 32) | lo;
|
|
|
|
*ts = ns_to_timespec64(ns);
|
|
}
|
|
|
|
/**
|
|
* i40e_ptp_write - Write the PHC time to the device
|
|
* @pf: Board private structure
|
|
* @ts: timespec structure that holds the new time value
|
|
*
|
|
* This function writes the PRTTSYN_TIME registers with the user value. Since
|
|
* we receive a timespec from the stack, we must convert that timespec into
|
|
* nanoseconds before programming the registers.
|
|
**/
|
|
static void i40e_ptp_write(struct i40e_pf *pf, const struct timespec64 *ts)
|
|
{
|
|
struct i40e_hw *hw = &pf->hw;
|
|
u64 ns = timespec64_to_ns(ts);
|
|
|
|
/* The timer will not update until the high register is written, so
|
|
* write the low register first.
|
|
*/
|
|
wr32(hw, I40E_PRTTSYN_TIME_L, ns & 0xFFFFFFFF);
|
|
wr32(hw, I40E_PRTTSYN_TIME_H, ns >> 32);
|
|
}
|
|
|
|
/**
|
|
* i40e_ptp_convert_to_hwtstamp - Convert device clock to system time
|
|
* @hwtstamps: Timestamp structure to update
|
|
* @timestamp: Timestamp from the hardware
|
|
*
|
|
* We need to convert the NIC clock value into a hwtstamp which can be used by
|
|
* the upper level timestamping functions. Since the timestamp is simply a 64-
|
|
* bit nanosecond value, we can call ns_to_ktime directly to handle this.
|
|
**/
|
|
static void i40e_ptp_convert_to_hwtstamp(struct skb_shared_hwtstamps *hwtstamps,
|
|
u64 timestamp)
|
|
{
|
|
memset(hwtstamps, 0, sizeof(*hwtstamps));
|
|
|
|
hwtstamps->hwtstamp = ns_to_ktime(timestamp);
|
|
}
|
|
|
|
/**
|
|
* i40e_ptp_adjfreq - Adjust the PHC frequency
|
|
* @ptp: The PTP clock structure
|
|
* @ppb: Parts per billion adjustment from the base
|
|
*
|
|
* Adjust the frequency of the PHC by the indicated parts per billion from the
|
|
* base frequency.
|
|
**/
|
|
static int i40e_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
|
|
{
|
|
struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
|
|
struct i40e_hw *hw = &pf->hw;
|
|
u64 adj, freq, diff;
|
|
int neg_adj = 0;
|
|
|
|
if (ppb < 0) {
|
|
neg_adj = 1;
|
|
ppb = -ppb;
|
|
}
|
|
|
|
freq = I40E_PTP_40GB_INCVAL;
|
|
freq *= ppb;
|
|
diff = div_u64(freq, 1000000000ULL);
|
|
|
|
if (neg_adj)
|
|
adj = I40E_PTP_40GB_INCVAL - diff;
|
|
else
|
|
adj = I40E_PTP_40GB_INCVAL + diff;
|
|
|
|
/* At some link speeds, the base incval is so large that directly
|
|
* multiplying by ppb would result in arithmetic overflow even when
|
|
* using a u64. Avoid this by instead calculating the new incval
|
|
* always in terms of the 40GbE clock rate and then multiplying by the
|
|
* link speed factor afterwards. This does result in slightly lower
|
|
* precision at lower link speeds, but it is fairly minor.
|
|
*/
|
|
smp_mb(); /* Force any pending update before accessing. */
|
|
adj *= READ_ONCE(pf->ptp_adj_mult);
|
|
|
|
wr32(hw, I40E_PRTTSYN_INC_L, adj & 0xFFFFFFFF);
|
|
wr32(hw, I40E_PRTTSYN_INC_H, adj >> 32);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* i40e_ptp_set_1pps_signal_hw - configure 1PPS PTP signal for pins
|
|
* @pf: the PF private data structure
|
|
*
|
|
* Configure 1PPS signal used for PTP pins
|
|
**/
|
|
static void i40e_ptp_set_1pps_signal_hw(struct i40e_pf *pf)
|
|
{
|
|
struct i40e_hw *hw = &pf->hw;
|
|
struct timespec64 now;
|
|
u64 ns;
|
|
|
|
wr32(hw, I40E_PRTTSYN_AUX_0(1), 0);
|
|
wr32(hw, I40E_PRTTSYN_AUX_1(1), I40E_PRTTSYN_AUX_1_INSTNT);
|
|
wr32(hw, I40E_PRTTSYN_AUX_0(1), I40E_PRTTSYN_AUX_0_OUT_ENABLE);
|
|
|
|
i40e_ptp_read(pf, &now, NULL);
|
|
now.tv_sec += I40E_PTP_2_SEC_DELAY;
|
|
now.tv_nsec = 0;
|
|
ns = timespec64_to_ns(&now);
|
|
|
|
/* I40E_PRTTSYN_TGT_L(1) */
|
|
wr32(hw, I40E_PRTTSYN_TGT_L(1), ns & 0xFFFFFFFF);
|
|
/* I40E_PRTTSYN_TGT_H(1) */
|
|
wr32(hw, I40E_PRTTSYN_TGT_H(1), ns >> 32);
|
|
wr32(hw, I40E_PRTTSYN_CLKO(1), I40E_PTP_HALF_SECOND);
|
|
wr32(hw, I40E_PRTTSYN_AUX_1(1), I40E_PRTTSYN_AUX_1_INSTNT);
|
|
wr32(hw, I40E_PRTTSYN_AUX_0(1),
|
|
I40E_PRTTSYN_AUX_0_OUT_ENABLE_CLK_MOD);
|
|
}
|
|
|
|
/**
|
|
* i40e_ptp_adjtime - Adjust the PHC time
|
|
* @ptp: The PTP clock structure
|
|
* @delta: Offset in nanoseconds to adjust the PHC time by
|
|
*
|
|
* Adjust the current clock time by a delta specified in nanoseconds.
|
|
**/
|
|
static int i40e_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
|
|
{
|
|
struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
|
|
struct i40e_hw *hw = &pf->hw;
|
|
|
|
mutex_lock(&pf->tmreg_lock);
|
|
|
|
if (delta > -999999900LL && delta < 999999900LL) {
|
|
int neg_adj = 0;
|
|
u32 timadj;
|
|
u64 tohw;
|
|
|
|
if (delta < 0) {
|
|
neg_adj = 1;
|
|
tohw = -delta;
|
|
} else {
|
|
tohw = delta;
|
|
}
|
|
|
|
timadj = tohw & 0x3FFFFFFF;
|
|
if (neg_adj)
|
|
timadj |= I40E_ISGN;
|
|
wr32(hw, I40E_PRTTSYN_ADJ, timadj);
|
|
} else {
|
|
struct timespec64 then, now;
|
|
|
|
then = ns_to_timespec64(delta);
|
|
i40e_ptp_read(pf, &now, NULL);
|
|
now = timespec64_add(now, then);
|
|
i40e_ptp_write(pf, (const struct timespec64 *)&now);
|
|
i40e_ptp_set_1pps_signal_hw(pf);
|
|
}
|
|
|
|
mutex_unlock(&pf->tmreg_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* i40e_ptp_gettimex - Get the time of the PHC
|
|
* @ptp: The PTP clock structure
|
|
* @ts: timespec structure to hold the current time value
|
|
* @sts: structure to hold the system time before and after reading the PHC
|
|
*
|
|
* Read the device clock and return the correct value on ns, after converting it
|
|
* into a timespec struct.
|
|
**/
|
|
static int i40e_ptp_gettimex(struct ptp_clock_info *ptp, struct timespec64 *ts,
|
|
struct ptp_system_timestamp *sts)
|
|
{
|
|
struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
|
|
|
|
mutex_lock(&pf->tmreg_lock);
|
|
i40e_ptp_read(pf, ts, sts);
|
|
mutex_unlock(&pf->tmreg_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* i40e_ptp_settime - Set the time of the PHC
|
|
* @ptp: The PTP clock structure
|
|
* @ts: timespec64 structure that holds the new time value
|
|
*
|
|
* Set the device clock to the user input value. The conversion from timespec
|
|
* to ns happens in the write function.
|
|
**/
|
|
static int i40e_ptp_settime(struct ptp_clock_info *ptp,
|
|
const struct timespec64 *ts)
|
|
{
|
|
struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
|
|
|
|
mutex_lock(&pf->tmreg_lock);
|
|
i40e_ptp_write(pf, ts);
|
|
mutex_unlock(&pf->tmreg_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* i40e_pps_configure - configure PPS events
|
|
* @ptp: ptp clock
|
|
* @rq: clock request
|
|
* @on: status
|
|
*
|
|
* Configure PPS events for external clock source.
|
|
* Return 0 on success or error on failure.
|
|
**/
|
|
static int i40e_pps_configure(struct ptp_clock_info *ptp,
|
|
struct ptp_clock_request *rq,
|
|
int on)
|
|
{
|
|
struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
|
|
|
|
if (!!on)
|
|
i40e_ptp_set_1pps_signal_hw(pf);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* i40e_pin_state - determine PIN state
|
|
* @index: PIN index
|
|
* @func: function assigned to PIN
|
|
*
|
|
* Determine PIN state based on PIN index and function assigned.
|
|
* Return PIN state.
|
|
**/
|
|
static enum i40e_ptp_gpio_pin_state i40e_pin_state(int index, int func)
|
|
{
|
|
enum i40e_ptp_gpio_pin_state state = off;
|
|
|
|
if (index == 0 && func == PTP_PF_EXTTS)
|
|
state = in_A;
|
|
if (index == 1 && func == PTP_PF_EXTTS)
|
|
state = in_B;
|
|
if (index == 0 && func == PTP_PF_PEROUT)
|
|
state = out_A;
|
|
if (index == 1 && func == PTP_PF_PEROUT)
|
|
state = out_B;
|
|
|
|
return state;
|
|
}
|
|
|
|
/**
|
|
* i40e_ptp_enable_pin - enable PINs.
|
|
* @pf: private board structure
|
|
* @chan: channel
|
|
* @func: PIN function
|
|
* @on: state
|
|
*
|
|
* Enable PTP pins for external clock source.
|
|
* Return 0 on success or error code on failure.
|
|
**/
|
|
static int i40e_ptp_enable_pin(struct i40e_pf *pf, unsigned int chan,
|
|
enum ptp_pin_function func, int on)
|
|
{
|
|
enum i40e_ptp_gpio_pin_state *pin = NULL;
|
|
struct i40e_ptp_pins_settings pins;
|
|
int pin_index;
|
|
|
|
/* Use PF0 to set pins. Return success for user space tools */
|
|
if (pf->hw.pf_id)
|
|
return 0;
|
|
|
|
/* Preserve previous state of pins that we don't touch */
|
|
pins.sdp3_2 = pf->ptp_pins->sdp3_2;
|
|
pins.sdp3_3 = pf->ptp_pins->sdp3_3;
|
|
pins.gpio_4 = pf->ptp_pins->gpio_4;
|
|
|
|
/* To turn on the pin - find the corresponding one based on
|
|
* the given index. To to turn the function off - find
|
|
* which pin had it assigned. Don't use ptp_find_pin here
|
|
* because it tries to lock the pincfg_mux which is locked by
|
|
* ptp_pin_store() that calls here.
|
|
*/
|
|
if (on) {
|
|
pin_index = ptp_find_pin(pf->ptp_clock, func, chan);
|
|
if (pin_index < 0)
|
|
return -EBUSY;
|
|
|
|
switch (pin_index) {
|
|
case SDP3_2:
|
|
pin = &pins.sdp3_2;
|
|
break;
|
|
case SDP3_3:
|
|
pin = &pins.sdp3_3;
|
|
break;
|
|
case GPIO_4:
|
|
pin = &pins.gpio_4;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
*pin = i40e_pin_state(chan, func);
|
|
} else {
|
|
pins.sdp3_2 = off;
|
|
pins.sdp3_3 = off;
|
|
pins.gpio_4 = off;
|
|
}
|
|
|
|
return i40e_ptp_set_pins(pf, &pins) ? -EINVAL : 0;
|
|
}
|
|
|
|
/**
|
|
* i40e_ptp_feature_enable - Enable external clock pins
|
|
* @ptp: The PTP clock structure
|
|
* @rq: The PTP clock request structure
|
|
* @on: To turn feature on/off
|
|
*
|
|
* Setting on/off PTP PPS feature for pin.
|
|
**/
|
|
static int i40e_ptp_feature_enable(struct ptp_clock_info *ptp,
|
|
struct ptp_clock_request *rq,
|
|
int on)
|
|
{
|
|
struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
|
|
|
|
enum ptp_pin_function func;
|
|
unsigned int chan;
|
|
|
|
/* TODO: Implement flags handling for EXTTS and PEROUT */
|
|
switch (rq->type) {
|
|
case PTP_CLK_REQ_EXTTS:
|
|
func = PTP_PF_EXTTS;
|
|
chan = rq->extts.index;
|
|
break;
|
|
case PTP_CLK_REQ_PEROUT:
|
|
func = PTP_PF_PEROUT;
|
|
chan = rq->perout.index;
|
|
break;
|
|
case PTP_CLK_REQ_PPS:
|
|
return i40e_pps_configure(ptp, rq, on);
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
return i40e_ptp_enable_pin(pf, chan, func, on);
|
|
}
|
|
|
|
/**
|
|
* i40e_ptp_get_rx_events - Read I40E_PRTTSYN_STAT_1 and latch events
|
|
* @pf: the PF data structure
|
|
*
|
|
* This function reads I40E_PRTTSYN_STAT_1 and updates the corresponding timers
|
|
* for noticed latch events. This allows the driver to keep track of the first
|
|
* time a latch event was noticed which will be used to help clear out Rx
|
|
* timestamps for packets that got dropped or lost.
|
|
*
|
|
* This function will return the current value of I40E_PRTTSYN_STAT_1 and is
|
|
* expected to be called only while under the ptp_rx_lock.
|
|
**/
|
|
static u32 i40e_ptp_get_rx_events(struct i40e_pf *pf)
|
|
{
|
|
struct i40e_hw *hw = &pf->hw;
|
|
u32 prttsyn_stat, new_latch_events;
|
|
int i;
|
|
|
|
prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_1);
|
|
new_latch_events = prttsyn_stat & ~pf->latch_event_flags;
|
|
|
|
/* Update the jiffies time for any newly latched timestamp. This
|
|
* ensures that we store the time that we first discovered a timestamp
|
|
* was latched by the hardware. The service task will later determine
|
|
* if we should free the latch and drop that timestamp should too much
|
|
* time pass. This flow ensures that we only update jiffies for new
|
|
* events latched since the last time we checked, and not all events
|
|
* currently latched, so that the service task accounting remains
|
|
* accurate.
|
|
*/
|
|
for (i = 0; i < 4; i++) {
|
|
if (new_latch_events & BIT(i))
|
|
pf->latch_events[i] = jiffies;
|
|
}
|
|
|
|
/* Finally, we store the current status of the Rx timestamp latches */
|
|
pf->latch_event_flags = prttsyn_stat;
|
|
|
|
return prttsyn_stat;
|
|
}
|
|
|
|
/**
|
|
* i40e_ptp_rx_hang - Detect error case when Rx timestamp registers are hung
|
|
* @pf: The PF private data structure
|
|
*
|
|
* This watchdog task is scheduled to detect error case where hardware has
|
|
* dropped an Rx packet that was timestamped when the ring is full. The
|
|
* particular error is rare but leaves the device in a state unable to timestamp
|
|
* any future packets.
|
|
**/
|
|
void i40e_ptp_rx_hang(struct i40e_pf *pf)
|
|
{
|
|
struct i40e_hw *hw = &pf->hw;
|
|
unsigned int i, cleared = 0;
|
|
|
|
/* Since we cannot turn off the Rx timestamp logic if the device is
|
|
* configured for Tx timestamping, we check if Rx timestamping is
|
|
* configured. We don't want to spuriously warn about Rx timestamp
|
|
* hangs if we don't care about the timestamps.
|
|
*/
|
|
if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx)
|
|
return;
|
|
|
|
spin_lock_bh(&pf->ptp_rx_lock);
|
|
|
|
/* Update current latch times for Rx events */
|
|
i40e_ptp_get_rx_events(pf);
|
|
|
|
/* Check all the currently latched Rx events and see whether they have
|
|
* been latched for over a second. It is assumed that any timestamp
|
|
* should have been cleared within this time, or else it was captured
|
|
* for a dropped frame that the driver never received. Thus, we will
|
|
* clear any timestamp that has been latched for over 1 second.
|
|
*/
|
|
for (i = 0; i < 4; i++) {
|
|
if ((pf->latch_event_flags & BIT(i)) &&
|
|
time_is_before_jiffies(pf->latch_events[i] + HZ)) {
|
|
rd32(hw, I40E_PRTTSYN_RXTIME_H(i));
|
|
pf->latch_event_flags &= ~BIT(i);
|
|
cleared++;
|
|
}
|
|
}
|
|
|
|
spin_unlock_bh(&pf->ptp_rx_lock);
|
|
|
|
/* Log a warning if more than 2 timestamps got dropped in the same
|
|
* check. We don't want to warn about all drops because it can occur
|
|
* in normal scenarios such as PTP frames on multicast addresses we
|
|
* aren't listening to. However, administrator should know if this is
|
|
* the reason packets aren't receiving timestamps.
|
|
*/
|
|
if (cleared > 2)
|
|
dev_dbg(&pf->pdev->dev,
|
|
"Dropped %d missed RXTIME timestamp events\n",
|
|
cleared);
|
|
|
|
/* Finally, update the rx_hwtstamp_cleared counter */
|
|
pf->rx_hwtstamp_cleared += cleared;
|
|
}
|
|
|
|
/**
|
|
* i40e_ptp_tx_hang - Detect error case when Tx timestamp register is hung
|
|
* @pf: The PF private data structure
|
|
*
|
|
* This watchdog task is run periodically to make sure that we clear the Tx
|
|
* timestamp logic if we don't obtain a timestamp in a reasonable amount of
|
|
* time. It is unexpected in the normal case but if it occurs it results in
|
|
* permanently preventing timestamps of future packets.
|
|
**/
|
|
void i40e_ptp_tx_hang(struct i40e_pf *pf)
|
|
{
|
|
struct sk_buff *skb;
|
|
|
|
if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx)
|
|
return;
|
|
|
|
/* Nothing to do if we're not already waiting for a timestamp */
|
|
if (!test_bit(__I40E_PTP_TX_IN_PROGRESS, pf->state))
|
|
return;
|
|
|
|
/* We already have a handler routine which is run when we are notified
|
|
* of a Tx timestamp in the hardware. If we don't get an interrupt
|
|
* within a second it is reasonable to assume that we never will.
|
|
*/
|
|
if (time_is_before_jiffies(pf->ptp_tx_start + HZ)) {
|
|
skb = pf->ptp_tx_skb;
|
|
pf->ptp_tx_skb = NULL;
|
|
clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
|
|
|
|
/* Free the skb after we clear the bitlock */
|
|
dev_kfree_skb_any(skb);
|
|
pf->tx_hwtstamp_timeouts++;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* i40e_ptp_tx_hwtstamp - Utility function which returns the Tx timestamp
|
|
* @pf: Board private structure
|
|
*
|
|
* Read the value of the Tx timestamp from the registers, convert it into a
|
|
* value consumable by the stack, and store that result into the shhwtstamps
|
|
* struct before returning it up the stack.
|
|
**/
|
|
void i40e_ptp_tx_hwtstamp(struct i40e_pf *pf)
|
|
{
|
|
struct skb_shared_hwtstamps shhwtstamps;
|
|
struct sk_buff *skb = pf->ptp_tx_skb;
|
|
struct i40e_hw *hw = &pf->hw;
|
|
u32 hi, lo;
|
|
u64 ns;
|
|
|
|
if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx)
|
|
return;
|
|
|
|
/* don't attempt to timestamp if we don't have an skb */
|
|
if (!pf->ptp_tx_skb)
|
|
return;
|
|
|
|
lo = rd32(hw, I40E_PRTTSYN_TXTIME_L);
|
|
hi = rd32(hw, I40E_PRTTSYN_TXTIME_H);
|
|
|
|
ns = (((u64)hi) << 32) | lo;
|
|
i40e_ptp_convert_to_hwtstamp(&shhwtstamps, ns);
|
|
|
|
/* Clear the bit lock as soon as possible after reading the register,
|
|
* and prior to notifying the stack via skb_tstamp_tx(). Otherwise
|
|
* applications might wake up and attempt to request another transmit
|
|
* timestamp prior to the bit lock being cleared.
|
|
*/
|
|
pf->ptp_tx_skb = NULL;
|
|
clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
|
|
|
|
/* Notify the stack and free the skb after we've unlocked */
|
|
skb_tstamp_tx(skb, &shhwtstamps);
|
|
dev_kfree_skb_any(skb);
|
|
}
|
|
|
|
/**
|
|
* i40e_ptp_rx_hwtstamp - Utility function which checks for an Rx timestamp
|
|
* @pf: Board private structure
|
|
* @skb: Particular skb to send timestamp with
|
|
* @index: Index into the receive timestamp registers for the timestamp
|
|
*
|
|
* The XL710 receives a notification in the receive descriptor with an offset
|
|
* into the set of RXTIME registers where the timestamp is for that skb. This
|
|
* function goes and fetches the receive timestamp from that offset, if a valid
|
|
* one exists. The RXTIME registers are in ns, so we must convert the result
|
|
* first.
|
|
**/
|
|
void i40e_ptp_rx_hwtstamp(struct i40e_pf *pf, struct sk_buff *skb, u8 index)
|
|
{
|
|
u32 prttsyn_stat, hi, lo;
|
|
struct i40e_hw *hw;
|
|
u64 ns;
|
|
|
|
/* Since we cannot turn off the Rx timestamp logic if the device is
|
|
* doing Tx timestamping, check if Rx timestamping is configured.
|
|
*/
|
|
if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx)
|
|
return;
|
|
|
|
hw = &pf->hw;
|
|
|
|
spin_lock_bh(&pf->ptp_rx_lock);
|
|
|
|
/* Get current Rx events and update latch times */
|
|
prttsyn_stat = i40e_ptp_get_rx_events(pf);
|
|
|
|
/* TODO: Should we warn about missing Rx timestamp event? */
|
|
if (!(prttsyn_stat & BIT(index))) {
|
|
spin_unlock_bh(&pf->ptp_rx_lock);
|
|
return;
|
|
}
|
|
|
|
/* Clear the latched event since we're about to read its register */
|
|
pf->latch_event_flags &= ~BIT(index);
|
|
|
|
lo = rd32(hw, I40E_PRTTSYN_RXTIME_L(index));
|
|
hi = rd32(hw, I40E_PRTTSYN_RXTIME_H(index));
|
|
|
|
spin_unlock_bh(&pf->ptp_rx_lock);
|
|
|
|
ns = (((u64)hi) << 32) | lo;
|
|
|
|
i40e_ptp_convert_to_hwtstamp(skb_hwtstamps(skb), ns);
|
|
}
|
|
|
|
/**
|
|
* i40e_ptp_set_increment - Utility function to update clock increment rate
|
|
* @pf: Board private structure
|
|
*
|
|
* During a link change, the DMA frequency that drives the 1588 logic will
|
|
* change. In order to keep the PRTTSYN_TIME registers in units of nanoseconds,
|
|
* we must update the increment value per clock tick.
|
|
**/
|
|
void i40e_ptp_set_increment(struct i40e_pf *pf)
|
|
{
|
|
struct i40e_link_status *hw_link_info;
|
|
struct i40e_hw *hw = &pf->hw;
|
|
u64 incval;
|
|
u32 mult;
|
|
|
|
hw_link_info = &hw->phy.link_info;
|
|
|
|
i40e_aq_get_link_info(&pf->hw, true, NULL, NULL);
|
|
|
|
switch (hw_link_info->link_speed) {
|
|
case I40E_LINK_SPEED_10GB:
|
|
mult = I40E_PTP_10GB_INCVAL_MULT;
|
|
break;
|
|
case I40E_LINK_SPEED_5GB:
|
|
mult = I40E_PTP_5GB_INCVAL_MULT;
|
|
break;
|
|
case I40E_LINK_SPEED_1GB:
|
|
mult = I40E_PTP_1GB_INCVAL_MULT;
|
|
break;
|
|
case I40E_LINK_SPEED_100MB:
|
|
{
|
|
static int warn_once;
|
|
|
|
if (!warn_once) {
|
|
dev_warn(&pf->pdev->dev,
|
|
"1588 functionality is not supported at 100 Mbps. Stopping the PHC.\n");
|
|
warn_once++;
|
|
}
|
|
mult = 0;
|
|
break;
|
|
}
|
|
case I40E_LINK_SPEED_40GB:
|
|
default:
|
|
mult = 1;
|
|
break;
|
|
}
|
|
|
|
/* The increment value is calculated by taking the base 40GbE incvalue
|
|
* and multiplying it by a factor based on the link speed.
|
|
*/
|
|
incval = I40E_PTP_40GB_INCVAL * mult;
|
|
|
|
/* Write the new increment value into the increment register. The
|
|
* hardware will not update the clock until both registers have been
|
|
* written.
|
|
*/
|
|
wr32(hw, I40E_PRTTSYN_INC_L, incval & 0xFFFFFFFF);
|
|
wr32(hw, I40E_PRTTSYN_INC_H, incval >> 32);
|
|
|
|
/* Update the base adjustement value. */
|
|
WRITE_ONCE(pf->ptp_adj_mult, mult);
|
|
smp_mb(); /* Force the above update. */
|
|
}
|
|
|
|
/**
|
|
* i40e_ptp_get_ts_config - ioctl interface to read the HW timestamping
|
|
* @pf: Board private structure
|
|
* @ifr: ioctl data
|
|
*
|
|
* Obtain the current hardware timestamping settigs as requested. To do this,
|
|
* keep a shadow copy of the timestamp settings rather than attempting to
|
|
* deconstruct it from the registers.
|
|
**/
|
|
int i40e_ptp_get_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
|
|
{
|
|
struct hwtstamp_config *config = &pf->tstamp_config;
|
|
|
|
if (!(pf->flags & I40E_FLAG_PTP))
|
|
return -EOPNOTSUPP;
|
|
|
|
return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
|
|
-EFAULT : 0;
|
|
}
|
|
|
|
/**
|
|
* i40e_ptp_free_pins - free memory used by PTP pins
|
|
* @pf: Board private structure
|
|
*
|
|
* Release memory allocated for PTP pins.
|
|
**/
|
|
static void i40e_ptp_free_pins(struct i40e_pf *pf)
|
|
{
|
|
if (i40e_is_ptp_pin_dev(&pf->hw)) {
|
|
kfree(pf->ptp_pins);
|
|
kfree(pf->ptp_caps.pin_config);
|
|
pf->ptp_pins = NULL;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* i40e_ptp_set_pin_hw - Set HW GPIO pin
|
|
* @hw: pointer to the hardware structure
|
|
* @pin: pin index
|
|
* @state: pin state
|
|
*
|
|
* Set status of GPIO pin for external clock handling.
|
|
**/
|
|
static void i40e_ptp_set_pin_hw(struct i40e_hw *hw,
|
|
unsigned int pin,
|
|
enum i40e_ptp_gpio_pin_state state)
|
|
{
|
|
switch (state) {
|
|
case off:
|
|
wr32(hw, I40E_GLGEN_GPIO_CTL(pin), 0);
|
|
break;
|
|
case in_A:
|
|
wr32(hw, I40E_GLGEN_GPIO_CTL(pin),
|
|
I40E_GLGEN_GPIO_CTL_PORT_0_IN_TIMESYNC_0);
|
|
break;
|
|
case in_B:
|
|
wr32(hw, I40E_GLGEN_GPIO_CTL(pin),
|
|
I40E_GLGEN_GPIO_CTL_PORT_1_IN_TIMESYNC_0);
|
|
break;
|
|
case out_A:
|
|
wr32(hw, I40E_GLGEN_GPIO_CTL(pin),
|
|
I40E_GLGEN_GPIO_CTL_PORT_0_OUT_TIMESYNC_1);
|
|
break;
|
|
case out_B:
|
|
wr32(hw, I40E_GLGEN_GPIO_CTL(pin),
|
|
I40E_GLGEN_GPIO_CTL_PORT_1_OUT_TIMESYNC_1);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* i40e_ptp_set_led_hw - Set HW GPIO led
|
|
* @hw: pointer to the hardware structure
|
|
* @led: led index
|
|
* @state: led state
|
|
*
|
|
* Set status of GPIO led for external clock handling.
|
|
**/
|
|
static void i40e_ptp_set_led_hw(struct i40e_hw *hw,
|
|
unsigned int led,
|
|
enum i40e_ptp_led_pin_state state)
|
|
{
|
|
switch (state) {
|
|
case low:
|
|
wr32(hw, I40E_GLGEN_GPIO_SET,
|
|
I40E_GLGEN_GPIO_SET_DRV_SDP_DATA | led);
|
|
break;
|
|
case high:
|
|
wr32(hw, I40E_GLGEN_GPIO_SET,
|
|
I40E_GLGEN_GPIO_SET_DRV_SDP_DATA |
|
|
I40E_GLGEN_GPIO_SET_SDP_DATA_HI | led);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* i40e_ptp_init_leds_hw - init LEDs
|
|
* @hw: pointer to a hardware structure
|
|
*
|
|
* Set initial state of LEDs
|
|
**/
|
|
static void i40e_ptp_init_leds_hw(struct i40e_hw *hw)
|
|
{
|
|
wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED2_0),
|
|
I40E_GLGEN_GPIO_CTL_LED_INIT);
|
|
wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED2_1),
|
|
I40E_GLGEN_GPIO_CTL_LED_INIT);
|
|
wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED3_0),
|
|
I40E_GLGEN_GPIO_CTL_LED_INIT);
|
|
wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED3_1),
|
|
I40E_GLGEN_GPIO_CTL_LED_INIT);
|
|
}
|
|
|
|
/**
|
|
* i40e_ptp_set_pins_hw - Set HW GPIO pins
|
|
* @pf: Board private structure
|
|
*
|
|
* This function sets GPIO pins for PTP
|
|
**/
|
|
static void i40e_ptp_set_pins_hw(struct i40e_pf *pf)
|
|
{
|
|
const struct i40e_ptp_pins_settings *pins = pf->ptp_pins;
|
|
struct i40e_hw *hw = &pf->hw;
|
|
|
|
/* pin must be disabled before it may be used */
|
|
i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, off);
|
|
i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, off);
|
|
i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, off);
|
|
|
|
i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, pins->sdp3_2);
|
|
i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, pins->sdp3_3);
|
|
i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, pins->gpio_4);
|
|
|
|
i40e_ptp_set_led_hw(hw, I40E_LED2_0, pins->led2_0);
|
|
i40e_ptp_set_led_hw(hw, I40E_LED2_1, pins->led2_1);
|
|
i40e_ptp_set_led_hw(hw, I40E_LED3_0, pins->led3_0);
|
|
i40e_ptp_set_led_hw(hw, I40E_LED3_1, pins->led3_1);
|
|
|
|
dev_info(&pf->pdev->dev,
|
|
"PTP configuration set to: SDP3_2: %s, SDP3_3: %s, GPIO_4: %s.\n",
|
|
i40e_ptp_gpio_pin_state2str[pins->sdp3_2],
|
|
i40e_ptp_gpio_pin_state2str[pins->sdp3_3],
|
|
i40e_ptp_gpio_pin_state2str[pins->gpio_4]);
|
|
}
|
|
|
|
/**
|
|
* i40e_ptp_set_pins - set PTP pins in HW
|
|
* @pf: Board private structure
|
|
* @pins: PTP pins to be applied
|
|
*
|
|
* Validate and set PTP pins in HW for specific PF.
|
|
* Return 0 on success or negative value on error.
|
|
**/
|
|
static int i40e_ptp_set_pins(struct i40e_pf *pf,
|
|
struct i40e_ptp_pins_settings *pins)
|
|
{
|
|
enum i40e_can_set_pins_t pin_caps = i40e_can_set_pins(pf);
|
|
int i = 0;
|
|
|
|
if (pin_caps == CANT_DO_PINS)
|
|
return -EOPNOTSUPP;
|
|
else if (pin_caps == CAN_DO_PINS)
|
|
return 0;
|
|
|
|
if (pins->sdp3_2 == invalid)
|
|
pins->sdp3_2 = pf->ptp_pins->sdp3_2;
|
|
if (pins->sdp3_3 == invalid)
|
|
pins->sdp3_3 = pf->ptp_pins->sdp3_3;
|
|
if (pins->gpio_4 == invalid)
|
|
pins->gpio_4 = pf->ptp_pins->gpio_4;
|
|
while (i40e_ptp_pin_led_allowed_states[i].sdp3_2 != end) {
|
|
if (pins->sdp3_2 == i40e_ptp_pin_led_allowed_states[i].sdp3_2 &&
|
|
pins->sdp3_3 == i40e_ptp_pin_led_allowed_states[i].sdp3_3 &&
|
|
pins->gpio_4 == i40e_ptp_pin_led_allowed_states[i].gpio_4) {
|
|
pins->led2_0 =
|
|
i40e_ptp_pin_led_allowed_states[i].led2_0;
|
|
pins->led2_1 =
|
|
i40e_ptp_pin_led_allowed_states[i].led2_1;
|
|
pins->led3_0 =
|
|
i40e_ptp_pin_led_allowed_states[i].led3_0;
|
|
pins->led3_1 =
|
|
i40e_ptp_pin_led_allowed_states[i].led3_1;
|
|
break;
|
|
}
|
|
i++;
|
|
}
|
|
if (i40e_ptp_pin_led_allowed_states[i].sdp3_2 == end) {
|
|
dev_warn(&pf->pdev->dev,
|
|
"Unsupported PTP pin configuration: SDP3_2: %s, SDP3_3: %s, GPIO_4: %s.\n",
|
|
i40e_ptp_gpio_pin_state2str[pins->sdp3_2],
|
|
i40e_ptp_gpio_pin_state2str[pins->sdp3_3],
|
|
i40e_ptp_gpio_pin_state2str[pins->gpio_4]);
|
|
|
|
return -EPERM;
|
|
}
|
|
memcpy(pf->ptp_pins, pins, sizeof(*pins));
|
|
i40e_ptp_set_pins_hw(pf);
|
|
i40_ptp_reset_timing_events(pf);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* i40e_ptp_alloc_pins - allocate PTP pins structure
|
|
* @pf: Board private structure
|
|
*
|
|
* allocate PTP pins structure
|
|
**/
|
|
int i40e_ptp_alloc_pins(struct i40e_pf *pf)
|
|
{
|
|
if (!i40e_is_ptp_pin_dev(&pf->hw))
|
|
return 0;
|
|
|
|
pf->ptp_pins =
|
|
kzalloc(sizeof(struct i40e_ptp_pins_settings), GFP_KERNEL);
|
|
|
|
if (!pf->ptp_pins) {
|
|
dev_warn(&pf->pdev->dev, "Cannot allocate memory for PTP pins structure.\n");
|
|
return -I40E_ERR_NO_MEMORY;
|
|
}
|
|
|
|
pf->ptp_pins->sdp3_2 = off;
|
|
pf->ptp_pins->sdp3_3 = off;
|
|
pf->ptp_pins->gpio_4 = off;
|
|
pf->ptp_pins->led2_0 = high;
|
|
pf->ptp_pins->led2_1 = high;
|
|
pf->ptp_pins->led3_0 = high;
|
|
pf->ptp_pins->led3_1 = high;
|
|
|
|
/* Use PF0 to set pins in HW. Return success for user space tools */
|
|
if (pf->hw.pf_id)
|
|
return 0;
|
|
|
|
i40e_ptp_init_leds_hw(&pf->hw);
|
|
i40e_ptp_set_pins_hw(pf);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* i40e_ptp_set_timestamp_mode - setup hardware for requested timestamp mode
|
|
* @pf: Board private structure
|
|
* @config: hwtstamp settings requested or saved
|
|
*
|
|
* Control hardware registers to enter the specific mode requested by the
|
|
* user. Also used during reset path to ensure that timestamp settings are
|
|
* maintained.
|
|
*
|
|
* Note: modifies config in place, and may update the requested mode to be
|
|
* more broad if the specific filter is not directly supported.
|
|
**/
|
|
static int i40e_ptp_set_timestamp_mode(struct i40e_pf *pf,
|
|
struct hwtstamp_config *config)
|
|
{
|
|
struct i40e_hw *hw = &pf->hw;
|
|
u32 tsyntype, regval;
|
|
|
|
/* Selects external trigger to cause event */
|
|
regval = rd32(hw, I40E_PRTTSYN_AUX_0(0));
|
|
/* Bit 17:16 is EVNTLVL, 01B rising edge */
|
|
regval &= 0;
|
|
regval |= (1 << I40E_PRTTSYN_AUX_0_EVNTLVL_SHIFT);
|
|
/* regval: 0001 0000 0000 0000 0000 */
|
|
wr32(hw, I40E_PRTTSYN_AUX_0(0), regval);
|
|
|
|
/* Enabel interrupts */
|
|
regval = rd32(hw, I40E_PRTTSYN_CTL0);
|
|
regval |= 1 << I40E_PRTTSYN_CTL0_EVENT_INT_ENA_SHIFT;
|
|
wr32(hw, I40E_PRTTSYN_CTL0, regval);
|
|
|
|
INIT_WORK(&pf->ptp_extts0_work, i40e_ptp_extts0_work);
|
|
|
|
switch (config->tx_type) {
|
|
case HWTSTAMP_TX_OFF:
|
|
pf->ptp_tx = false;
|
|
break;
|
|
case HWTSTAMP_TX_ON:
|
|
pf->ptp_tx = true;
|
|
break;
|
|
default:
|
|
return -ERANGE;
|
|
}
|
|
|
|
switch (config->rx_filter) {
|
|
case HWTSTAMP_FILTER_NONE:
|
|
pf->ptp_rx = false;
|
|
/* We set the type to V1, but do not enable UDP packet
|
|
* recognition. In this way, we should be as close to
|
|
* disabling PTP Rx timestamps as possible since V1 packets
|
|
* are always UDP, since L2 packets are a V2 feature.
|
|
*/
|
|
tsyntype = I40E_PRTTSYN_CTL1_TSYNTYPE_V1;
|
|
break;
|
|
case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
|
|
case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
|
|
case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
|
|
if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE))
|
|
return -ERANGE;
|
|
pf->ptp_rx = true;
|
|
tsyntype = I40E_PRTTSYN_CTL1_V1MESSTYPE0_MASK |
|
|
I40E_PRTTSYN_CTL1_TSYNTYPE_V1 |
|
|
I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
|
|
config->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
|
|
break;
|
|
case HWTSTAMP_FILTER_PTP_V2_EVENT:
|
|
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
|
|
case HWTSTAMP_FILTER_PTP_V2_SYNC:
|
|
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
|
|
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
|
|
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
|
|
if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE))
|
|
return -ERANGE;
|
|
fallthrough;
|
|
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
|
|
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
|
|
case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
|
|
pf->ptp_rx = true;
|
|
tsyntype = I40E_PRTTSYN_CTL1_V2MESSTYPE0_MASK |
|
|
I40E_PRTTSYN_CTL1_TSYNTYPE_V2;
|
|
if (pf->hw_features & I40E_HW_PTP_L4_CAPABLE) {
|
|
tsyntype |= I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
|
|
config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
|
|
} else {
|
|
config->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
|
|
}
|
|
break;
|
|
case HWTSTAMP_FILTER_NTP_ALL:
|
|
case HWTSTAMP_FILTER_ALL:
|
|
default:
|
|
return -ERANGE;
|
|
}
|
|
|
|
/* Clear out all 1588-related registers to clear and unlatch them. */
|
|
spin_lock_bh(&pf->ptp_rx_lock);
|
|
rd32(hw, I40E_PRTTSYN_STAT_0);
|
|
rd32(hw, I40E_PRTTSYN_TXTIME_H);
|
|
rd32(hw, I40E_PRTTSYN_RXTIME_H(0));
|
|
rd32(hw, I40E_PRTTSYN_RXTIME_H(1));
|
|
rd32(hw, I40E_PRTTSYN_RXTIME_H(2));
|
|
rd32(hw, I40E_PRTTSYN_RXTIME_H(3));
|
|
pf->latch_event_flags = 0;
|
|
spin_unlock_bh(&pf->ptp_rx_lock);
|
|
|
|
/* Enable/disable the Tx timestamp interrupt based on user input. */
|
|
regval = rd32(hw, I40E_PRTTSYN_CTL0);
|
|
if (pf->ptp_tx)
|
|
regval |= I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
|
|
else
|
|
regval &= ~I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
|
|
wr32(hw, I40E_PRTTSYN_CTL0, regval);
|
|
|
|
regval = rd32(hw, I40E_PFINT_ICR0_ENA);
|
|
if (pf->ptp_tx)
|
|
regval |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
|
|
else
|
|
regval &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
|
|
wr32(hw, I40E_PFINT_ICR0_ENA, regval);
|
|
|
|
/* Although there is no simple on/off switch for Rx, we "disable" Rx
|
|
* timestamps by setting to V1 only mode and clear the UDP
|
|
* recognition. This ought to disable all PTP Rx timestamps as V1
|
|
* packets are always over UDP. Note that software is configured to
|
|
* ignore Rx timestamps via the pf->ptp_rx flag.
|
|
*/
|
|
regval = rd32(hw, I40E_PRTTSYN_CTL1);
|
|
/* clear everything but the enable bit */
|
|
regval &= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
|
|
/* now enable bits for desired Rx timestamps */
|
|
regval |= tsyntype;
|
|
wr32(hw, I40E_PRTTSYN_CTL1, regval);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* i40e_ptp_set_ts_config - ioctl interface to control the HW timestamping
|
|
* @pf: Board private structure
|
|
* @ifr: ioctl data
|
|
*
|
|
* Respond to the user filter requests and make the appropriate hardware
|
|
* changes here. The XL710 cannot support splitting of the Tx/Rx timestamping
|
|
* logic, so keep track in software of whether to indicate these timestamps
|
|
* or not.
|
|
*
|
|
* It is permissible to "upgrade" the user request to a broader filter, as long
|
|
* as the user receives the timestamps they care about and the user is notified
|
|
* the filter has been broadened.
|
|
**/
|
|
int i40e_ptp_set_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
|
|
{
|
|
struct hwtstamp_config config;
|
|
int err;
|
|
|
|
if (!(pf->flags & I40E_FLAG_PTP))
|
|
return -EOPNOTSUPP;
|
|
|
|
if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
|
|
return -EFAULT;
|
|
|
|
err = i40e_ptp_set_timestamp_mode(pf, &config);
|
|
if (err)
|
|
return err;
|
|
|
|
/* save these settings for future reference */
|
|
pf->tstamp_config = config;
|
|
|
|
return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
|
|
-EFAULT : 0;
|
|
}
|
|
|
|
/**
|
|
* i40e_init_pin_config - initialize pins.
|
|
* @pf: private board structure
|
|
*
|
|
* Initialize pins for external clock source.
|
|
* Return 0 on success or error code on failure.
|
|
**/
|
|
static int i40e_init_pin_config(struct i40e_pf *pf)
|
|
{
|
|
int i;
|
|
|
|
pf->ptp_caps.n_pins = 3;
|
|
pf->ptp_caps.n_ext_ts = 2;
|
|
pf->ptp_caps.pps = 1;
|
|
pf->ptp_caps.n_per_out = 2;
|
|
|
|
pf->ptp_caps.pin_config = kcalloc(pf->ptp_caps.n_pins,
|
|
sizeof(*pf->ptp_caps.pin_config),
|
|
GFP_KERNEL);
|
|
if (!pf->ptp_caps.pin_config)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < pf->ptp_caps.n_pins; i++) {
|
|
snprintf(pf->ptp_caps.pin_config[i].name,
|
|
sizeof(pf->ptp_caps.pin_config[i].name),
|
|
"%s", sdp_desc[i].name);
|
|
pf->ptp_caps.pin_config[i].index = sdp_desc[i].index;
|
|
pf->ptp_caps.pin_config[i].func = PTP_PF_NONE;
|
|
pf->ptp_caps.pin_config[i].chan = sdp_desc[i].chan;
|
|
}
|
|
|
|
pf->ptp_caps.verify = i40e_ptp_verify;
|
|
pf->ptp_caps.enable = i40e_ptp_feature_enable;
|
|
|
|
pf->ptp_caps.pps = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* i40e_ptp_create_clock - Create PTP clock device for userspace
|
|
* @pf: Board private structure
|
|
*
|
|
* This function creates a new PTP clock device. It only creates one if we
|
|
* don't already have one, so it is safe to call. Will return error if it
|
|
* can't create one, but success if we already have a device. Should be used
|
|
* by i40e_ptp_init to create clock initially, and prevent global resets from
|
|
* creating new clock devices.
|
|
**/
|
|
static long i40e_ptp_create_clock(struct i40e_pf *pf)
|
|
{
|
|
/* no need to create a clock device if we already have one */
|
|
if (!IS_ERR_OR_NULL(pf->ptp_clock))
|
|
return 0;
|
|
|
|
strlcpy(pf->ptp_caps.name, i40e_driver_name,
|
|
sizeof(pf->ptp_caps.name) - 1);
|
|
pf->ptp_caps.owner = THIS_MODULE;
|
|
pf->ptp_caps.max_adj = 999999999;
|
|
pf->ptp_caps.adjfreq = i40e_ptp_adjfreq;
|
|
pf->ptp_caps.adjtime = i40e_ptp_adjtime;
|
|
pf->ptp_caps.gettimex64 = i40e_ptp_gettimex;
|
|
pf->ptp_caps.settime64 = i40e_ptp_settime;
|
|
if (i40e_is_ptp_pin_dev(&pf->hw)) {
|
|
int err = i40e_init_pin_config(pf);
|
|
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
/* Attempt to register the clock before enabling the hardware. */
|
|
pf->ptp_clock = ptp_clock_register(&pf->ptp_caps, &pf->pdev->dev);
|
|
if (IS_ERR(pf->ptp_clock))
|
|
return PTR_ERR(pf->ptp_clock);
|
|
|
|
/* clear the hwtstamp settings here during clock create, instead of
|
|
* during regular init, so that we can maintain settings across a
|
|
* reset or suspend.
|
|
*/
|
|
pf->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
|
|
pf->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
|
|
|
|
/* Set the previous "reset" time to the current Kernel clock time */
|
|
ktime_get_real_ts64(&pf->ptp_prev_hw_time);
|
|
pf->ptp_reset_start = ktime_get();
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* i40e_ptp_save_hw_time - Save the current PTP time as ptp_prev_hw_time
|
|
* @pf: Board private structure
|
|
*
|
|
* Read the current PTP time and save it into pf->ptp_prev_hw_time. This should
|
|
* be called at the end of preparing to reset, just before hardware reset
|
|
* occurs, in order to preserve the PTP time as close as possible across
|
|
* resets.
|
|
*/
|
|
void i40e_ptp_save_hw_time(struct i40e_pf *pf)
|
|
{
|
|
/* don't try to access the PTP clock if it's not enabled */
|
|
if (!(pf->flags & I40E_FLAG_PTP))
|
|
return;
|
|
|
|
i40e_ptp_gettimex(&pf->ptp_caps, &pf->ptp_prev_hw_time, NULL);
|
|
/* Get a monotonic starting time for this reset */
|
|
pf->ptp_reset_start = ktime_get();
|
|
}
|
|
|
|
/**
|
|
* i40e_ptp_restore_hw_time - Restore the ptp_prev_hw_time + delta to PTP regs
|
|
* @pf: Board private structure
|
|
*
|
|
* Restore the PTP hardware clock registers. We previously cached the PTP
|
|
* hardware time as pf->ptp_prev_hw_time. To be as accurate as possible,
|
|
* update this value based on the time delta since the time was saved, using
|
|
* CLOCK_MONOTONIC (via ktime_get()) to calculate the time difference.
|
|
*
|
|
* This ensures that the hardware clock is restored to nearly what it should
|
|
* have been if a reset had not occurred.
|
|
*/
|
|
void i40e_ptp_restore_hw_time(struct i40e_pf *pf)
|
|
{
|
|
ktime_t delta = ktime_sub(ktime_get(), pf->ptp_reset_start);
|
|
|
|
/* Update the previous HW time with the ktime delta */
|
|
timespec64_add_ns(&pf->ptp_prev_hw_time, ktime_to_ns(delta));
|
|
|
|
/* Restore the hardware clock registers */
|
|
i40e_ptp_settime(&pf->ptp_caps, &pf->ptp_prev_hw_time);
|
|
}
|
|
|
|
/**
|
|
* i40e_ptp_init - Initialize the 1588 support after device probe or reset
|
|
* @pf: Board private structure
|
|
*
|
|
* This function sets device up for 1588 support. The first time it is run, it
|
|
* will create a PHC clock device. It does not create a clock device if one
|
|
* already exists. It also reconfigures the device after a reset.
|
|
*
|
|
* The first time a clock is created, i40e_ptp_create_clock will set
|
|
* pf->ptp_prev_hw_time to the current system time. During resets, it is
|
|
* expected that this timespec will be set to the last known PTP clock time,
|
|
* in order to preserve the clock time as close as possible across a reset.
|
|
**/
|
|
void i40e_ptp_init(struct i40e_pf *pf)
|
|
{
|
|
struct net_device *netdev = pf->vsi[pf->lan_vsi]->netdev;
|
|
struct i40e_hw *hw = &pf->hw;
|
|
u32 pf_id;
|
|
long err;
|
|
|
|
/* Only one PF is assigned to control 1588 logic per port. Do not
|
|
* enable any support for PFs not assigned via PRTTSYN_CTL0.PF_ID
|
|
*/
|
|
pf_id = (rd32(hw, I40E_PRTTSYN_CTL0) & I40E_PRTTSYN_CTL0_PF_ID_MASK) >>
|
|
I40E_PRTTSYN_CTL0_PF_ID_SHIFT;
|
|
if (hw->pf_id != pf_id) {
|
|
pf->flags &= ~I40E_FLAG_PTP;
|
|
dev_info(&pf->pdev->dev, "%s: PTP not supported on %s\n",
|
|
__func__,
|
|
netdev->name);
|
|
return;
|
|
}
|
|
|
|
mutex_init(&pf->tmreg_lock);
|
|
spin_lock_init(&pf->ptp_rx_lock);
|
|
|
|
/* ensure we have a clock device */
|
|
err = i40e_ptp_create_clock(pf);
|
|
if (err) {
|
|
pf->ptp_clock = NULL;
|
|
dev_err(&pf->pdev->dev, "%s: ptp_clock_register failed\n",
|
|
__func__);
|
|
} else if (pf->ptp_clock) {
|
|
u32 regval;
|
|
|
|
if (pf->hw.debug_mask & I40E_DEBUG_LAN)
|
|
dev_info(&pf->pdev->dev, "PHC enabled\n");
|
|
pf->flags |= I40E_FLAG_PTP;
|
|
|
|
/* Ensure the clocks are running. */
|
|
regval = rd32(hw, I40E_PRTTSYN_CTL0);
|
|
regval |= I40E_PRTTSYN_CTL0_TSYNENA_MASK;
|
|
wr32(hw, I40E_PRTTSYN_CTL0, regval);
|
|
regval = rd32(hw, I40E_PRTTSYN_CTL1);
|
|
regval |= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
|
|
wr32(hw, I40E_PRTTSYN_CTL1, regval);
|
|
|
|
/* Set the increment value per clock tick. */
|
|
i40e_ptp_set_increment(pf);
|
|
|
|
/* reset timestamping mode */
|
|
i40e_ptp_set_timestamp_mode(pf, &pf->tstamp_config);
|
|
|
|
/* Restore the clock time based on last known value */
|
|
i40e_ptp_restore_hw_time(pf);
|
|
}
|
|
|
|
i40e_ptp_set_1pps_signal_hw(pf);
|
|
}
|
|
|
|
/**
|
|
* i40e_ptp_stop - Disable the driver/hardware support and unregister the PHC
|
|
* @pf: Board private structure
|
|
*
|
|
* This function handles the cleanup work required from the initialization by
|
|
* clearing out the important information and unregistering the PHC.
|
|
**/
|
|
void i40e_ptp_stop(struct i40e_pf *pf)
|
|
{
|
|
struct i40e_hw *hw = &pf->hw;
|
|
u32 regval;
|
|
|
|
pf->flags &= ~I40E_FLAG_PTP;
|
|
pf->ptp_tx = false;
|
|
pf->ptp_rx = false;
|
|
|
|
if (pf->ptp_tx_skb) {
|
|
struct sk_buff *skb = pf->ptp_tx_skb;
|
|
|
|
pf->ptp_tx_skb = NULL;
|
|
clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
|
|
dev_kfree_skb_any(skb);
|
|
}
|
|
|
|
if (pf->ptp_clock) {
|
|
ptp_clock_unregister(pf->ptp_clock);
|
|
pf->ptp_clock = NULL;
|
|
dev_info(&pf->pdev->dev, "%s: removed PHC on %s\n", __func__,
|
|
pf->vsi[pf->lan_vsi]->netdev->name);
|
|
}
|
|
|
|
if (i40e_is_ptp_pin_dev(&pf->hw)) {
|
|
i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, off);
|
|
i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, off);
|
|
i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, off);
|
|
}
|
|
|
|
regval = rd32(hw, I40E_PRTTSYN_AUX_0(0));
|
|
regval &= ~I40E_PRTTSYN_AUX_0_PTPFLAG_MASK;
|
|
wr32(hw, I40E_PRTTSYN_AUX_0(0), regval);
|
|
|
|
/* Disable interrupts */
|
|
regval = rd32(hw, I40E_PRTTSYN_CTL0);
|
|
regval &= ~I40E_PRTTSYN_CTL0_EVENT_INT_ENA_MASK;
|
|
wr32(hw, I40E_PRTTSYN_CTL0, regval);
|
|
|
|
i40e_ptp_free_pins(pf);
|
|
}
|