linux/drivers/clocksource/sh_cmt.c
Nicolai Stange 890f423b26 clocksource: sh_cmt: Compute rate before registration again
With the upcoming NTP correction related rate adjustments to be implemented
in the clockevents core, the latter needs to get informed about every rate
change of a clockevent device made after its registration.

Currently, sh_cmt violates this requirement in that it registers its
clockevent device with a dummy rate and sets its final ->mult and ->shift
values from its ->set_state_oneshot() and ->set_state_periodic() functions
respectively.

This patch moves the setting of the clockevent device's ->mult and ->shift
values to before its registration.

Note that there has been some back and forth regarding this question with
respect to the clocksource also provided by this driver:
  commit f4d7c3565c ("clocksource: sh_cmt: compute mult and shift before
                        registration")
moves the rate determination from the clocksource's ->enable() function to
before its registration. OTOH, the later
  commit 3593f5fe40 ("clocksource: sh_cmt: __clocksource_updatefreq_hz()
                        update")
basically reverts this, saying
  "Without this patch the old code uses clocksource_register() together
   with a hack that assumes a never changing clock rate."

However, I checked all current sh_cmt users in arch/sh as well as in
arch/arm/mach-shmobile carefully and right now, none of them changes any
rate in any clock tree relevant to sh_cmt after their respective
time_init(). Since all sh_cmt instances are created after time_init(), none
of them should ever observe any clock rate changes.

What's more, both, a clocksource as well as a clockevent device, can
immediately get selected for use at their registration and thus, enabled
at this point already. So it's probably safer to assume a "never changing
clock rate" here.

- Move the struct sh_cmt_channel's ->rate member to struct sh_cmt_device:
  it's a property of the underlying clock which is in turn specific to
  the sh_cmt_device.
- Determine the ->rate value in sh_cmt_setup() at device probing rather
  than at first usage.
- Set the clockevent device's ->mult and ->shift values right before its
  registration.
- Although not strictly necessary for the upcoming clockevent core changes,
  set the clocksource's rate at its registration for consistency.

Signed-off-by: Nicolai Stange <nicstange@gmail.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
2017-03-23 12:14:00 -07:00

1118 lines
28 KiB
C

/*
* SuperH Timer Support - CMT
*
* Copyright (C) 2008 Magnus Damm
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/clk.h>
#include <linux/clockchips.h>
#include <linux/clocksource.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_domain.h>
#include <linux/pm_runtime.h>
#include <linux/sh_timer.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
struct sh_cmt_device;
/*
* The CMT comes in 5 different identified flavours, depending not only on the
* SoC but also on the particular instance. The following table lists the main
* characteristics of those flavours.
*
* 16B 32B 32B-F 48B 48B-2
* -----------------------------------------------------------------------------
* Channels 2 1/4 1 6 2/8
* Control Width 16 16 16 16 32
* Counter Width 16 32 32 32/48 32/48
* Shared Start/Stop Y Y Y Y N
*
* The 48-bit gen2 version has a per-channel start/stop register located in the
* channel registers block. All other versions have a shared start/stop register
* located in the global space.
*
* Channels are indexed from 0 to N-1 in the documentation. The channel index
* infers the start/stop bit position in the control register and the channel
* registers block address. Some CMT instances have a subset of channels
* available, in which case the index in the documentation doesn't match the
* "real" index as implemented in hardware. This is for instance the case with
* CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
* in the documentation but using start/stop bit 5 and having its registers
* block at 0x60.
*
* Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
* channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
*/
enum sh_cmt_model {
SH_CMT_16BIT,
SH_CMT_32BIT,
SH_CMT_32BIT_FAST,
SH_CMT_48BIT,
SH_CMT_48BIT_GEN2,
};
struct sh_cmt_info {
enum sh_cmt_model model;
unsigned long width; /* 16 or 32 bit version of hardware block */
unsigned long overflow_bit;
unsigned long clear_bits;
/* callbacks for CMSTR and CMCSR access */
unsigned long (*read_control)(void __iomem *base, unsigned long offs);
void (*write_control)(void __iomem *base, unsigned long offs,
unsigned long value);
/* callbacks for CMCNT and CMCOR access */
unsigned long (*read_count)(void __iomem *base, unsigned long offs);
void (*write_count)(void __iomem *base, unsigned long offs,
unsigned long value);
};
struct sh_cmt_channel {
struct sh_cmt_device *cmt;
unsigned int index; /* Index in the documentation */
unsigned int hwidx; /* Real hardware index */
void __iomem *iostart;
void __iomem *ioctrl;
unsigned int timer_bit;
unsigned long flags;
unsigned long match_value;
unsigned long next_match_value;
unsigned long max_match_value;
raw_spinlock_t lock;
struct clock_event_device ced;
struct clocksource cs;
unsigned long total_cycles;
bool cs_enabled;
};
struct sh_cmt_device {
struct platform_device *pdev;
const struct sh_cmt_info *info;
void __iomem *mapbase;
struct clk *clk;
unsigned long rate;
raw_spinlock_t lock; /* Protect the shared start/stop register */
struct sh_cmt_channel *channels;
unsigned int num_channels;
unsigned int hw_channels;
bool has_clockevent;
bool has_clocksource;
};
#define SH_CMT16_CMCSR_CMF (1 << 7)
#define SH_CMT16_CMCSR_CMIE (1 << 6)
#define SH_CMT16_CMCSR_CKS8 (0 << 0)
#define SH_CMT16_CMCSR_CKS32 (1 << 0)
#define SH_CMT16_CMCSR_CKS128 (2 << 0)
#define SH_CMT16_CMCSR_CKS512 (3 << 0)
#define SH_CMT16_CMCSR_CKS_MASK (3 << 0)
#define SH_CMT32_CMCSR_CMF (1 << 15)
#define SH_CMT32_CMCSR_OVF (1 << 14)
#define SH_CMT32_CMCSR_WRFLG (1 << 13)
#define SH_CMT32_CMCSR_STTF (1 << 12)
#define SH_CMT32_CMCSR_STPF (1 << 11)
#define SH_CMT32_CMCSR_SSIE (1 << 10)
#define SH_CMT32_CMCSR_CMS (1 << 9)
#define SH_CMT32_CMCSR_CMM (1 << 8)
#define SH_CMT32_CMCSR_CMTOUT_IE (1 << 7)
#define SH_CMT32_CMCSR_CMR_NONE (0 << 4)
#define SH_CMT32_CMCSR_CMR_DMA (1 << 4)
#define SH_CMT32_CMCSR_CMR_IRQ (2 << 4)
#define SH_CMT32_CMCSR_CMR_MASK (3 << 4)
#define SH_CMT32_CMCSR_DBGIVD (1 << 3)
#define SH_CMT32_CMCSR_CKS_RCLK8 (4 << 0)
#define SH_CMT32_CMCSR_CKS_RCLK32 (5 << 0)
#define SH_CMT32_CMCSR_CKS_RCLK128 (6 << 0)
#define SH_CMT32_CMCSR_CKS_RCLK1 (7 << 0)
#define SH_CMT32_CMCSR_CKS_MASK (7 << 0)
static unsigned long sh_cmt_read16(void __iomem *base, unsigned long offs)
{
return ioread16(base + (offs << 1));
}
static unsigned long sh_cmt_read32(void __iomem *base, unsigned long offs)
{
return ioread32(base + (offs << 2));
}
static void sh_cmt_write16(void __iomem *base, unsigned long offs,
unsigned long value)
{
iowrite16(value, base + (offs << 1));
}
static void sh_cmt_write32(void __iomem *base, unsigned long offs,
unsigned long value)
{
iowrite32(value, base + (offs << 2));
}
static const struct sh_cmt_info sh_cmt_info[] = {
[SH_CMT_16BIT] = {
.model = SH_CMT_16BIT,
.width = 16,
.overflow_bit = SH_CMT16_CMCSR_CMF,
.clear_bits = ~SH_CMT16_CMCSR_CMF,
.read_control = sh_cmt_read16,
.write_control = sh_cmt_write16,
.read_count = sh_cmt_read16,
.write_count = sh_cmt_write16,
},
[SH_CMT_32BIT] = {
.model = SH_CMT_32BIT,
.width = 32,
.overflow_bit = SH_CMT32_CMCSR_CMF,
.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
.read_control = sh_cmt_read16,
.write_control = sh_cmt_write16,
.read_count = sh_cmt_read32,
.write_count = sh_cmt_write32,
},
[SH_CMT_32BIT_FAST] = {
.model = SH_CMT_32BIT_FAST,
.width = 32,
.overflow_bit = SH_CMT32_CMCSR_CMF,
.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
.read_control = sh_cmt_read16,
.write_control = sh_cmt_write16,
.read_count = sh_cmt_read32,
.write_count = sh_cmt_write32,
},
[SH_CMT_48BIT] = {
.model = SH_CMT_48BIT,
.width = 32,
.overflow_bit = SH_CMT32_CMCSR_CMF,
.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
.read_control = sh_cmt_read32,
.write_control = sh_cmt_write32,
.read_count = sh_cmt_read32,
.write_count = sh_cmt_write32,
},
[SH_CMT_48BIT_GEN2] = {
.model = SH_CMT_48BIT_GEN2,
.width = 32,
.overflow_bit = SH_CMT32_CMCSR_CMF,
.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
.read_control = sh_cmt_read32,
.write_control = sh_cmt_write32,
.read_count = sh_cmt_read32,
.write_count = sh_cmt_write32,
},
};
#define CMCSR 0 /* channel register */
#define CMCNT 1 /* channel register */
#define CMCOR 2 /* channel register */
static inline unsigned long sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
{
if (ch->iostart)
return ch->cmt->info->read_control(ch->iostart, 0);
else
return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
}
static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch,
unsigned long value)
{
if (ch->iostart)
ch->cmt->info->write_control(ch->iostart, 0, value);
else
ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
}
static inline unsigned long sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
{
return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
}
static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch,
unsigned long value)
{
ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
}
static inline unsigned long sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
{
return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
}
static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch,
unsigned long value)
{
ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
}
static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch,
unsigned long value)
{
ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
}
static unsigned long sh_cmt_get_counter(struct sh_cmt_channel *ch,
int *has_wrapped)
{
unsigned long v1, v2, v3;
int o1, o2;
o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
/* Make sure the timer value is stable. Stolen from acpi_pm.c */
do {
o2 = o1;
v1 = sh_cmt_read_cmcnt(ch);
v2 = sh_cmt_read_cmcnt(ch);
v3 = sh_cmt_read_cmcnt(ch);
o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
|| (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
*has_wrapped = o1;
return v2;
}
static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
{
unsigned long flags, value;
/* start stop register shared by multiple timer channels */
raw_spin_lock_irqsave(&ch->cmt->lock, flags);
value = sh_cmt_read_cmstr(ch);
if (start)
value |= 1 << ch->timer_bit;
else
value &= ~(1 << ch->timer_bit);
sh_cmt_write_cmstr(ch, value);
raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
}
static int sh_cmt_enable(struct sh_cmt_channel *ch)
{
int k, ret;
pm_runtime_get_sync(&ch->cmt->pdev->dev);
dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
/* enable clock */
ret = clk_enable(ch->cmt->clk);
if (ret) {
dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
ch->index);
goto err0;
}
/* make sure channel is disabled */
sh_cmt_start_stop_ch(ch, 0);
/* configure channel, periodic mode and maximum timeout */
if (ch->cmt->info->width == 16) {
sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
SH_CMT16_CMCSR_CKS512);
} else {
sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
SH_CMT32_CMCSR_CMTOUT_IE |
SH_CMT32_CMCSR_CMR_IRQ |
SH_CMT32_CMCSR_CKS_RCLK8);
}
sh_cmt_write_cmcor(ch, 0xffffffff);
sh_cmt_write_cmcnt(ch, 0);
/*
* According to the sh73a0 user's manual, as CMCNT can be operated
* only by the RCLK (Pseudo 32 KHz), there's one restriction on
* modifying CMCNT register; two RCLK cycles are necessary before
* this register is either read or any modification of the value
* it holds is reflected in the LSI's actual operation.
*
* While at it, we're supposed to clear out the CMCNT as of this
* moment, so make sure it's processed properly here. This will
* take RCLKx2 at maximum.
*/
for (k = 0; k < 100; k++) {
if (!sh_cmt_read_cmcnt(ch))
break;
udelay(1);
}
if (sh_cmt_read_cmcnt(ch)) {
dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
ch->index);
ret = -ETIMEDOUT;
goto err1;
}
/* enable channel */
sh_cmt_start_stop_ch(ch, 1);
return 0;
err1:
/* stop clock */
clk_disable(ch->cmt->clk);
err0:
return ret;
}
static void sh_cmt_disable(struct sh_cmt_channel *ch)
{
/* disable channel */
sh_cmt_start_stop_ch(ch, 0);
/* disable interrupts in CMT block */
sh_cmt_write_cmcsr(ch, 0);
/* stop clock */
clk_disable(ch->cmt->clk);
dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
pm_runtime_put(&ch->cmt->pdev->dev);
}
/* private flags */
#define FLAG_CLOCKEVENT (1 << 0)
#define FLAG_CLOCKSOURCE (1 << 1)
#define FLAG_REPROGRAM (1 << 2)
#define FLAG_SKIPEVENT (1 << 3)
#define FLAG_IRQCONTEXT (1 << 4)
static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
int absolute)
{
unsigned long new_match;
unsigned long value = ch->next_match_value;
unsigned long delay = 0;
unsigned long now = 0;
int has_wrapped;
now = sh_cmt_get_counter(ch, &has_wrapped);
ch->flags |= FLAG_REPROGRAM; /* force reprogram */
if (has_wrapped) {
/* we're competing with the interrupt handler.
* -> let the interrupt handler reprogram the timer.
* -> interrupt number two handles the event.
*/
ch->flags |= FLAG_SKIPEVENT;
return;
}
if (absolute)
now = 0;
do {
/* reprogram the timer hardware,
* but don't save the new match value yet.
*/
new_match = now + value + delay;
if (new_match > ch->max_match_value)
new_match = ch->max_match_value;
sh_cmt_write_cmcor(ch, new_match);
now = sh_cmt_get_counter(ch, &has_wrapped);
if (has_wrapped && (new_match > ch->match_value)) {
/* we are changing to a greater match value,
* so this wrap must be caused by the counter
* matching the old value.
* -> first interrupt reprograms the timer.
* -> interrupt number two handles the event.
*/
ch->flags |= FLAG_SKIPEVENT;
break;
}
if (has_wrapped) {
/* we are changing to a smaller match value,
* so the wrap must be caused by the counter
* matching the new value.
* -> save programmed match value.
* -> let isr handle the event.
*/
ch->match_value = new_match;
break;
}
/* be safe: verify hardware settings */
if (now < new_match) {
/* timer value is below match value, all good.
* this makes sure we won't miss any match events.
* -> save programmed match value.
* -> let isr handle the event.
*/
ch->match_value = new_match;
break;
}
/* the counter has reached a value greater
* than our new match value. and since the
* has_wrapped flag isn't set we must have
* programmed a too close event.
* -> increase delay and retry.
*/
if (delay)
delay <<= 1;
else
delay = 1;
if (!delay)
dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
ch->index);
} while (delay);
}
static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
{
if (delta > ch->max_match_value)
dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
ch->index);
ch->next_match_value = delta;
sh_cmt_clock_event_program_verify(ch, 0);
}
static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
{
unsigned long flags;
raw_spin_lock_irqsave(&ch->lock, flags);
__sh_cmt_set_next(ch, delta);
raw_spin_unlock_irqrestore(&ch->lock, flags);
}
static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
{
struct sh_cmt_channel *ch = dev_id;
/* clear flags */
sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
ch->cmt->info->clear_bits);
/* update clock source counter to begin with if enabled
* the wrap flag should be cleared by the timer specific
* isr before we end up here.
*/
if (ch->flags & FLAG_CLOCKSOURCE)
ch->total_cycles += ch->match_value + 1;
if (!(ch->flags & FLAG_REPROGRAM))
ch->next_match_value = ch->max_match_value;
ch->flags |= FLAG_IRQCONTEXT;
if (ch->flags & FLAG_CLOCKEVENT) {
if (!(ch->flags & FLAG_SKIPEVENT)) {
if (clockevent_state_oneshot(&ch->ced)) {
ch->next_match_value = ch->max_match_value;
ch->flags |= FLAG_REPROGRAM;
}
ch->ced.event_handler(&ch->ced);
}
}
ch->flags &= ~FLAG_SKIPEVENT;
if (ch->flags & FLAG_REPROGRAM) {
ch->flags &= ~FLAG_REPROGRAM;
sh_cmt_clock_event_program_verify(ch, 1);
if (ch->flags & FLAG_CLOCKEVENT)
if ((clockevent_state_shutdown(&ch->ced))
|| (ch->match_value == ch->next_match_value))
ch->flags &= ~FLAG_REPROGRAM;
}
ch->flags &= ~FLAG_IRQCONTEXT;
return IRQ_HANDLED;
}
static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
{
int ret = 0;
unsigned long flags;
raw_spin_lock_irqsave(&ch->lock, flags);
if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
ret = sh_cmt_enable(ch);
if (ret)
goto out;
ch->flags |= flag;
/* setup timeout if no clockevent */
if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
__sh_cmt_set_next(ch, ch->max_match_value);
out:
raw_spin_unlock_irqrestore(&ch->lock, flags);
return ret;
}
static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
{
unsigned long flags;
unsigned long f;
raw_spin_lock_irqsave(&ch->lock, flags);
f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
ch->flags &= ~flag;
if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
sh_cmt_disable(ch);
/* adjust the timeout to maximum if only clocksource left */
if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
__sh_cmt_set_next(ch, ch->max_match_value);
raw_spin_unlock_irqrestore(&ch->lock, flags);
}
static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
{
return container_of(cs, struct sh_cmt_channel, cs);
}
static u64 sh_cmt_clocksource_read(struct clocksource *cs)
{
struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
unsigned long flags, raw;
unsigned long value;
int has_wrapped;
raw_spin_lock_irqsave(&ch->lock, flags);
value = ch->total_cycles;
raw = sh_cmt_get_counter(ch, &has_wrapped);
if (unlikely(has_wrapped))
raw += ch->match_value + 1;
raw_spin_unlock_irqrestore(&ch->lock, flags);
return value + raw;
}
static int sh_cmt_clocksource_enable(struct clocksource *cs)
{
int ret;
struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
WARN_ON(ch->cs_enabled);
ch->total_cycles = 0;
ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
if (!ret)
ch->cs_enabled = true;
return ret;
}
static void sh_cmt_clocksource_disable(struct clocksource *cs)
{
struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
WARN_ON(!ch->cs_enabled);
sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
ch->cs_enabled = false;
}
static void sh_cmt_clocksource_suspend(struct clocksource *cs)
{
struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
if (!ch->cs_enabled)
return;
sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
}
static void sh_cmt_clocksource_resume(struct clocksource *cs)
{
struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
if (!ch->cs_enabled)
return;
pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
sh_cmt_start(ch, FLAG_CLOCKSOURCE);
}
static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
const char *name)
{
struct clocksource *cs = &ch->cs;
cs->name = name;
cs->rating = 125;
cs->read = sh_cmt_clocksource_read;
cs->enable = sh_cmt_clocksource_enable;
cs->disable = sh_cmt_clocksource_disable;
cs->suspend = sh_cmt_clocksource_suspend;
cs->resume = sh_cmt_clocksource_resume;
cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
ch->index);
clocksource_register_hz(cs, ch->cmt->rate);
return 0;
}
static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
{
return container_of(ced, struct sh_cmt_channel, ced);
}
static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
{
sh_cmt_start(ch, FLAG_CLOCKEVENT);
if (periodic)
sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
else
sh_cmt_set_next(ch, ch->max_match_value);
}
static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
{
struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
sh_cmt_stop(ch, FLAG_CLOCKEVENT);
return 0;
}
static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
int periodic)
{
struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
/* deal with old setting first */
if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
sh_cmt_stop(ch, FLAG_CLOCKEVENT);
dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
ch->index, periodic ? "periodic" : "oneshot");
sh_cmt_clock_event_start(ch, periodic);
return 0;
}
static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
{
return sh_cmt_clock_event_set_state(ced, 0);
}
static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
{
return sh_cmt_clock_event_set_state(ced, 1);
}
static int sh_cmt_clock_event_next(unsigned long delta,
struct clock_event_device *ced)
{
struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
BUG_ON(!clockevent_state_oneshot(ced));
if (likely(ch->flags & FLAG_IRQCONTEXT))
ch->next_match_value = delta - 1;
else
sh_cmt_set_next(ch, delta - 1);
return 0;
}
static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
{
struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
clk_unprepare(ch->cmt->clk);
}
static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
{
struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
clk_prepare(ch->cmt->clk);
pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
}
static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
const char *name)
{
struct clock_event_device *ced = &ch->ced;
int irq;
int ret;
irq = platform_get_irq(ch->cmt->pdev, ch->index);
if (irq < 0) {
dev_err(&ch->cmt->pdev->dev, "ch%u: failed to get irq\n",
ch->index);
return irq;
}
ret = request_irq(irq, sh_cmt_interrupt,
IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
dev_name(&ch->cmt->pdev->dev), ch);
if (ret) {
dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
ch->index, irq);
return ret;
}
ced->name = name;
ced->features = CLOCK_EVT_FEAT_PERIODIC;
ced->features |= CLOCK_EVT_FEAT_ONESHOT;
ced->rating = 125;
ced->cpumask = cpu_possible_mask;
ced->set_next_event = sh_cmt_clock_event_next;
ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
ced->suspend = sh_cmt_clock_event_suspend;
ced->resume = sh_cmt_clock_event_resume;
/* TODO: calculate good shift from rate and counter bit width */
ced->shift = 32;
ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
ch->index);
clockevents_register_device(ced);
return 0;
}
static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
bool clockevent, bool clocksource)
{
int ret;
if (clockevent) {
ch->cmt->has_clockevent = true;
ret = sh_cmt_register_clockevent(ch, name);
if (ret < 0)
return ret;
}
if (clocksource) {
ch->cmt->has_clocksource = true;
sh_cmt_register_clocksource(ch, name);
}
return 0;
}
static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
unsigned int hwidx, bool clockevent,
bool clocksource, struct sh_cmt_device *cmt)
{
int ret;
/* Skip unused channels. */
if (!clockevent && !clocksource)
return 0;
ch->cmt = cmt;
ch->index = index;
ch->hwidx = hwidx;
/*
* Compute the address of the channel control register block. For the
* timers with a per-channel start/stop register, compute its address
* as well.
*/
switch (cmt->info->model) {
case SH_CMT_16BIT:
ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
break;
case SH_CMT_32BIT:
case SH_CMT_48BIT:
ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
break;
case SH_CMT_32BIT_FAST:
/*
* The 32-bit "fast" timer has a single channel at hwidx 5 but
* is located at offset 0x40 instead of 0x60 for some reason.
*/
ch->ioctrl = cmt->mapbase + 0x40;
break;
case SH_CMT_48BIT_GEN2:
ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
ch->ioctrl = ch->iostart + 0x10;
break;
}
if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
ch->max_match_value = ~0;
else
ch->max_match_value = (1 << cmt->info->width) - 1;
ch->match_value = ch->max_match_value;
raw_spin_lock_init(&ch->lock);
ch->timer_bit = cmt->info->model == SH_CMT_48BIT_GEN2 ? 0 : ch->hwidx;
ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
clockevent, clocksource);
if (ret) {
dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
ch->index);
return ret;
}
ch->cs_enabled = false;
return 0;
}
static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
{
struct resource *mem;
mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
if (!mem) {
dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
return -ENXIO;
}
cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem));
if (cmt->mapbase == NULL) {
dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
return -ENXIO;
}
return 0;
}
static const struct platform_device_id sh_cmt_id_table[] = {
{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
{ }
};
MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
{ .compatible = "renesas,cmt-32", .data = &sh_cmt_info[SH_CMT_32BIT] },
{ .compatible = "renesas,cmt-32-fast", .data = &sh_cmt_info[SH_CMT_32BIT_FAST] },
{ .compatible = "renesas,cmt-48", .data = &sh_cmt_info[SH_CMT_48BIT] },
{ .compatible = "renesas,cmt-48-gen2", .data = &sh_cmt_info[SH_CMT_48BIT_GEN2] },
{ }
};
MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
static int sh_cmt_parse_dt(struct sh_cmt_device *cmt)
{
struct device_node *np = cmt->pdev->dev.of_node;
return of_property_read_u32(np, "renesas,channels-mask",
&cmt->hw_channels);
}
static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
{
unsigned int mask;
unsigned int i;
int ret;
cmt->pdev = pdev;
raw_spin_lock_init(&cmt->lock);
if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
const struct of_device_id *id;
id = of_match_node(sh_cmt_of_table, pdev->dev.of_node);
cmt->info = id->data;
ret = sh_cmt_parse_dt(cmt);
if (ret < 0)
return ret;
} else if (pdev->dev.platform_data) {
struct sh_timer_config *cfg = pdev->dev.platform_data;
const struct platform_device_id *id = pdev->id_entry;
cmt->info = (const struct sh_cmt_info *)id->driver_data;
cmt->hw_channels = cfg->channels_mask;
} else {
dev_err(&cmt->pdev->dev, "missing platform data\n");
return -ENXIO;
}
/* Get hold of clock. */
cmt->clk = clk_get(&cmt->pdev->dev, "fck");
if (IS_ERR(cmt->clk)) {
dev_err(&cmt->pdev->dev, "cannot get clock\n");
return PTR_ERR(cmt->clk);
}
ret = clk_prepare(cmt->clk);
if (ret < 0)
goto err_clk_put;
/* Determine clock rate. */
ret = clk_enable(cmt->clk);
if (ret < 0)
goto err_clk_unprepare;
if (cmt->info->width == 16)
cmt->rate = clk_get_rate(cmt->clk) / 512;
else
cmt->rate = clk_get_rate(cmt->clk) / 8;
clk_disable(cmt->clk);
/* Map the memory resource(s). */
ret = sh_cmt_map_memory(cmt);
if (ret < 0)
goto err_clk_unprepare;
/* Allocate and setup the channels. */
cmt->num_channels = hweight8(cmt->hw_channels);
cmt->channels = kzalloc(cmt->num_channels * sizeof(*cmt->channels),
GFP_KERNEL);
if (cmt->channels == NULL) {
ret = -ENOMEM;
goto err_unmap;
}
/*
* Use the first channel as a clock event device and the second channel
* as a clock source. If only one channel is available use it for both.
*/
for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
unsigned int hwidx = ffs(mask) - 1;
bool clocksource = i == 1 || cmt->num_channels == 1;
bool clockevent = i == 0;
ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
clockevent, clocksource, cmt);
if (ret < 0)
goto err_unmap;
mask &= ~(1 << hwidx);
}
platform_set_drvdata(pdev, cmt);
return 0;
err_unmap:
kfree(cmt->channels);
iounmap(cmt->mapbase);
err_clk_unprepare:
clk_unprepare(cmt->clk);
err_clk_put:
clk_put(cmt->clk);
return ret;
}
static int sh_cmt_probe(struct platform_device *pdev)
{
struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
int ret;
if (!is_early_platform_device(pdev)) {
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
}
if (cmt) {
dev_info(&pdev->dev, "kept as earlytimer\n");
goto out;
}
cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
if (cmt == NULL)
return -ENOMEM;
ret = sh_cmt_setup(cmt, pdev);
if (ret) {
kfree(cmt);
pm_runtime_idle(&pdev->dev);
return ret;
}
if (is_early_platform_device(pdev))
return 0;
out:
if (cmt->has_clockevent || cmt->has_clocksource)
pm_runtime_irq_safe(&pdev->dev);
else
pm_runtime_idle(&pdev->dev);
return 0;
}
static int sh_cmt_remove(struct platform_device *pdev)
{
return -EBUSY; /* cannot unregister clockevent and clocksource */
}
static struct platform_driver sh_cmt_device_driver = {
.probe = sh_cmt_probe,
.remove = sh_cmt_remove,
.driver = {
.name = "sh_cmt",
.of_match_table = of_match_ptr(sh_cmt_of_table),
},
.id_table = sh_cmt_id_table,
};
static int __init sh_cmt_init(void)
{
return platform_driver_register(&sh_cmt_device_driver);
}
static void __exit sh_cmt_exit(void)
{
platform_driver_unregister(&sh_cmt_device_driver);
}
early_platform_init("earlytimer", &sh_cmt_device_driver);
subsys_initcall(sh_cmt_init);
module_exit(sh_cmt_exit);
MODULE_AUTHOR("Magnus Damm");
MODULE_DESCRIPTION("SuperH CMT Timer Driver");
MODULE_LICENSE("GPL v2");