linux/drivers/infiniband/core/uverbs_uapi.c
Wenpeng Liang 3cea7b4a7d RDMA/core: Fix incorrect print format specifier
There are some '%u' for 'int' and '%d' for 'unsigend int', they should be
fixed.

Link: https://lore.kernel.org/r/1623325232-30900-1-git-send-email-liweihang@huawei.com
Signed-off-by: Wenpeng Liang <liangwenpeng@huawei.com>
Signed-off-by: Weihang Li <liweihang@huawei.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
2021-06-21 15:38:30 -03:00

732 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
/*
* Copyright (c) 2017, Mellanox Technologies inc. All rights reserved.
*/
#include <rdma/uverbs_ioctl.h>
#include <rdma/rdma_user_ioctl.h>
#include <linux/bitops.h>
#include "rdma_core.h"
#include "uverbs.h"
static int ib_uverbs_notsupp(struct uverbs_attr_bundle *attrs)
{
return -EOPNOTSUPP;
}
static void *uapi_add_elm(struct uverbs_api *uapi, u32 key, size_t alloc_size)
{
void *elm;
int rc;
if (key == UVERBS_API_KEY_ERR)
return ERR_PTR(-EOVERFLOW);
elm = kzalloc(alloc_size, GFP_KERNEL);
if (!elm)
return ERR_PTR(-ENOMEM);
rc = radix_tree_insert(&uapi->radix, key, elm);
if (rc) {
kfree(elm);
return ERR_PTR(rc);
}
return elm;
}
static void *uapi_add_get_elm(struct uverbs_api *uapi, u32 key,
size_t alloc_size, bool *exists)
{
void *elm;
elm = uapi_add_elm(uapi, key, alloc_size);
if (!IS_ERR(elm)) {
*exists = false;
return elm;
}
if (elm != ERR_PTR(-EEXIST))
return elm;
elm = radix_tree_lookup(&uapi->radix, key);
if (WARN_ON(!elm))
return ERR_PTR(-EINVAL);
*exists = true;
return elm;
}
static int uapi_create_write(struct uverbs_api *uapi,
struct ib_device *ibdev,
const struct uapi_definition *def,
u32 obj_key,
u32 *cur_method_key)
{
struct uverbs_api_write_method *method_elm;
u32 method_key = obj_key;
bool exists;
if (def->write.is_ex)
method_key |= uapi_key_write_ex_method(def->write.command_num);
else
method_key |= uapi_key_write_method(def->write.command_num);
method_elm = uapi_add_get_elm(uapi, method_key, sizeof(*method_elm),
&exists);
if (IS_ERR(method_elm))
return PTR_ERR(method_elm);
if (WARN_ON(exists && (def->write.is_ex != method_elm->is_ex)))
return -EINVAL;
method_elm->is_ex = def->write.is_ex;
method_elm->handler = def->func_write;
if (!def->write.is_ex)
method_elm->disabled = !(ibdev->uverbs_cmd_mask &
BIT_ULL(def->write.command_num));
if (!def->write.is_ex && def->func_write) {
method_elm->has_udata = def->write.has_udata;
method_elm->has_resp = def->write.has_resp;
method_elm->req_size = def->write.req_size;
method_elm->resp_size = def->write.resp_size;
}
*cur_method_key = method_key;
return 0;
}
static int uapi_merge_method(struct uverbs_api *uapi,
struct uverbs_api_object *obj_elm, u32 obj_key,
const struct uverbs_method_def *method,
bool is_driver)
{
u32 method_key = obj_key | uapi_key_ioctl_method(method->id);
struct uverbs_api_ioctl_method *method_elm;
unsigned int i;
bool exists;
if (!method->attrs)
return 0;
method_elm = uapi_add_get_elm(uapi, method_key, sizeof(*method_elm),
&exists);
if (IS_ERR(method_elm))
return PTR_ERR(method_elm);
if (exists) {
/*
* This occurs when a driver uses ADD_UVERBS_ATTRIBUTES_SIMPLE
*/
if (WARN_ON(method->handler))
return -EINVAL;
} else {
WARN_ON(!method->handler);
rcu_assign_pointer(method_elm->handler, method->handler);
if (method->handler != uverbs_destroy_def_handler)
method_elm->driver_method = is_driver;
}
for (i = 0; i != method->num_attrs; i++) {
const struct uverbs_attr_def *attr = (*method->attrs)[i];
struct uverbs_api_attr *attr_slot;
if (!attr)
continue;
/*
* ENUM_IN contains the 'ids' pointer to the driver's .rodata,
* so if it is specified by a driver then it always makes this
* into a driver method.
*/
if (attr->attr.type == UVERBS_ATTR_TYPE_ENUM_IN)
method_elm->driver_method |= is_driver;
/*
* Like other uobject based things we only support a single
* uobject being NEW'd or DESTROY'd
*/
if (attr->attr.type == UVERBS_ATTR_TYPE_IDRS_ARRAY) {
u8 access = attr->attr.u2.objs_arr.access;
if (WARN_ON(access == UVERBS_ACCESS_NEW ||
access == UVERBS_ACCESS_DESTROY))
return -EINVAL;
}
attr_slot =
uapi_add_elm(uapi, method_key | uapi_key_attr(attr->id),
sizeof(*attr_slot));
/* Attributes are not allowed to be modified by drivers */
if (IS_ERR(attr_slot))
return PTR_ERR(attr_slot);
attr_slot->spec = attr->attr;
}
return 0;
}
static int uapi_merge_obj_tree(struct uverbs_api *uapi,
const struct uverbs_object_def *obj,
bool is_driver)
{
struct uverbs_api_object *obj_elm;
unsigned int i;
u32 obj_key;
bool exists;
int rc;
obj_key = uapi_key_obj(obj->id);
obj_elm = uapi_add_get_elm(uapi, obj_key, sizeof(*obj_elm), &exists);
if (IS_ERR(obj_elm))
return PTR_ERR(obj_elm);
if (obj->type_attrs) {
if (WARN_ON(obj_elm->type_attrs))
return -EINVAL;
obj_elm->id = obj->id;
obj_elm->type_attrs = obj->type_attrs;
obj_elm->type_class = obj->type_attrs->type_class;
/*
* Today drivers are only permitted to use idr_class and
* fd_class types. We can revoke the IDR types during
* disassociation, and the FD types require the driver to use
* struct file_operations.owner to prevent the driver module
* code from unloading while the file is open. This provides
* enough safety that uverbs_uobject_fd_release() will
* continue to work. Drivers using FD are responsible to
* handle disassociation of the device on their own.
*/
if (WARN_ON(is_driver &&
obj->type_attrs->type_class != &uverbs_idr_class &&
obj->type_attrs->type_class != &uverbs_fd_class))
return -EINVAL;
}
if (!obj->methods)
return 0;
for (i = 0; i != obj->num_methods; i++) {
const struct uverbs_method_def *method = (*obj->methods)[i];
if (!method)
continue;
rc = uapi_merge_method(uapi, obj_elm, obj_key, method,
is_driver);
if (rc)
return rc;
}
return 0;
}
static int uapi_disable_elm(struct uverbs_api *uapi,
const struct uapi_definition *def,
u32 obj_key,
u32 method_key)
{
bool exists;
if (def->scope == UAPI_SCOPE_OBJECT) {
struct uverbs_api_object *obj_elm;
obj_elm = uapi_add_get_elm(
uapi, obj_key, sizeof(*obj_elm), &exists);
if (IS_ERR(obj_elm))
return PTR_ERR(obj_elm);
obj_elm->disabled = 1;
return 0;
}
if (def->scope == UAPI_SCOPE_METHOD &&
uapi_key_is_ioctl_method(method_key)) {
struct uverbs_api_ioctl_method *method_elm;
method_elm = uapi_add_get_elm(uapi, method_key,
sizeof(*method_elm), &exists);
if (IS_ERR(method_elm))
return PTR_ERR(method_elm);
method_elm->disabled = 1;
return 0;
}
if (def->scope == UAPI_SCOPE_METHOD &&
(uapi_key_is_write_method(method_key) ||
uapi_key_is_write_ex_method(method_key))) {
struct uverbs_api_write_method *write_elm;
write_elm = uapi_add_get_elm(uapi, method_key,
sizeof(*write_elm), &exists);
if (IS_ERR(write_elm))
return PTR_ERR(write_elm);
write_elm->disabled = 1;
return 0;
}
WARN_ON(true);
return -EINVAL;
}
static int uapi_merge_def(struct uverbs_api *uapi, struct ib_device *ibdev,
const struct uapi_definition *def_list,
bool is_driver)
{
const struct uapi_definition *def = def_list;
u32 cur_obj_key = UVERBS_API_KEY_ERR;
u32 cur_method_key = UVERBS_API_KEY_ERR;
bool exists;
int rc;
if (!def_list)
return 0;
for (;; def++) {
switch ((enum uapi_definition_kind)def->kind) {
case UAPI_DEF_CHAIN:
rc = uapi_merge_def(uapi, ibdev, def->chain, is_driver);
if (rc)
return rc;
continue;
case UAPI_DEF_CHAIN_OBJ_TREE:
if (WARN_ON(def->object_start.object_id !=
def->chain_obj_tree->id))
return -EINVAL;
cur_obj_key = uapi_key_obj(def->object_start.object_id);
rc = uapi_merge_obj_tree(uapi, def->chain_obj_tree,
is_driver);
if (rc)
return rc;
continue;
case UAPI_DEF_END:
return 0;
case UAPI_DEF_IS_SUPPORTED_DEV_FN: {
void **ibdev_fn =
(void *)(&ibdev->ops) + def->needs_fn_offset;
if (*ibdev_fn)
continue;
rc = uapi_disable_elm(
uapi, def, cur_obj_key, cur_method_key);
if (rc)
return rc;
continue;
}
case UAPI_DEF_IS_SUPPORTED_FUNC:
if (def->func_is_supported(ibdev))
continue;
rc = uapi_disable_elm(
uapi, def, cur_obj_key, cur_method_key);
if (rc)
return rc;
continue;
case UAPI_DEF_OBJECT_START: {
struct uverbs_api_object *obj_elm;
cur_obj_key = uapi_key_obj(def->object_start.object_id);
obj_elm = uapi_add_get_elm(uapi, cur_obj_key,
sizeof(*obj_elm), &exists);
if (IS_ERR(obj_elm))
return PTR_ERR(obj_elm);
continue;
}
case UAPI_DEF_WRITE:
rc = uapi_create_write(
uapi, ibdev, def, cur_obj_key, &cur_method_key);
if (rc)
return rc;
continue;
}
WARN_ON(true);
return -EINVAL;
}
}
static int
uapi_finalize_ioctl_method(struct uverbs_api *uapi,
struct uverbs_api_ioctl_method *method_elm,
u32 method_key)
{
struct radix_tree_iter iter;
unsigned int num_attrs = 0;
unsigned int max_bkey = 0;
bool single_uobj = false;
void __rcu **slot;
method_elm->destroy_bkey = UVERBS_API_ATTR_BKEY_LEN;
radix_tree_for_each_slot (slot, &uapi->radix, &iter,
uapi_key_attrs_start(method_key)) {
struct uverbs_api_attr *elm =
rcu_dereference_protected(*slot, true);
u32 attr_key = iter.index & UVERBS_API_ATTR_KEY_MASK;
u32 attr_bkey = uapi_bkey_attr(attr_key);
u8 type = elm->spec.type;
if (uapi_key_attr_to_ioctl_method(iter.index) !=
uapi_key_attr_to_ioctl_method(method_key))
break;
if (elm->spec.mandatory)
__set_bit(attr_bkey, method_elm->attr_mandatory);
if (elm->spec.is_udata)
method_elm->has_udata = true;
if (type == UVERBS_ATTR_TYPE_IDR ||
type == UVERBS_ATTR_TYPE_FD) {
u8 access = elm->spec.u.obj.access;
/*
* Verbs specs may only have one NEW/DESTROY, we don't
* have the infrastructure to abort multiple NEW's or
* cope with multiple DESTROY failure.
*/
if (access == UVERBS_ACCESS_NEW ||
access == UVERBS_ACCESS_DESTROY) {
if (WARN_ON(single_uobj))
return -EINVAL;
single_uobj = true;
if (WARN_ON(!elm->spec.mandatory))
return -EINVAL;
}
if (access == UVERBS_ACCESS_DESTROY)
method_elm->destroy_bkey = attr_bkey;
}
max_bkey = max(max_bkey, attr_bkey);
num_attrs++;
}
method_elm->key_bitmap_len = max_bkey + 1;
WARN_ON(method_elm->key_bitmap_len > UVERBS_API_ATTR_BKEY_LEN);
uapi_compute_bundle_size(method_elm, num_attrs);
return 0;
}
static int uapi_finalize(struct uverbs_api *uapi)
{
const struct uverbs_api_write_method **data;
unsigned long max_write_ex = 0;
unsigned long max_write = 0;
struct radix_tree_iter iter;
void __rcu **slot;
int rc;
int i;
radix_tree_for_each_slot (slot, &uapi->radix, &iter, 0) {
struct uverbs_api_ioctl_method *method_elm =
rcu_dereference_protected(*slot, true);
if (uapi_key_is_ioctl_method(iter.index)) {
rc = uapi_finalize_ioctl_method(uapi, method_elm,
iter.index);
if (rc)
return rc;
}
if (uapi_key_is_write_method(iter.index))
max_write = max(max_write,
iter.index & UVERBS_API_ATTR_KEY_MASK);
if (uapi_key_is_write_ex_method(iter.index))
max_write_ex =
max(max_write_ex,
iter.index & UVERBS_API_ATTR_KEY_MASK);
}
uapi->notsupp_method.handler = ib_uverbs_notsupp;
uapi->num_write = max_write + 1;
uapi->num_write_ex = max_write_ex + 1;
data = kmalloc_array(uapi->num_write + uapi->num_write_ex,
sizeof(*uapi->write_methods), GFP_KERNEL);
for (i = 0; i != uapi->num_write + uapi->num_write_ex; i++)
data[i] = &uapi->notsupp_method;
uapi->write_methods = data;
uapi->write_ex_methods = data + uapi->num_write;
radix_tree_for_each_slot (slot, &uapi->radix, &iter, 0) {
if (uapi_key_is_write_method(iter.index))
uapi->write_methods[iter.index &
UVERBS_API_ATTR_KEY_MASK] =
rcu_dereference_protected(*slot, true);
if (uapi_key_is_write_ex_method(iter.index))
uapi->write_ex_methods[iter.index &
UVERBS_API_ATTR_KEY_MASK] =
rcu_dereference_protected(*slot, true);
}
return 0;
}
static void uapi_remove_range(struct uverbs_api *uapi, u32 start, u32 last)
{
struct radix_tree_iter iter;
void __rcu **slot;
radix_tree_for_each_slot (slot, &uapi->radix, &iter, start) {
if (iter.index > last)
return;
kfree(rcu_dereference_protected(*slot, true));
radix_tree_iter_delete(&uapi->radix, &iter, slot);
}
}
static void uapi_remove_object(struct uverbs_api *uapi, u32 obj_key)
{
uapi_remove_range(uapi, obj_key,
obj_key | UVERBS_API_METHOD_KEY_MASK |
UVERBS_API_ATTR_KEY_MASK);
}
static void uapi_remove_method(struct uverbs_api *uapi, u32 method_key)
{
uapi_remove_range(uapi, method_key,
method_key | UVERBS_API_ATTR_KEY_MASK);
}
static u32 uapi_get_obj_id(struct uverbs_attr_spec *spec)
{
if (spec->type == UVERBS_ATTR_TYPE_IDR ||
spec->type == UVERBS_ATTR_TYPE_FD)
return spec->u.obj.obj_type;
if (spec->type == UVERBS_ATTR_TYPE_IDRS_ARRAY)
return spec->u2.objs_arr.obj_type;
return UVERBS_API_KEY_ERR;
}
static void uapi_key_okay(u32 key)
{
unsigned int count = 0;
if (uapi_key_is_object(key))
count++;
if (uapi_key_is_ioctl_method(key))
count++;
if (uapi_key_is_write_method(key))
count++;
if (uapi_key_is_write_ex_method(key))
count++;
if (uapi_key_is_attr(key))
count++;
WARN(count != 1, "Bad count %u key=%x", count, key);
}
static void uapi_finalize_disable(struct uverbs_api *uapi)
{
struct radix_tree_iter iter;
u32 starting_key = 0;
bool scan_again = false;
void __rcu **slot;
again:
radix_tree_for_each_slot (slot, &uapi->radix, &iter, starting_key) {
uapi_key_okay(iter.index);
if (uapi_key_is_object(iter.index)) {
struct uverbs_api_object *obj_elm =
rcu_dereference_protected(*slot, true);
if (obj_elm->disabled) {
/* Have to check all the attrs again */
scan_again = true;
starting_key = iter.index;
uapi_remove_object(uapi, iter.index);
goto again;
}
continue;
}
if (uapi_key_is_ioctl_method(iter.index)) {
struct uverbs_api_ioctl_method *method_elm =
rcu_dereference_protected(*slot, true);
if (method_elm->disabled) {
starting_key = iter.index;
uapi_remove_method(uapi, iter.index);
goto again;
}
continue;
}
if (uapi_key_is_write_method(iter.index) ||
uapi_key_is_write_ex_method(iter.index)) {
struct uverbs_api_write_method *method_elm =
rcu_dereference_protected(*slot, true);
if (method_elm->disabled) {
kfree(method_elm);
radix_tree_iter_delete(&uapi->radix, &iter, slot);
}
continue;
}
if (uapi_key_is_attr(iter.index)) {
struct uverbs_api_attr *attr_elm =
rcu_dereference_protected(*slot, true);
const struct uverbs_api_object *tmp_obj;
u32 obj_key;
/*
* If the method has a mandatory object handle
* attribute which relies on an object which is not
* present then the entire method is uncallable.
*/
if (!attr_elm->spec.mandatory)
continue;
obj_key = uapi_get_obj_id(&attr_elm->spec);
if (obj_key == UVERBS_API_KEY_ERR)
continue;
tmp_obj = uapi_get_object(uapi, obj_key);
if (IS_ERR(tmp_obj)) {
if (PTR_ERR(tmp_obj) == -ENOMSG)
continue;
} else {
if (!tmp_obj->disabled)
continue;
}
starting_key = iter.index;
uapi_remove_method(
uapi,
iter.index & (UVERBS_API_OBJ_KEY_MASK |
UVERBS_API_METHOD_KEY_MASK));
goto again;
}
WARN_ON(false);
}
if (!scan_again)
return;
scan_again = false;
starting_key = 0;
goto again;
}
void uverbs_destroy_api(struct uverbs_api *uapi)
{
if (!uapi)
return;
uapi_remove_range(uapi, 0, U32_MAX);
kfree(uapi->write_methods);
kfree(uapi);
}
static const struct uapi_definition uverbs_core_api[] = {
UAPI_DEF_CHAIN(uverbs_def_obj_async_fd),
UAPI_DEF_CHAIN(uverbs_def_obj_counters),
UAPI_DEF_CHAIN(uverbs_def_obj_cq),
UAPI_DEF_CHAIN(uverbs_def_obj_device),
UAPI_DEF_CHAIN(uverbs_def_obj_dm),
UAPI_DEF_CHAIN(uverbs_def_obj_flow_action),
UAPI_DEF_CHAIN(uverbs_def_obj_intf),
UAPI_DEF_CHAIN(uverbs_def_obj_mr),
UAPI_DEF_CHAIN(uverbs_def_obj_qp),
UAPI_DEF_CHAIN(uverbs_def_obj_srq),
UAPI_DEF_CHAIN(uverbs_def_obj_wq),
UAPI_DEF_CHAIN(uverbs_def_write_intf),
{},
};
struct uverbs_api *uverbs_alloc_api(struct ib_device *ibdev)
{
struct uverbs_api *uapi;
int rc;
uapi = kzalloc(sizeof(*uapi), GFP_KERNEL);
if (!uapi)
return ERR_PTR(-ENOMEM);
INIT_RADIX_TREE(&uapi->radix, GFP_KERNEL);
uapi->driver_id = ibdev->ops.driver_id;
rc = uapi_merge_def(uapi, ibdev, uverbs_core_api, false);
if (rc)
goto err;
rc = uapi_merge_def(uapi, ibdev, ibdev->driver_def, true);
if (rc)
goto err;
uapi_finalize_disable(uapi);
rc = uapi_finalize(uapi);
if (rc)
goto err;
return uapi;
err:
if (rc != -ENOMEM)
dev_err(&ibdev->dev,
"Setup of uverbs_api failed, kernel parsing tree description is not valid (%d)??\n",
rc);
uverbs_destroy_api(uapi);
return ERR_PTR(rc);
}
/*
* The pre version is done before destroying the HW objects, it only blocks
* off method access. All methods that require the ib_dev or the module data
* must test one of these assignments prior to continuing.
*/
void uverbs_disassociate_api_pre(struct ib_uverbs_device *uverbs_dev)
{
struct uverbs_api *uapi = uverbs_dev->uapi;
struct radix_tree_iter iter;
void __rcu **slot;
rcu_assign_pointer(uverbs_dev->ib_dev, NULL);
radix_tree_for_each_slot (slot, &uapi->radix, &iter, 0) {
if (uapi_key_is_ioctl_method(iter.index)) {
struct uverbs_api_ioctl_method *method_elm =
rcu_dereference_protected(*slot, true);
if (method_elm->driver_method)
rcu_assign_pointer(method_elm->handler, NULL);
}
}
synchronize_srcu(&uverbs_dev->disassociate_srcu);
}
/*
* Called when a driver disassociates from the ib_uverbs_device. The
* assumption is that the driver module will unload after. Replace everything
* related to the driver with NULL as a safety measure.
*/
void uverbs_disassociate_api(struct uverbs_api *uapi)
{
struct radix_tree_iter iter;
void __rcu **slot;
radix_tree_for_each_slot (slot, &uapi->radix, &iter, 0) {
if (uapi_key_is_object(iter.index)) {
struct uverbs_api_object *object_elm =
rcu_dereference_protected(*slot, true);
/*
* Some type_attrs are in the driver module. We don't
* bother to keep track of which since there should be
* no use of this after disassociate.
*/
object_elm->type_attrs = NULL;
} else if (uapi_key_is_attr(iter.index)) {
struct uverbs_api_attr *elm =
rcu_dereference_protected(*slot, true);
if (elm->spec.type == UVERBS_ATTR_TYPE_ENUM_IN)
elm->spec.u2.enum_def.ids = NULL;
}
}
}