linux/drivers/gpu/drm/gma500/cdv_intel_dp.c
Alan Cox 8695b61294 gma500: Add the support of display port on CDV
Import the pieces we need in order to do DisplayPort. Don't wire them
up yet as there is work to do to integrate them.

Signed-off-by: Zhao Yakui <yakui.zhao@intel.com>
Signed-off-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Dave Airlie <airlied@redhat.com>
2012-08-24 09:29:06 +10:00

1505 lines
38 KiB
C

/*
* Copyright © 2012 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Keith Packard <keithp@keithp.com>
*
*/
#include <linux/i2c.h>
#include <linux/slab.h>
#include "drmP.h"
#include "drm.h"
#include "drm_crtc.h"
#include "drm_crtc_helper.h"
#include "psb_drv.h"
#include "psb_intel_drv.h"
#include "psb_drm.h"
#include "psb_intel_reg.h"
#include "drm_dp_helper.h"
#define DP_LINK_STATUS_SIZE 6
#define DP_LINK_CHECK_TIMEOUT (10 * 1000)
#define DP_LINK_CONFIGURATION_SIZE 9
#define CDV_FAST_LINK_TRAIN 1
struct psb_intel_dp {
uint32_t output_reg;
uint32_t DP;
uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
bool has_audio;
int force_audio;
uint32_t color_range;
uint8_t link_bw;
uint8_t lane_count;
uint8_t dpcd[4];
struct psb_intel_output *output;
struct i2c_adapter adapter;
struct i2c_algo_dp_aux_data algo;
uint8_t train_set[4];
uint8_t link_status[DP_LINK_STATUS_SIZE];
};
struct ddi_regoff {
uint32_t PreEmph1;
uint32_t PreEmph2;
uint32_t VSwing1;
uint32_t VSwing2;
uint32_t VSwing3;
uint32_t VSwing4;
uint32_t VSwing5;
};
static struct ddi_regoff ddi_DP_train_table[] = {
{.PreEmph1 = 0x812c, .PreEmph2 = 0x8124, .VSwing1 = 0x8154,
.VSwing2 = 0x8148, .VSwing3 = 0x814C, .VSwing4 = 0x8150,
.VSwing5 = 0x8158,},
{.PreEmph1 = 0x822c, .PreEmph2 = 0x8224, .VSwing1 = 0x8254,
.VSwing2 = 0x8248, .VSwing3 = 0x824C, .VSwing4 = 0x8250,
.VSwing5 = 0x8258,},
};
static uint32_t dp_vswing_premph_table[] = {
0x55338954, 0x4000,
0x554d8954, 0x2000,
0x55668954, 0,
0x559ac0d4, 0x6000,
};
/**
* is_edp - is the given port attached to an eDP panel (either CPU or PCH)
* @intel_dp: DP struct
*
* If a CPU or PCH DP output is attached to an eDP panel, this function
* will return true, and false otherwise.
*/
static bool is_edp(struct psb_intel_output *output)
{
return output->type == INTEL_OUTPUT_EDP;
}
static void psb_intel_dp_start_link_train(struct psb_intel_output *output);
static void psb_intel_dp_complete_link_train(struct psb_intel_output *output);
static void psb_intel_dp_link_down(struct psb_intel_output *output);
static int
psb_intel_dp_max_lane_count(struct psb_intel_output *output)
{
struct psb_intel_dp *intel_dp = output->dev_priv;
int max_lane_count = 4;
if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
switch (max_lane_count) {
case 1: case 2: case 4:
break;
default:
max_lane_count = 4;
}
}
return max_lane_count;
}
static int
psb_intel_dp_max_link_bw(struct psb_intel_output *output)
{
struct psb_intel_dp *intel_dp = output->dev_priv;
int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
switch (max_link_bw) {
case DP_LINK_BW_1_62:
case DP_LINK_BW_2_7:
break;
default:
max_link_bw = DP_LINK_BW_1_62;
break;
}
return max_link_bw;
}
static int
psb_intel_dp_link_clock(uint8_t link_bw)
{
if (link_bw == DP_LINK_BW_2_7)
return 270000;
else
return 162000;
}
static int
psb_intel_dp_link_required(int pixel_clock, int bpp)
{
return (pixel_clock * bpp + 7) / 8;
}
static int
psb_intel_dp_max_data_rate(int max_link_clock, int max_lanes)
{
return (max_link_clock * max_lanes * 19) / 20;
}
static int
psb_intel_dp_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
{
struct psb_intel_output *output = to_psb_intel_output(connector);
struct drm_device *dev = connector->dev;
struct drm_psb_private *dev_priv = dev->dev_private;
int max_link_clock = psb_intel_dp_link_clock(psb_intel_dp_max_link_bw(output));
int max_lanes = psb_intel_dp_max_lane_count(output);
if (is_edp(output) && dev_priv->panel_fixed_mode) {
if (mode->hdisplay > dev_priv->panel_fixed_mode->hdisplay)
return MODE_PANEL;
if (mode->vdisplay > dev_priv->panel_fixed_mode->vdisplay)
return MODE_PANEL;
}
/* only refuse the mode on non eDP since we have seen some weird eDP panels
which are outside spec tolerances but somehow work by magic */
if (!is_edp(output) &&
(psb_intel_dp_link_required(mode->clock, 24)
> psb_intel_dp_max_data_rate(max_link_clock, max_lanes)))
return MODE_CLOCK_HIGH;
if (mode->clock < 10000)
return MODE_CLOCK_LOW;
return MODE_OK;
}
static uint32_t
pack_aux(uint8_t *src, int src_bytes)
{
int i;
uint32_t v = 0;
if (src_bytes > 4)
src_bytes = 4;
for (i = 0; i < src_bytes; i++)
v |= ((uint32_t) src[i]) << ((3-i) * 8);
return v;
}
static void
unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
{
int i;
if (dst_bytes > 4)
dst_bytes = 4;
for (i = 0; i < dst_bytes; i++)
dst[i] = src >> ((3-i) * 8);
}
static int
psb_intel_dp_aux_ch(struct psb_intel_output *output,
uint8_t *send, int send_bytes,
uint8_t *recv, int recv_size)
{
struct psb_intel_dp *intel_dp = output->dev_priv;
uint32_t output_reg = intel_dp->output_reg;
struct drm_device *dev = output->base.dev;
uint32_t ch_ctl = output_reg + 0x10;
uint32_t ch_data = ch_ctl + 4;
int i;
int recv_bytes;
uint32_t status;
uint32_t aux_clock_divider;
int try, precharge;
/* The clock divider is based off the hrawclk,
* and would like to run at 2MHz. So, take the
* hrawclk value and divide by 2 and use that
* On CDV platform it uses 200MHz as hrawclk.
*
*/
aux_clock_divider = 200 / 2;
precharge = 4;
if (REG_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
REG_READ(ch_ctl));
return -EBUSY;
}
/* Must try at least 3 times according to DP spec */
for (try = 0; try < 5; try++) {
/* Load the send data into the aux channel data registers */
for (i = 0; i < send_bytes; i += 4)
REG_WRITE(ch_data + i,
pack_aux(send + i, send_bytes - i));
/* Send the command and wait for it to complete */
REG_WRITE(ch_ctl,
DP_AUX_CH_CTL_SEND_BUSY |
DP_AUX_CH_CTL_TIME_OUT_400us |
(send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
(precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
(aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
DP_AUX_CH_CTL_DONE |
DP_AUX_CH_CTL_TIME_OUT_ERROR |
DP_AUX_CH_CTL_RECEIVE_ERROR);
for (;;) {
status = REG_READ(ch_ctl);
if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
break;
udelay(100);
}
/* Clear done status and any errors */
REG_WRITE(ch_ctl,
status |
DP_AUX_CH_CTL_DONE |
DP_AUX_CH_CTL_TIME_OUT_ERROR |
DP_AUX_CH_CTL_RECEIVE_ERROR);
if (status & DP_AUX_CH_CTL_DONE)
break;
}
if ((status & DP_AUX_CH_CTL_DONE) == 0) {
DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
return -EBUSY;
}
/* Check for timeout or receive error.
* Timeouts occur when the sink is not connected
*/
if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
return -EIO;
}
/* Timeouts occur when the device isn't connected, so they're
* "normal" -- don't fill the kernel log with these */
if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
return -ETIMEDOUT;
}
/* Unload any bytes sent back from the other side */
recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
if (recv_bytes > recv_size)
recv_bytes = recv_size;
for (i = 0; i < recv_bytes; i += 4)
unpack_aux(REG_READ(ch_data + i),
recv + i, recv_bytes - i);
return recv_bytes;
}
/* Write data to the aux channel in native mode */
static int
psb_intel_dp_aux_native_write(struct psb_intel_output *output,
uint16_t address, uint8_t *send, int send_bytes)
{
int ret;
uint8_t msg[20];
int msg_bytes;
uint8_t ack;
if (send_bytes > 16)
return -1;
msg[0] = AUX_NATIVE_WRITE << 4;
msg[1] = address >> 8;
msg[2] = address & 0xff;
msg[3] = send_bytes - 1;
memcpy(&msg[4], send, send_bytes);
msg_bytes = send_bytes + 4;
for (;;) {
ret = psb_intel_dp_aux_ch(output, msg, msg_bytes, &ack, 1);
if (ret < 0)
return ret;
if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
break;
else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
udelay(100);
else
return -EIO;
}
return send_bytes;
}
/* Write a single byte to the aux channel in native mode */
static int
psb_intel_dp_aux_native_write_1(struct psb_intel_output *output,
uint16_t address, uint8_t byte)
{
return psb_intel_dp_aux_native_write(output, address, &byte, 1);
}
/* read bytes from a native aux channel */
static int
psb_intel_dp_aux_native_read(struct psb_intel_output *output,
uint16_t address, uint8_t *recv, int recv_bytes)
{
uint8_t msg[4];
int msg_bytes;
uint8_t reply[20];
int reply_bytes;
uint8_t ack;
int ret;
msg[0] = AUX_NATIVE_READ << 4;
msg[1] = address >> 8;
msg[2] = address & 0xff;
msg[3] = recv_bytes - 1;
msg_bytes = 4;
reply_bytes = recv_bytes + 1;
for (;;) {
ret = psb_intel_dp_aux_ch(output, msg, msg_bytes,
reply, reply_bytes);
if (ret == 0)
return -EPROTO;
if (ret < 0)
return ret;
ack = reply[0];
if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
memcpy(recv, reply + 1, ret - 1);
return ret - 1;
}
else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
udelay(100);
else
return -EIO;
}
}
static int
psb_intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
uint8_t write_byte, uint8_t *read_byte)
{
struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
struct psb_intel_dp *intel_dp = container_of(adapter,
struct psb_intel_dp,
adapter);
struct psb_intel_output *output = intel_dp->output;
uint16_t address = algo_data->address;
uint8_t msg[5];
uint8_t reply[2];
unsigned retry;
int msg_bytes;
int reply_bytes;
int ret;
/* Set up the command byte */
if (mode & MODE_I2C_READ)
msg[0] = AUX_I2C_READ << 4;
else
msg[0] = AUX_I2C_WRITE << 4;
if (!(mode & MODE_I2C_STOP))
msg[0] |= AUX_I2C_MOT << 4;
msg[1] = address >> 8;
msg[2] = address;
switch (mode) {
case MODE_I2C_WRITE:
msg[3] = 0;
msg[4] = write_byte;
msg_bytes = 5;
reply_bytes = 1;
break;
case MODE_I2C_READ:
msg[3] = 0;
msg_bytes = 4;
reply_bytes = 2;
break;
default:
msg_bytes = 3;
reply_bytes = 1;
break;
}
for (retry = 0; retry < 5; retry++) {
ret = psb_intel_dp_aux_ch(output,
msg, msg_bytes,
reply, reply_bytes);
if (ret < 0) {
DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
return ret;
}
switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
case AUX_NATIVE_REPLY_ACK:
/* I2C-over-AUX Reply field is only valid
* when paired with AUX ACK.
*/
break;
case AUX_NATIVE_REPLY_NACK:
DRM_DEBUG_KMS("aux_ch native nack\n");
return -EREMOTEIO;
case AUX_NATIVE_REPLY_DEFER:
udelay(100);
continue;
default:
DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
reply[0]);
return -EREMOTEIO;
}
switch (reply[0] & AUX_I2C_REPLY_MASK) {
case AUX_I2C_REPLY_ACK:
if (mode == MODE_I2C_READ) {
*read_byte = reply[1];
}
return reply_bytes - 1;
case AUX_I2C_REPLY_NACK:
DRM_DEBUG_KMS("aux_i2c nack\n");
return -EREMOTEIO;
case AUX_I2C_REPLY_DEFER:
DRM_DEBUG_KMS("aux_i2c defer\n");
udelay(100);
break;
default:
DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
return -EREMOTEIO;
}
}
DRM_ERROR("too many retries, giving up\n");
return -EREMOTEIO;
}
static int
psb_intel_dp_i2c_init(struct psb_intel_output *output, const char *name)
{
struct psb_intel_dp *intel_dp = output->dev_priv;
DRM_DEBUG_KMS("i2c_init %s\n", name);
intel_dp->algo.running = false;
intel_dp->algo.address = 0;
intel_dp->algo.aux_ch = psb_intel_dp_i2c_aux_ch;
memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
intel_dp->adapter.owner = THIS_MODULE;
intel_dp->adapter.class = I2C_CLASS_DDC;
strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
intel_dp->adapter.algo_data = &intel_dp->algo;
intel_dp->adapter.dev.parent = &output->base.kdev;
return i2c_dp_aux_add_bus(&intel_dp->adapter);
}
static bool
psb_intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct psb_intel_output *output = enc_to_psb_intel_output(encoder);
struct psb_intel_dp *intel_dp = output->dev_priv;
int lane_count, clock;
int max_lane_count = psb_intel_dp_max_lane_count(output);
int max_clock = psb_intel_dp_max_link_bw(output) == DP_LINK_BW_2_7 ? 1 : 0;
static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
for (clock = max_clock; clock >= 0; clock--) {
int link_avail = psb_intel_dp_max_data_rate(psb_intel_dp_link_clock(bws[clock]), lane_count);
if (psb_intel_dp_link_required(mode->clock, 24)
<= link_avail) {
intel_dp->link_bw = bws[clock];
intel_dp->lane_count = lane_count;
adjusted_mode->clock = psb_intel_dp_link_clock(intel_dp->link_bw);
DRM_DEBUG_KMS("Display port link bw %02x lane "
"count %d clock %d\n",
intel_dp->link_bw, intel_dp->lane_count,
adjusted_mode->clock);
return true;
}
}
}
return false;
}
struct psb_intel_dp_m_n {
uint32_t tu;
uint32_t gmch_m;
uint32_t gmch_n;
uint32_t link_m;
uint32_t link_n;
};
static void
psb_intel_reduce_ratio(uint32_t *num, uint32_t *den)
{
/*
while (*num > 0xffffff || *den > 0xffffff) {
*num >>= 1;
*den >>= 1;
}*/
uint64_t value, m;
m = *num;
value = m * (0x800000);
m = do_div(value, *den);
*num = value;
*den = 0x800000;
}
static void
psb_intel_dp_compute_m_n(int bpp,
int nlanes,
int pixel_clock,
int link_clock,
struct psb_intel_dp_m_n *m_n)
{
m_n->tu = 64;
m_n->gmch_m = (pixel_clock * bpp + 7) >> 3;
m_n->gmch_n = link_clock * nlanes;
psb_intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
m_n->link_m = pixel_clock;
m_n->link_n = link_clock;
psb_intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
}
void
psb_intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct drm_device *dev = crtc->dev;
struct drm_mode_config *mode_config = &dev->mode_config;
struct drm_encoder *encoder;
struct psb_intel_crtc *intel_crtc = to_psb_intel_crtc(crtc);
int lane_count = 4, bpp = 24;
struct psb_intel_dp_m_n m_n;
int pipe = intel_crtc->pipe;
/*
* Find the lane count in the intel_encoder private
*/
list_for_each_entry(encoder, &mode_config->encoder_list, head) {
struct psb_intel_output *intel_output;
struct psb_intel_dp *intel_dp;
if (encoder->crtc != crtc)
continue;
intel_output = enc_to_psb_intel_output(encoder);
intel_dp = intel_output->dev_priv;
if (intel_output->type == INTEL_OUTPUT_DISPLAYPORT) {
lane_count = intel_dp->lane_count;
break;
} else if (is_edp(intel_output)) {
lane_count = intel_dp->lane_count;
break;
}
}
/*
* Compute the GMCH and Link ratios. The '3' here is
* the number of bytes_per_pixel post-LUT, which we always
* set up for 8-bits of R/G/B, or 3 bytes total.
*/
psb_intel_dp_compute_m_n(bpp, lane_count,
mode->clock, adjusted_mode->clock, &m_n);
{
REG_WRITE(PIPE_GMCH_DATA_M(pipe),
((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
m_n.gmch_m);
REG_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
REG_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
REG_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
}
}
static void
psb_intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct psb_intel_output *intel_output = enc_to_psb_intel_output(encoder);
struct drm_crtc *crtc = encoder->crtc;
struct psb_intel_crtc *intel_crtc = to_psb_intel_crtc(crtc);
struct psb_intel_dp *intel_dp = intel_output->dev_priv;
intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
intel_dp->DP |= intel_dp->color_range;
if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
intel_dp->DP |= DP_SYNC_HS_HIGH;
if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
intel_dp->DP |= DP_SYNC_VS_HIGH;
intel_dp->DP |= DP_LINK_TRAIN_OFF;
switch (intel_dp->lane_count) {
case 1:
intel_dp->DP |= DP_PORT_WIDTH_1;
break;
case 2:
intel_dp->DP |= DP_PORT_WIDTH_2;
break;
case 4:
intel_dp->DP |= DP_PORT_WIDTH_4;
break;
}
if (intel_dp->has_audio)
intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
intel_dp->link_configuration[0] = intel_dp->link_bw;
intel_dp->link_configuration[1] = intel_dp->lane_count;
/*
* Check for DPCD version > 1.1 and enhanced framing support
*/
if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
(intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
intel_dp->DP |= DP_ENHANCED_FRAMING;
}
/* CPT DP's pipe select is decided in TRANS_DP_CTL */
if (intel_crtc->pipe == 1)
intel_dp->DP |= DP_PIPEB_SELECT;
DRM_DEBUG_KMS("DP expected reg is %x\n", intel_dp->DP);
}
/* If the sink supports it, try to set the power state appropriately */
static void psb_intel_dp_sink_dpms(struct psb_intel_output *output, int mode)
{
struct psb_intel_dp *intel_dp = output->dev_priv;
int ret, i;
/* Should have a valid DPCD by this point */
if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
return;
if (mode != DRM_MODE_DPMS_ON) {
ret = psb_intel_dp_aux_native_write_1(output, DP_SET_POWER,
DP_SET_POWER_D3);
if (ret != 1)
DRM_DEBUG_DRIVER("failed to write sink power state\n");
} else {
/*
* When turning on, we need to retry for 1ms to give the sink
* time to wake up.
*/
for (i = 0; i < 3; i++) {
ret = psb_intel_dp_aux_native_write_1(output,
DP_SET_POWER,
DP_SET_POWER_D0);
if (ret == 1)
break;
udelay(1000);
}
}
}
static void psb_intel_dp_prepare(struct drm_encoder *encoder)
{
struct psb_intel_output *output = enc_to_psb_intel_output(encoder);
/* Wake up the sink first */
psb_intel_dp_sink_dpms(output, DRM_MODE_DPMS_ON);
psb_intel_dp_link_down(output);
}
static void psb_intel_dp_commit(struct drm_encoder *encoder)
{
struct psb_intel_output *output = enc_to_psb_intel_output(encoder);
psb_intel_dp_start_link_train(output);
psb_intel_dp_complete_link_train(output);
}
static void
psb_intel_dp_dpms(struct drm_encoder *encoder, int mode)
{
struct psb_intel_output *intel_output = enc_to_psb_intel_output(encoder);
struct psb_intel_dp *intel_dp = intel_output->dev_priv;
struct drm_device *dev = encoder->dev;
uint32_t dp_reg = REG_READ(intel_dp->output_reg);
if (mode != DRM_MODE_DPMS_ON) {
psb_intel_dp_sink_dpms(intel_output, mode);
psb_intel_dp_link_down(intel_output);
} else {
psb_intel_dp_sink_dpms(intel_output, mode);
if (!(dp_reg & DP_PORT_EN)) {
psb_intel_dp_start_link_train(intel_output);
psb_intel_dp_complete_link_train(intel_output);
}
}
}
/*
* Native read with retry for link status and receiver capability reads for
* cases where the sink may still be asleep.
*/
static bool
psb_intel_dp_aux_native_read_retry(struct psb_intel_output *output, uint16_t address,
uint8_t *recv, int recv_bytes)
{
int ret, i;
/*
* Sinks are *supposed* to come up within 1ms from an off state,
* but we're also supposed to retry 3 times per the spec.
*/
for (i = 0; i < 3; i++) {
ret = psb_intel_dp_aux_native_read(output, address, recv,
recv_bytes);
if (ret == recv_bytes)
return true;
udelay(1000);
}
return false;
}
/*
* Fetch AUX CH registers 0x202 - 0x207 which contain
* link status information
*/
static bool
psb_intel_dp_get_link_status(struct psb_intel_output *output)
{
struct psb_intel_dp *intel_dp = output->dev_priv;
return psb_intel_dp_aux_native_read_retry(output,
DP_LANE0_1_STATUS,
intel_dp->link_status,
DP_LINK_STATUS_SIZE);
}
static uint8_t
psb_intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
int r)
{
return link_status[r - DP_LANE0_1_STATUS];
}
static uint8_t
psb_intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
int lane)
{
int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
int s = ((lane & 1) ?
DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
uint8_t l = psb_intel_dp_link_status(link_status, i);
return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
}
static uint8_t
psb_intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
int lane)
{
int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
int s = ((lane & 1) ?
DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
uint8_t l = psb_intel_dp_link_status(link_status, i);
return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
}
#if 0
static char *voltage_names[] = {
"0.4V", "0.6V", "0.8V", "1.2V"
};
static char *pre_emph_names[] = {
"0dB", "3.5dB", "6dB", "9.5dB"
};
static char *link_train_names[] = {
"pattern 1", "pattern 2", "idle", "off"
};
#endif
#define CDV_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_1200
/*
static uint8_t
psb_intel_dp_pre_emphasis_max(uint8_t voltage_swing)
{
switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_400:
return DP_TRAIN_PRE_EMPHASIS_6;
case DP_TRAIN_VOLTAGE_SWING_600:
return DP_TRAIN_PRE_EMPHASIS_6;
case DP_TRAIN_VOLTAGE_SWING_800:
return DP_TRAIN_PRE_EMPHASIS_3_5;
case DP_TRAIN_VOLTAGE_SWING_1200:
default:
return DP_TRAIN_PRE_EMPHASIS_0;
}
}
*/
static void
psb_intel_get_adjust_train(struct psb_intel_output *output)
{
struct psb_intel_dp *intel_dp = output->dev_priv;
uint8_t v = 0;
uint8_t p = 0;
int lane;
for (lane = 0; lane < intel_dp->lane_count; lane++) {
uint8_t this_v = psb_intel_get_adjust_request_voltage(intel_dp->link_status, lane);
uint8_t this_p = psb_intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
if (this_v > v)
v = this_v;
if (this_p > p)
p = this_p;
}
if (v >= CDV_DP_VOLTAGE_MAX)
v = CDV_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
if (p == DP_TRAIN_PRE_EMPHASIS_MASK)
p |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
for (lane = 0; lane < 4; lane++)
intel_dp->train_set[lane] = v | p;
}
static uint8_t
psb_intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
int lane)
{
int i = DP_LANE0_1_STATUS + (lane >> 1);
int s = (lane & 1) * 4;
uint8_t l = psb_intel_dp_link_status(link_status, i);
return (l >> s) & 0xf;
}
/* Check for clock recovery is done on all channels */
static bool
psb_intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
{
int lane;
uint8_t lane_status;
for (lane = 0; lane < lane_count; lane++) {
lane_status = psb_intel_get_lane_status(link_status, lane);
if ((lane_status & DP_LANE_CR_DONE) == 0)
return false;
}
return true;
}
/* Check to see if channel eq is done on all channels */
#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
DP_LANE_CHANNEL_EQ_DONE|\
DP_LANE_SYMBOL_LOCKED)
static bool
psb_intel_channel_eq_ok(struct psb_intel_output *output)
{
struct psb_intel_dp *intel_dp = output->dev_priv;
uint8_t lane_align;
uint8_t lane_status;
int lane;
lane_align = psb_intel_dp_link_status(intel_dp->link_status,
DP_LANE_ALIGN_STATUS_UPDATED);
if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
return false;
for (lane = 0; lane < intel_dp->lane_count; lane++) {
lane_status = psb_intel_get_lane_status(intel_dp->link_status, lane);
if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
return false;
}
return true;
}
static bool
psb_intel_dp_set_link_train(struct psb_intel_output *output,
uint32_t dp_reg_value,
uint8_t dp_train_pat)
{
struct drm_device *dev = output->base.dev;
int ret;
struct psb_intel_dp *intel_dp = output->dev_priv;
REG_WRITE(intel_dp->output_reg, dp_reg_value);
REG_READ(intel_dp->output_reg);
ret = psb_intel_dp_aux_native_write_1(output,
DP_TRAINING_PATTERN_SET,
dp_train_pat);
if (ret != 1) {
DRM_DEBUG_KMS("Failure in setting link pattern %x\n",
dp_train_pat);
return false;
}
return true;
}
static bool
psb_intel_dplink_set_level(struct psb_intel_output *output,
uint8_t dp_train_pat)
{
int ret;
struct psb_intel_dp *intel_dp = output->dev_priv;
ret = psb_intel_dp_aux_native_write(output,
DP_TRAINING_LANE0_SET,
intel_dp->train_set,
intel_dp->lane_count);
if (ret != intel_dp->lane_count) {
DRM_DEBUG_KMS("Failure in setting level %d, lane_cnt= %d\n",
intel_dp->train_set[0], intel_dp->lane_count);
return false;
}
return true;
}
static void
psb_intel_dp_set_vswing_premph(struct psb_intel_output *output, uint8_t signal_level)
{
struct drm_device *dev = output->base.dev;
struct psb_intel_dp *intel_dp = output->dev_priv;
struct ddi_regoff *ddi_reg;
int vswing, premph, index;
if (intel_dp->output_reg == DP_B)
ddi_reg = &ddi_DP_train_table[0];
else
ddi_reg = &ddi_DP_train_table[1];
vswing = (signal_level & DP_TRAIN_VOLTAGE_SWING_MASK);
premph = ((signal_level & DP_TRAIN_PRE_EMPHASIS_MASK)) >>
DP_TRAIN_PRE_EMPHASIS_SHIFT;
if (vswing + premph > 3)
return;
#ifdef CDV_FAST_LINK_TRAIN
return;
#endif
DRM_DEBUG_KMS("Test2\n");
//return ;
psb_sb_reset(dev);
/* ;Swing voltage programming
;gfx_dpio_set_reg(0xc058, 0x0505313A) */
psb_sb_write(dev, ddi_reg->VSwing5, 0x0505313A);
/* ;gfx_dpio_set_reg(0x8154, 0x43406055) */
psb_sb_write(dev, ddi_reg->VSwing1, 0x43406055);
/* ;gfx_dpio_set_reg(0x8148, 0x55338954)
* The VSwing_PreEmph table is also considered based on the vswing/premp
*/
index = (vswing + premph) * 2;
if (premph == 1 && vswing == 1) {
psb_sb_write(dev, ddi_reg->VSwing2, 0x055738954);
} else
psb_sb_write(dev, ddi_reg->VSwing2, dp_vswing_premph_table[index]);
/* ;gfx_dpio_set_reg(0x814c, 0x40802040) */
if ((vswing + premph) == DP_TRAIN_VOLTAGE_SWING_1200)
psb_sb_write(dev, ddi_reg->VSwing3, 0x70802040);
else
psb_sb_write(dev, ddi_reg->VSwing3, 0x40802040);
/* ;gfx_dpio_set_reg(0x8150, 0x2b405555) */
//psb_sb_write(dev, ddi_reg->VSwing4, 0x2b405555);
/* ;gfx_dpio_set_reg(0x8154, 0xc3406055) */
psb_sb_write(dev, ddi_reg->VSwing1, 0xc3406055);
/* ;Pre emphasis programming
* ;gfx_dpio_set_reg(0xc02c, 0x1f030040)
*/
psb_sb_write(dev, ddi_reg->PreEmph1, 0x1f030040);
/* ;gfx_dpio_set_reg(0x8124, 0x00004000) */
index = 2 * premph + 1;
psb_sb_write(dev, ddi_reg->PreEmph2, dp_vswing_premph_table[index]);
return;
}
/* Enable corresponding port and start training pattern 1 */
static void
psb_intel_dp_start_link_train(struct psb_intel_output *output)
{
struct drm_device *dev = output->base.dev;
struct psb_intel_dp *intel_dp = output->dev_priv;
int i;
uint8_t voltage;
bool clock_recovery = false;
int tries;
u32 reg;
uint32_t DP = intel_dp->DP;
DP |= DP_PORT_EN;
DP &= ~DP_LINK_TRAIN_MASK;
reg = DP;
reg |= DP_LINK_TRAIN_PAT_1;
/* Enable output, wait for it to become active */
REG_WRITE(intel_dp->output_reg, reg);
REG_READ(intel_dp->output_reg);
psb_intel_wait_for_vblank(dev);
DRM_DEBUG_KMS("Link config\n");
/* Write the link configuration data */
psb_intel_dp_aux_native_write(output, DP_LINK_BW_SET,
intel_dp->link_configuration,
2);
memset(intel_dp->train_set, 0, 4);
voltage = 0;
tries = 0;
clock_recovery = false;
DRM_DEBUG_KMS("Start train\n");
reg = DP | DP_LINK_TRAIN_PAT_1;
for (;;) {
/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
if (!psb_intel_dp_set_link_train(output, reg, DP_TRAINING_PATTERN_1)) {
DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 1\n");
}
psb_intel_dp_set_vswing_premph(output, intel_dp->train_set[0]);
/* Set training pattern 1 */
psb_intel_dplink_set_level(output, DP_TRAINING_PATTERN_1);
udelay(200);
if (!psb_intel_dp_get_link_status(output))
break;
if (psb_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
DRM_DEBUG_KMS("PT1 train is done\n");
clock_recovery = true;
break;
}
/* Check to see if we've tried the max voltage */
for (i = 0; i < intel_dp->lane_count; i++)
if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
break;
if (i == intel_dp->lane_count)
break;
/* Check to see if we've tried the same voltage 5 times */
if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
++tries;
if (tries == 5)
break;
} else
tries = 0;
voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
/* Compute new intel_dp->train_set as requested by target */
psb_intel_get_adjust_train(output);
}
if (!clock_recovery) {
DRM_DEBUG_KMS("failure in DP patter 1 training, train set %x\n", intel_dp->train_set[0]);
}
intel_dp->DP = DP;
}
static void
psb_intel_dp_complete_link_train(struct psb_intel_output *output)
{
struct drm_device *dev = output->base.dev;
struct psb_intel_dp *intel_dp = output->dev_priv;
bool channel_eq = false;
int tries, cr_tries;
u32 reg;
uint32_t DP = intel_dp->DP;
/* channel equalization */
tries = 0;
cr_tries = 0;
channel_eq = false;
DRM_DEBUG_KMS("\n");
reg = DP | DP_LINK_TRAIN_PAT_2;
for (;;) {
/* channel eq pattern */
if (!psb_intel_dp_set_link_train(output, reg,
DP_TRAINING_PATTERN_2)) {
DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 2\n");
}
/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
if (cr_tries > 5) {
DRM_ERROR("failed to train DP, aborting\n");
psb_intel_dp_link_down(output);
break;
}
psb_intel_dp_set_vswing_premph(output, intel_dp->train_set[0]);
psb_intel_dplink_set_level(output, DP_TRAINING_PATTERN_2);
udelay(1000);
if (!psb_intel_dp_get_link_status(output))
break;
/* Make sure clock is still ok */
if (!psb_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
psb_intel_dp_start_link_train(output);
cr_tries++;
continue;
}
if (psb_intel_channel_eq_ok(output)) {
DRM_DEBUG_KMS("PT2 train is done\n");
channel_eq = true;
break;
}
/* Try 5 times, then try clock recovery if that fails */
if (tries > 5) {
psb_intel_dp_link_down(output);
psb_intel_dp_start_link_train(output);
tries = 0;
cr_tries++;
continue;
}
/* Compute new intel_dp->train_set as requested by target */
psb_intel_get_adjust_train(output);
++tries;
}
reg = DP | DP_LINK_TRAIN_OFF;
REG_WRITE(intel_dp->output_reg, reg);
REG_READ(intel_dp->output_reg);
psb_intel_dp_aux_native_write_1(output,
DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
}
static void
psb_intel_dp_link_down(struct psb_intel_output *output)
{
struct drm_device *dev = output->base.dev;
struct psb_intel_dp *intel_dp = output->dev_priv;
uint32_t DP = intel_dp->DP;
if ((REG_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
return;
DRM_DEBUG_KMS("\n");
{
DP &= ~DP_LINK_TRAIN_MASK;
REG_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
}
REG_READ(intel_dp->output_reg);
msleep(17);
REG_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
REG_READ(intel_dp->output_reg);
}
static enum drm_connector_status
cdv_dp_detect(struct psb_intel_output *output)
{
struct psb_intel_dp *intel_dp = output->dev_priv;
enum drm_connector_status status;
status = connector_status_disconnected;
if (psb_intel_dp_aux_native_read(output, 0x000, intel_dp->dpcd,
sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
{
if (intel_dp->dpcd[DP_DPCD_REV] != 0)
status = connector_status_connected;
}
if (status == connector_status_connected)
DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
intel_dp->dpcd[0], intel_dp->dpcd[1],
intel_dp->dpcd[2], intel_dp->dpcd[3]);
return status;
}
/**
* Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
*
* \return true if DP port is connected.
* \return false if DP port is disconnected.
*/
static enum drm_connector_status
psb_intel_dp_detect(struct drm_connector *connector, bool force)
{
struct psb_intel_output *output = to_psb_intel_output(connector);
struct psb_intel_dp *intel_dp = output->dev_priv;
enum drm_connector_status status;
struct edid *edid = NULL;
intel_dp->has_audio = false;
status = cdv_dp_detect(output);
if (status != connector_status_connected)
return status;
if (intel_dp->force_audio) {
intel_dp->has_audio = intel_dp->force_audio > 0;
} else {
edid = drm_get_edid(connector, &intel_dp->adapter);
if (edid) {
intel_dp->has_audio = drm_detect_monitor_audio(edid);
connector->display_info.raw_edid = NULL;
kfree(edid);
}
}
return connector_status_connected;
}
static int psb_intel_dp_get_modes(struct drm_connector *connector)
{
struct psb_intel_output *intel_output = to_psb_intel_output(connector);
struct psb_intel_dp *intel_dp = intel_output->dev_priv;
struct edid *edid = NULL;
int ret = 0;
edid = drm_get_edid(&intel_output->base,
&intel_dp->adapter);
if (edid) {
drm_mode_connector_update_edid_property(&intel_output->
base, edid);
ret = drm_add_edid_modes(&intel_output->base, edid);
kfree(edid);
}
return ret;
}
static bool
psb_intel_dp_detect_audio(struct drm_connector *connector)
{
struct psb_intel_output *output = to_psb_intel_output(connector);
struct psb_intel_dp *intel_dp = output->dev_priv;
struct edid *edid;
bool has_audio = false;
edid = drm_get_edid(connector, &intel_dp->adapter);
if (edid) {
has_audio = drm_detect_monitor_audio(edid);
connector->display_info.raw_edid = NULL;
kfree(edid);
}
return has_audio;
}
static int
psb_intel_dp_set_property(struct drm_connector *connector,
struct drm_property *property,
uint64_t val)
{
struct drm_psb_private *dev_priv = connector->dev->dev_private;
struct psb_intel_output *output = to_psb_intel_output(connector);
struct psb_intel_dp *intel_dp = output->dev_priv;
int ret;
ret = drm_connector_property_set_value(connector, property, val);
if (ret)
return ret;
if (property == dev_priv->force_audio_property) {
int i = val;
bool has_audio;
if (i == intel_dp->force_audio)
return 0;
intel_dp->force_audio = i;
if (i == 0)
has_audio = psb_intel_dp_detect_audio(connector);
else
has_audio = i > 0;
if (has_audio == intel_dp->has_audio)
return 0;
intel_dp->has_audio = has_audio;
goto done;
}
if (property == dev_priv->broadcast_rgb_property) {
if (val == !!intel_dp->color_range)
return 0;
intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
goto done;
}
return -EINVAL;
done:
if (output->enc.crtc) {
struct drm_crtc *crtc = output->enc.crtc;
drm_crtc_helper_set_mode(crtc, &crtc->mode,
crtc->x, crtc->y,
crtc->fb);
}
return 0;
}
static void
psb_intel_dp_destroy (struct drm_connector *connector)
{
struct psb_intel_output *output = to_psb_intel_output(connector);
struct psb_intel_dp *intel_dp = output->dev_priv;
i2c_del_adapter(&intel_dp->adapter);
drm_sysfs_connector_remove(connector);
drm_connector_cleanup(connector);
kfree(connector);
}
static void psb_intel_dp_encoder_destroy(struct drm_encoder *encoder)
{
drm_encoder_cleanup(encoder);
}
static const struct drm_encoder_helper_funcs psb_intel_dp_helper_funcs = {
.dpms = psb_intel_dp_dpms,
.mode_fixup = psb_intel_dp_mode_fixup,
.prepare = psb_intel_dp_prepare,
.mode_set = psb_intel_dp_mode_set,
.commit = psb_intel_dp_commit,
};
static const struct drm_connector_funcs psb_intel_dp_connector_funcs = {
.dpms = drm_helper_connector_dpms,
.detect = psb_intel_dp_detect,
.fill_modes = drm_helper_probe_single_connector_modes,
.set_property = psb_intel_dp_set_property,
.destroy = psb_intel_dp_destroy,
};
static const struct drm_connector_helper_funcs psb_intel_dp_connector_helper_funcs = {
.get_modes = psb_intel_dp_get_modes,
.mode_valid = psb_intel_dp_mode_valid,
.best_encoder = psb_intel_best_encoder,
};
static const struct drm_encoder_funcs psb_intel_dp_enc_funcs = {
.destroy = psb_intel_dp_encoder_destroy,
};
static void
psb_intel_dp_add_properties(struct psb_intel_output *output, struct drm_connector *connector)
{
psb_intel_attach_force_audio_property(connector);
psb_intel_attach_broadcast_rgb_property(connector);
}
void
psb_intel_dp_init(struct drm_device *dev, struct psb_intel_mode_device *mode_dev, int output_reg)
{
struct drm_connector *connector;
struct drm_encoder *encoder;
struct psb_intel_output *psb_intel_output;
struct psb_intel_dp *intel_dp;
const char *name = NULL;
int type;
psb_intel_output = kzalloc(sizeof(struct psb_intel_output) +
sizeof(struct psb_intel_dp), GFP_KERNEL);
if (!psb_intel_output)
return;
intel_dp = (struct psb_intel_dp *)(psb_intel_output + 1);
psb_intel_output->mode_dev = mode_dev;
connector = &psb_intel_output->base;
encoder = &psb_intel_output->enc;
psb_intel_output->dev_priv=intel_dp;
intel_dp->output = psb_intel_output;
intel_dp->output_reg = output_reg;
type = DRM_MODE_CONNECTOR_DisplayPort;
psb_intel_output->type = INTEL_OUTPUT_DISPLAYPORT;
drm_connector_init(dev, connector, &psb_intel_dp_connector_funcs, type);
drm_connector_helper_add(connector, &psb_intel_dp_connector_helper_funcs);
connector->polled = DRM_CONNECTOR_POLL_HPD;
connector->interlace_allowed = 0;
connector->doublescan_allowed = 0;
drm_encoder_init(dev, encoder, &psb_intel_dp_enc_funcs,
DRM_MODE_ENCODER_TMDS);
drm_encoder_helper_add(encoder, &psb_intel_dp_helper_funcs);
drm_mode_connector_attach_encoder(&psb_intel_output->base,
&psb_intel_output->enc);
drm_sysfs_connector_add(connector);
/* Set up the DDC bus. */
switch (output_reg) {
case DP_B:
name = "DPDDC-B";
psb_intel_output->ddi_select = (DP_MASK | DDI0_SELECT);
break;
case DP_C:
name = "DPDDC-C";
psb_intel_output->ddi_select = (DP_MASK | DDI1_SELECT);
break;
}
psb_intel_dp_i2c_init(psb_intel_output, name);
psb_intel_dp_add_properties(psb_intel_output, connector);
}