linux/drivers/net/ethernet/aquantia/atlantic/aq_phy.c
Dmitry Bezrukov dbcd6806af net: aquantia: add support for Phy access
GPIO PIN control and access is done by direct phy manipulation.
Here we add an aq_phy module which is able to access phy registers
via MDIO access mailbox.

Access is controlled via HW semaphore.

Co-developed-by: Nikita Danilov <nikita.danilov@aquantia.com>
Signed-off-by: Nikita Danilov <nikita.danilov@aquantia.com>
Signed-off-by: Dmitry Bezrukov <dmitry.bezrukov@aquantia.com>
Signed-off-by: Igor Russkikh <igor.russkikh@aquantia.com>
Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-10-24 09:51:23 -07:00

148 lines
3.5 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/* aQuantia Corporation Network Driver
* Copyright (C) 2018-2019 aQuantia Corporation. All rights reserved
*/
#include "aq_phy.h"
bool aq_mdio_busy_wait(struct aq_hw_s *aq_hw)
{
int err = 0;
u32 val;
err = readx_poll_timeout_atomic(hw_atl_mdio_busy_get, aq_hw,
val, val == 0U, 10U, 100000U);
if (err < 0)
return false;
return true;
}
u16 aq_mdio_read_word(struct aq_hw_s *aq_hw, u16 mmd, u16 addr)
{
u16 phy_addr = aq_hw->phy_id << 5 | mmd;
/* Set Address register. */
hw_atl_glb_mdio_iface4_set(aq_hw, (addr & HW_ATL_MDIO_ADDRESS_MSK) <<
HW_ATL_MDIO_ADDRESS_SHIFT);
/* Send Address command. */
hw_atl_glb_mdio_iface2_set(aq_hw, HW_ATL_MDIO_EXECUTE_OPERATION_MSK |
(3 << HW_ATL_MDIO_OP_MODE_SHIFT) |
((phy_addr & HW_ATL_MDIO_PHY_ADDRESS_MSK) <<
HW_ATL_MDIO_PHY_ADDRESS_SHIFT));
aq_mdio_busy_wait(aq_hw);
/* Send Read command. */
hw_atl_glb_mdio_iface2_set(aq_hw, HW_ATL_MDIO_EXECUTE_OPERATION_MSK |
(1 << HW_ATL_MDIO_OP_MODE_SHIFT) |
((phy_addr & HW_ATL_MDIO_PHY_ADDRESS_MSK) <<
HW_ATL_MDIO_PHY_ADDRESS_SHIFT));
/* Read result. */
aq_mdio_busy_wait(aq_hw);
return (u16)hw_atl_glb_mdio_iface5_get(aq_hw);
}
void aq_mdio_write_word(struct aq_hw_s *aq_hw, u16 mmd, u16 addr, u16 data)
{
u16 phy_addr = aq_hw->phy_id << 5 | mmd;
/* Set Address register. */
hw_atl_glb_mdio_iface4_set(aq_hw, (addr & HW_ATL_MDIO_ADDRESS_MSK) <<
HW_ATL_MDIO_ADDRESS_SHIFT);
/* Send Address command. */
hw_atl_glb_mdio_iface2_set(aq_hw, HW_ATL_MDIO_EXECUTE_OPERATION_MSK |
(3 << HW_ATL_MDIO_OP_MODE_SHIFT) |
((phy_addr & HW_ATL_MDIO_PHY_ADDRESS_MSK) <<
HW_ATL_MDIO_PHY_ADDRESS_SHIFT));
aq_mdio_busy_wait(aq_hw);
hw_atl_glb_mdio_iface3_set(aq_hw, (data & HW_ATL_MDIO_WRITE_DATA_MSK) <<
HW_ATL_MDIO_WRITE_DATA_SHIFT);
/* Send Write command. */
hw_atl_glb_mdio_iface2_set(aq_hw, HW_ATL_MDIO_EXECUTE_OPERATION_MSK |
(2 << HW_ATL_MDIO_OP_MODE_SHIFT) |
((phy_addr & HW_ATL_MDIO_PHY_ADDRESS_MSK) <<
HW_ATL_MDIO_PHY_ADDRESS_SHIFT));
aq_mdio_busy_wait(aq_hw);
}
u16 aq_phy_read_reg(struct aq_hw_s *aq_hw, u16 mmd, u16 address)
{
int err = 0;
u32 val;
err = readx_poll_timeout_atomic(hw_atl_sem_mdio_get, aq_hw,
val, val == 1U, 10U, 100000U);
if (err < 0) {
err = 0xffff;
goto err_exit;
}
err = aq_mdio_read_word(aq_hw, mmd, address);
hw_atl_reg_glb_cpu_sem_set(aq_hw, 1U, HW_ATL_FW_SM_MDIO);
err_exit:
return err;
}
void aq_phy_write_reg(struct aq_hw_s *aq_hw, u16 mmd, u16 address, u16 data)
{
int err = 0;
u32 val;
err = readx_poll_timeout_atomic(hw_atl_sem_mdio_get, aq_hw,
val, val == 1U, 10U, 100000U);
if (err < 0)
return;
aq_mdio_write_word(aq_hw, mmd, address, data);
hw_atl_reg_glb_cpu_sem_set(aq_hw, 1U, HW_ATL_FW_SM_MDIO);
}
bool aq_phy_init_phy_id(struct aq_hw_s *aq_hw)
{
u16 val;
for (aq_hw->phy_id = 0; aq_hw->phy_id < HW_ATL_PHY_ID_MAX;
++aq_hw->phy_id) {
/* PMA Standard Device Identifier 2: Address 1.3 */
val = aq_phy_read_reg(aq_hw, MDIO_MMD_PMAPMD, 3);
if (val != 0xffff)
return true;
}
return false;
}
bool aq_phy_init(struct aq_hw_s *aq_hw)
{
u32 dev_id;
if (aq_hw->phy_id == HW_ATL_PHY_ID_MAX)
if (!aq_phy_init_phy_id(aq_hw))
return false;
/* PMA Standard Device Identifier:
* Address 1.2 = MSW,
* Address 1.3 = LSW
*/
dev_id = aq_phy_read_reg(aq_hw, MDIO_MMD_PMAPMD, 2);
dev_id <<= 16;
dev_id |= aq_phy_read_reg(aq_hw, MDIO_MMD_PMAPMD, 3);
if (dev_id == 0xffffffff) {
aq_hw->phy_id = HW_ATL_PHY_ID_MAX;
return false;
}
return true;
}