mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-22 05:44:31 +08:00
148f9bb877
The __cpuinit type of throwaway sections might have made sense
some time ago when RAM was more constrained, but now the savings
do not offset the cost and complications. For example, the fix in
commit 5e427ec2d0
("x86: Fix bit corruption at CPU resume time")
is a good example of the nasty type of bugs that can be created
with improper use of the various __init prefixes.
After a discussion on LKML[1] it was decided that cpuinit should go
the way of devinit and be phased out. Once all the users are gone,
we can then finally remove the macros themselves from linux/init.h.
Note that some harmless section mismatch warnings may result, since
notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c)
are flagged as __cpuinit -- so if we remove the __cpuinit from
arch specific callers, we will also get section mismatch warnings.
As an intermediate step, we intend to turn the linux/init.h cpuinit
content into no-ops as early as possible, since that will get rid
of these warnings. In any case, they are temporary and harmless.
This removes all the arch/x86 uses of the __cpuinit macros from
all C files. x86 only had the one __CPUINIT used in assembly files,
and it wasn't paired off with a .previous or a __FINIT, so we can
delete it directly w/o any corresponding additional change there.
[1] https://lkml.org/lkml/2013/5/20/589
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Acked-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
503 lines
13 KiB
C
503 lines
13 KiB
C
/*
|
|
* NUMA emulation
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/topology.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/bootmem.h>
|
|
#include <asm/dma.h>
|
|
|
|
#include "numa_internal.h"
|
|
|
|
static int emu_nid_to_phys[MAX_NUMNODES];
|
|
static char *emu_cmdline __initdata;
|
|
|
|
void __init numa_emu_cmdline(char *str)
|
|
{
|
|
emu_cmdline = str;
|
|
}
|
|
|
|
static int __init emu_find_memblk_by_nid(int nid, const struct numa_meminfo *mi)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < mi->nr_blks; i++)
|
|
if (mi->blk[i].nid == nid)
|
|
return i;
|
|
return -ENOENT;
|
|
}
|
|
|
|
static u64 __init mem_hole_size(u64 start, u64 end)
|
|
{
|
|
unsigned long start_pfn = PFN_UP(start);
|
|
unsigned long end_pfn = PFN_DOWN(end);
|
|
|
|
if (start_pfn < end_pfn)
|
|
return PFN_PHYS(absent_pages_in_range(start_pfn, end_pfn));
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Sets up nid to range from @start to @end. The return value is -errno if
|
|
* something went wrong, 0 otherwise.
|
|
*/
|
|
static int __init emu_setup_memblk(struct numa_meminfo *ei,
|
|
struct numa_meminfo *pi,
|
|
int nid, int phys_blk, u64 size)
|
|
{
|
|
struct numa_memblk *eb = &ei->blk[ei->nr_blks];
|
|
struct numa_memblk *pb = &pi->blk[phys_blk];
|
|
|
|
if (ei->nr_blks >= NR_NODE_MEMBLKS) {
|
|
pr_err("NUMA: Too many emulated memblks, failing emulation\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
ei->nr_blks++;
|
|
eb->start = pb->start;
|
|
eb->end = pb->start + size;
|
|
eb->nid = nid;
|
|
|
|
if (emu_nid_to_phys[nid] == NUMA_NO_NODE)
|
|
emu_nid_to_phys[nid] = nid;
|
|
|
|
pb->start += size;
|
|
if (pb->start >= pb->end) {
|
|
WARN_ON_ONCE(pb->start > pb->end);
|
|
numa_remove_memblk_from(phys_blk, pi);
|
|
}
|
|
|
|
printk(KERN_INFO "Faking node %d at [mem %#018Lx-%#018Lx] (%LuMB)\n",
|
|
nid, eb->start, eb->end - 1, (eb->end - eb->start) >> 20);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Sets up nr_nodes fake nodes interleaved over physical nodes ranging from addr
|
|
* to max_addr. The return value is the number of nodes allocated.
|
|
*/
|
|
static int __init split_nodes_interleave(struct numa_meminfo *ei,
|
|
struct numa_meminfo *pi,
|
|
u64 addr, u64 max_addr, int nr_nodes)
|
|
{
|
|
nodemask_t physnode_mask = NODE_MASK_NONE;
|
|
u64 size;
|
|
int big;
|
|
int nid = 0;
|
|
int i, ret;
|
|
|
|
if (nr_nodes <= 0)
|
|
return -1;
|
|
if (nr_nodes > MAX_NUMNODES) {
|
|
pr_info("numa=fake=%d too large, reducing to %d\n",
|
|
nr_nodes, MAX_NUMNODES);
|
|
nr_nodes = MAX_NUMNODES;
|
|
}
|
|
|
|
/*
|
|
* Calculate target node size. x86_32 freaks on __udivdi3() so do
|
|
* the division in ulong number of pages and convert back.
|
|
*/
|
|
size = max_addr - addr - mem_hole_size(addr, max_addr);
|
|
size = PFN_PHYS((unsigned long)(size >> PAGE_SHIFT) / nr_nodes);
|
|
|
|
/*
|
|
* Calculate the number of big nodes that can be allocated as a result
|
|
* of consolidating the remainder.
|
|
*/
|
|
big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * nr_nodes) /
|
|
FAKE_NODE_MIN_SIZE;
|
|
|
|
size &= FAKE_NODE_MIN_HASH_MASK;
|
|
if (!size) {
|
|
pr_err("Not enough memory for each node. "
|
|
"NUMA emulation disabled.\n");
|
|
return -1;
|
|
}
|
|
|
|
for (i = 0; i < pi->nr_blks; i++)
|
|
node_set(pi->blk[i].nid, physnode_mask);
|
|
|
|
/*
|
|
* Continue to fill physical nodes with fake nodes until there is no
|
|
* memory left on any of them.
|
|
*/
|
|
while (nodes_weight(physnode_mask)) {
|
|
for_each_node_mask(i, physnode_mask) {
|
|
u64 dma32_end = PFN_PHYS(MAX_DMA32_PFN);
|
|
u64 start, limit, end;
|
|
int phys_blk;
|
|
|
|
phys_blk = emu_find_memblk_by_nid(i, pi);
|
|
if (phys_blk < 0) {
|
|
node_clear(i, physnode_mask);
|
|
continue;
|
|
}
|
|
start = pi->blk[phys_blk].start;
|
|
limit = pi->blk[phys_blk].end;
|
|
end = start + size;
|
|
|
|
if (nid < big)
|
|
end += FAKE_NODE_MIN_SIZE;
|
|
|
|
/*
|
|
* Continue to add memory to this fake node if its
|
|
* non-reserved memory is less than the per-node size.
|
|
*/
|
|
while (end - start - mem_hole_size(start, end) < size) {
|
|
end += FAKE_NODE_MIN_SIZE;
|
|
if (end > limit) {
|
|
end = limit;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If there won't be at least FAKE_NODE_MIN_SIZE of
|
|
* non-reserved memory in ZONE_DMA32 for the next node,
|
|
* this one must extend to the boundary.
|
|
*/
|
|
if (end < dma32_end && dma32_end - end -
|
|
mem_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
|
|
end = dma32_end;
|
|
|
|
/*
|
|
* If there won't be enough non-reserved memory for the
|
|
* next node, this one must extend to the end of the
|
|
* physical node.
|
|
*/
|
|
if (limit - end - mem_hole_size(end, limit) < size)
|
|
end = limit;
|
|
|
|
ret = emu_setup_memblk(ei, pi, nid++ % nr_nodes,
|
|
phys_blk,
|
|
min(end, limit) - start);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Returns the end address of a node so that there is at least `size' amount of
|
|
* non-reserved memory or `max_addr' is reached.
|
|
*/
|
|
static u64 __init find_end_of_node(u64 start, u64 max_addr, u64 size)
|
|
{
|
|
u64 end = start + size;
|
|
|
|
while (end - start - mem_hole_size(start, end) < size) {
|
|
end += FAKE_NODE_MIN_SIZE;
|
|
if (end > max_addr) {
|
|
end = max_addr;
|
|
break;
|
|
}
|
|
}
|
|
return end;
|
|
}
|
|
|
|
/*
|
|
* Sets up fake nodes of `size' interleaved over physical nodes ranging from
|
|
* `addr' to `max_addr'. The return value is the number of nodes allocated.
|
|
*/
|
|
static int __init split_nodes_size_interleave(struct numa_meminfo *ei,
|
|
struct numa_meminfo *pi,
|
|
u64 addr, u64 max_addr, u64 size)
|
|
{
|
|
nodemask_t physnode_mask = NODE_MASK_NONE;
|
|
u64 min_size;
|
|
int nid = 0;
|
|
int i, ret;
|
|
|
|
if (!size)
|
|
return -1;
|
|
/*
|
|
* The limit on emulated nodes is MAX_NUMNODES, so the size per node is
|
|
* increased accordingly if the requested size is too small. This
|
|
* creates a uniform distribution of node sizes across the entire
|
|
* machine (but not necessarily over physical nodes).
|
|
*/
|
|
min_size = (max_addr - addr - mem_hole_size(addr, max_addr)) / MAX_NUMNODES;
|
|
min_size = max(min_size, FAKE_NODE_MIN_SIZE);
|
|
if ((min_size & FAKE_NODE_MIN_HASH_MASK) < min_size)
|
|
min_size = (min_size + FAKE_NODE_MIN_SIZE) &
|
|
FAKE_NODE_MIN_HASH_MASK;
|
|
if (size < min_size) {
|
|
pr_err("Fake node size %LuMB too small, increasing to %LuMB\n",
|
|
size >> 20, min_size >> 20);
|
|
size = min_size;
|
|
}
|
|
size &= FAKE_NODE_MIN_HASH_MASK;
|
|
|
|
for (i = 0; i < pi->nr_blks; i++)
|
|
node_set(pi->blk[i].nid, physnode_mask);
|
|
|
|
/*
|
|
* Fill physical nodes with fake nodes of size until there is no memory
|
|
* left on any of them.
|
|
*/
|
|
while (nodes_weight(physnode_mask)) {
|
|
for_each_node_mask(i, physnode_mask) {
|
|
u64 dma32_end = PFN_PHYS(MAX_DMA32_PFN);
|
|
u64 start, limit, end;
|
|
int phys_blk;
|
|
|
|
phys_blk = emu_find_memblk_by_nid(i, pi);
|
|
if (phys_blk < 0) {
|
|
node_clear(i, physnode_mask);
|
|
continue;
|
|
}
|
|
start = pi->blk[phys_blk].start;
|
|
limit = pi->blk[phys_blk].end;
|
|
|
|
end = find_end_of_node(start, limit, size);
|
|
/*
|
|
* If there won't be at least FAKE_NODE_MIN_SIZE of
|
|
* non-reserved memory in ZONE_DMA32 for the next node,
|
|
* this one must extend to the boundary.
|
|
*/
|
|
if (end < dma32_end && dma32_end - end -
|
|
mem_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
|
|
end = dma32_end;
|
|
|
|
/*
|
|
* If there won't be enough non-reserved memory for the
|
|
* next node, this one must extend to the end of the
|
|
* physical node.
|
|
*/
|
|
if (limit - end - mem_hole_size(end, limit) < size)
|
|
end = limit;
|
|
|
|
ret = emu_setup_memblk(ei, pi, nid++ % MAX_NUMNODES,
|
|
phys_blk,
|
|
min(end, limit) - start);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* numa_emulation - Emulate NUMA nodes
|
|
* @numa_meminfo: NUMA configuration to massage
|
|
* @numa_dist_cnt: The size of the physical NUMA distance table
|
|
*
|
|
* Emulate NUMA nodes according to the numa=fake kernel parameter.
|
|
* @numa_meminfo contains the physical memory configuration and is modified
|
|
* to reflect the emulated configuration on success. @numa_dist_cnt is
|
|
* used to determine the size of the physical distance table.
|
|
*
|
|
* On success, the following modifications are made.
|
|
*
|
|
* - @numa_meminfo is updated to reflect the emulated nodes.
|
|
*
|
|
* - __apicid_to_node[] is updated such that APIC IDs are mapped to the
|
|
* emulated nodes.
|
|
*
|
|
* - NUMA distance table is rebuilt to represent distances between emulated
|
|
* nodes. The distances are determined considering how emulated nodes
|
|
* are mapped to physical nodes and match the actual distances.
|
|
*
|
|
* - emu_nid_to_phys[] reflects how emulated nodes are mapped to physical
|
|
* nodes. This is used by numa_add_cpu() and numa_remove_cpu().
|
|
*
|
|
* If emulation is not enabled or fails, emu_nid_to_phys[] is filled with
|
|
* identity mapping and no other modification is made.
|
|
*/
|
|
void __init numa_emulation(struct numa_meminfo *numa_meminfo, int numa_dist_cnt)
|
|
{
|
|
static struct numa_meminfo ei __initdata;
|
|
static struct numa_meminfo pi __initdata;
|
|
const u64 max_addr = PFN_PHYS(max_pfn);
|
|
u8 *phys_dist = NULL;
|
|
size_t phys_size = numa_dist_cnt * numa_dist_cnt * sizeof(phys_dist[0]);
|
|
int max_emu_nid, dfl_phys_nid;
|
|
int i, j, ret;
|
|
|
|
if (!emu_cmdline)
|
|
goto no_emu;
|
|
|
|
memset(&ei, 0, sizeof(ei));
|
|
pi = *numa_meminfo;
|
|
|
|
for (i = 0; i < MAX_NUMNODES; i++)
|
|
emu_nid_to_phys[i] = NUMA_NO_NODE;
|
|
|
|
/*
|
|
* If the numa=fake command-line contains a 'M' or 'G', it represents
|
|
* the fixed node size. Otherwise, if it is just a single number N,
|
|
* split the system RAM into N fake nodes.
|
|
*/
|
|
if (strchr(emu_cmdline, 'M') || strchr(emu_cmdline, 'G')) {
|
|
u64 size;
|
|
|
|
size = memparse(emu_cmdline, &emu_cmdline);
|
|
ret = split_nodes_size_interleave(&ei, &pi, 0, max_addr, size);
|
|
} else {
|
|
unsigned long n;
|
|
|
|
n = simple_strtoul(emu_cmdline, &emu_cmdline, 0);
|
|
ret = split_nodes_interleave(&ei, &pi, 0, max_addr, n);
|
|
}
|
|
if (*emu_cmdline == ':')
|
|
emu_cmdline++;
|
|
|
|
if (ret < 0)
|
|
goto no_emu;
|
|
|
|
if (numa_cleanup_meminfo(&ei) < 0) {
|
|
pr_warning("NUMA: Warning: constructed meminfo invalid, disabling emulation\n");
|
|
goto no_emu;
|
|
}
|
|
|
|
/* copy the physical distance table */
|
|
if (numa_dist_cnt) {
|
|
u64 phys;
|
|
|
|
phys = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
|
|
phys_size, PAGE_SIZE);
|
|
if (!phys) {
|
|
pr_warning("NUMA: Warning: can't allocate copy of distance table, disabling emulation\n");
|
|
goto no_emu;
|
|
}
|
|
memblock_reserve(phys, phys_size);
|
|
phys_dist = __va(phys);
|
|
|
|
for (i = 0; i < numa_dist_cnt; i++)
|
|
for (j = 0; j < numa_dist_cnt; j++)
|
|
phys_dist[i * numa_dist_cnt + j] =
|
|
node_distance(i, j);
|
|
}
|
|
|
|
/*
|
|
* Determine the max emulated nid and the default phys nid to use
|
|
* for unmapped nodes.
|
|
*/
|
|
max_emu_nid = 0;
|
|
dfl_phys_nid = NUMA_NO_NODE;
|
|
for (i = 0; i < ARRAY_SIZE(emu_nid_to_phys); i++) {
|
|
if (emu_nid_to_phys[i] != NUMA_NO_NODE) {
|
|
max_emu_nid = i;
|
|
if (dfl_phys_nid == NUMA_NO_NODE)
|
|
dfl_phys_nid = emu_nid_to_phys[i];
|
|
}
|
|
}
|
|
if (dfl_phys_nid == NUMA_NO_NODE) {
|
|
pr_warning("NUMA: Warning: can't determine default physical node, disabling emulation\n");
|
|
goto no_emu;
|
|
}
|
|
|
|
/* commit */
|
|
*numa_meminfo = ei;
|
|
|
|
/*
|
|
* Transform __apicid_to_node table to use emulated nids by
|
|
* reverse-mapping phys_nid. The maps should always exist but fall
|
|
* back to zero just in case.
|
|
*/
|
|
for (i = 0; i < ARRAY_SIZE(__apicid_to_node); i++) {
|
|
if (__apicid_to_node[i] == NUMA_NO_NODE)
|
|
continue;
|
|
for (j = 0; j < ARRAY_SIZE(emu_nid_to_phys); j++)
|
|
if (__apicid_to_node[i] == emu_nid_to_phys[j])
|
|
break;
|
|
__apicid_to_node[i] = j < ARRAY_SIZE(emu_nid_to_phys) ? j : 0;
|
|
}
|
|
|
|
/* make sure all emulated nodes are mapped to a physical node */
|
|
for (i = 0; i < ARRAY_SIZE(emu_nid_to_phys); i++)
|
|
if (emu_nid_to_phys[i] == NUMA_NO_NODE)
|
|
emu_nid_to_phys[i] = dfl_phys_nid;
|
|
|
|
/* transform distance table */
|
|
numa_reset_distance();
|
|
for (i = 0; i < max_emu_nid + 1; i++) {
|
|
for (j = 0; j < max_emu_nid + 1; j++) {
|
|
int physi = emu_nid_to_phys[i];
|
|
int physj = emu_nid_to_phys[j];
|
|
int dist;
|
|
|
|
if (get_option(&emu_cmdline, &dist) == 2)
|
|
;
|
|
else if (physi >= numa_dist_cnt || physj >= numa_dist_cnt)
|
|
dist = physi == physj ?
|
|
LOCAL_DISTANCE : REMOTE_DISTANCE;
|
|
else
|
|
dist = phys_dist[physi * numa_dist_cnt + physj];
|
|
|
|
numa_set_distance(i, j, dist);
|
|
}
|
|
}
|
|
|
|
/* free the copied physical distance table */
|
|
if (phys_dist)
|
|
memblock_free(__pa(phys_dist), phys_size);
|
|
return;
|
|
|
|
no_emu:
|
|
/* No emulation. Build identity emu_nid_to_phys[] for numa_add_cpu() */
|
|
for (i = 0; i < ARRAY_SIZE(emu_nid_to_phys); i++)
|
|
emu_nid_to_phys[i] = i;
|
|
}
|
|
|
|
#ifndef CONFIG_DEBUG_PER_CPU_MAPS
|
|
void numa_add_cpu(int cpu)
|
|
{
|
|
int physnid, nid;
|
|
|
|
nid = early_cpu_to_node(cpu);
|
|
BUG_ON(nid == NUMA_NO_NODE || !node_online(nid));
|
|
|
|
physnid = emu_nid_to_phys[nid];
|
|
|
|
/*
|
|
* Map the cpu to each emulated node that is allocated on the physical
|
|
* node of the cpu's apic id.
|
|
*/
|
|
for_each_online_node(nid)
|
|
if (emu_nid_to_phys[nid] == physnid)
|
|
cpumask_set_cpu(cpu, node_to_cpumask_map[nid]);
|
|
}
|
|
|
|
void numa_remove_cpu(int cpu)
|
|
{
|
|
int i;
|
|
|
|
for_each_online_node(i)
|
|
cpumask_clear_cpu(cpu, node_to_cpumask_map[i]);
|
|
}
|
|
#else /* !CONFIG_DEBUG_PER_CPU_MAPS */
|
|
static void numa_set_cpumask(int cpu, bool enable)
|
|
{
|
|
int nid, physnid;
|
|
|
|
nid = early_cpu_to_node(cpu);
|
|
if (nid == NUMA_NO_NODE) {
|
|
/* early_cpu_to_node() already emits a warning and trace */
|
|
return;
|
|
}
|
|
|
|
physnid = emu_nid_to_phys[nid];
|
|
|
|
for_each_online_node(nid) {
|
|
if (emu_nid_to_phys[nid] != physnid)
|
|
continue;
|
|
|
|
debug_cpumask_set_cpu(cpu, nid, enable);
|
|
}
|
|
}
|
|
|
|
void numa_add_cpu(int cpu)
|
|
{
|
|
numa_set_cpumask(cpu, true);
|
|
}
|
|
|
|
void numa_remove_cpu(int cpu)
|
|
{
|
|
numa_set_cpumask(cpu, false);
|
|
}
|
|
#endif /* !CONFIG_DEBUG_PER_CPU_MAPS */
|