mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-30 07:34:12 +08:00
01a4ca16c8
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
818 lines
21 KiB
C
818 lines
21 KiB
C
/*
|
|
* rtc-ds1305.c -- driver for DS1305 and DS1306 SPI RTC chips
|
|
*
|
|
* Copyright (C) 2008 David Brownell
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/bcd.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/rtc.h>
|
|
#include <linux/workqueue.h>
|
|
|
|
#include <linux/spi/spi.h>
|
|
#include <linux/spi/ds1305.h>
|
|
#include <linux/module.h>
|
|
|
|
|
|
/*
|
|
* Registers ... mask DS1305_WRITE into register address to write,
|
|
* otherwise you're reading it. All non-bitmask values are BCD.
|
|
*/
|
|
#define DS1305_WRITE 0x80
|
|
|
|
|
|
/* RTC date/time ... the main special cases are that we:
|
|
* - Need fancy "hours" encoding in 12hour mode
|
|
* - Don't rely on the "day-of-week" field (or tm_wday)
|
|
* - Are a 21st-century clock (2000 <= year < 2100)
|
|
*/
|
|
#define DS1305_RTC_LEN 7 /* bytes for RTC regs */
|
|
|
|
#define DS1305_SEC 0x00 /* register addresses */
|
|
#define DS1305_MIN 0x01
|
|
#define DS1305_HOUR 0x02
|
|
# define DS1305_HR_12 0x40 /* set == 12 hr mode */
|
|
# define DS1305_HR_PM 0x20 /* set == PM (12hr mode) */
|
|
#define DS1305_WDAY 0x03
|
|
#define DS1305_MDAY 0x04
|
|
#define DS1305_MON 0x05
|
|
#define DS1305_YEAR 0x06
|
|
|
|
|
|
/* The two alarms have only sec/min/hour/wday fields (ALM_LEN).
|
|
* DS1305_ALM_DISABLE disables a match field (some combos are bad).
|
|
*
|
|
* NOTE that since we don't use WDAY, we limit ourselves to alarms
|
|
* only one day into the future (vs potentially up to a week).
|
|
*
|
|
* NOTE ALSO that while we could generate once-a-second IRQs (UIE), we
|
|
* don't currently support them. We'd either need to do it only when
|
|
* no alarm is pending (not the standard model), or to use the second
|
|
* alarm (implying that this is a DS1305 not DS1306, *and* that either
|
|
* it's wired up a second IRQ we know, or that INTCN is set)
|
|
*/
|
|
#define DS1305_ALM_LEN 4 /* bytes for ALM regs */
|
|
#define DS1305_ALM_DISABLE 0x80
|
|
|
|
#define DS1305_ALM0(r) (0x07 + (r)) /* register addresses */
|
|
#define DS1305_ALM1(r) (0x0b + (r))
|
|
|
|
|
|
/* three control registers */
|
|
#define DS1305_CONTROL_LEN 3 /* bytes of control regs */
|
|
|
|
#define DS1305_CONTROL 0x0f /* register addresses */
|
|
# define DS1305_nEOSC 0x80 /* low enables oscillator */
|
|
# define DS1305_WP 0x40 /* write protect */
|
|
# define DS1305_INTCN 0x04 /* clear == only int0 used */
|
|
# define DS1306_1HZ 0x04 /* enable 1Hz output */
|
|
# define DS1305_AEI1 0x02 /* enable ALM1 IRQ */
|
|
# define DS1305_AEI0 0x01 /* enable ALM0 IRQ */
|
|
#define DS1305_STATUS 0x10
|
|
/* status has just AEIx bits, mirrored as IRQFx */
|
|
#define DS1305_TRICKLE 0x11
|
|
/* trickle bits are defined in <linux/spi/ds1305.h> */
|
|
|
|
/* a bunch of NVRAM */
|
|
#define DS1305_NVRAM_LEN 96 /* bytes of NVRAM */
|
|
|
|
#define DS1305_NVRAM 0x20 /* register addresses */
|
|
|
|
|
|
struct ds1305 {
|
|
struct spi_device *spi;
|
|
struct rtc_device *rtc;
|
|
|
|
struct work_struct work;
|
|
|
|
unsigned long flags;
|
|
#define FLAG_EXITING 0
|
|
|
|
bool hr12;
|
|
u8 ctrl[DS1305_CONTROL_LEN];
|
|
};
|
|
|
|
|
|
/*----------------------------------------------------------------------*/
|
|
|
|
/*
|
|
* Utilities ... tolerate 12-hour AM/PM notation in case of non-Linux
|
|
* software (like a bootloader) which may require it.
|
|
*/
|
|
|
|
static unsigned bcd2hour(u8 bcd)
|
|
{
|
|
if (bcd & DS1305_HR_12) {
|
|
unsigned hour = 0;
|
|
|
|
bcd &= ~DS1305_HR_12;
|
|
if (bcd & DS1305_HR_PM) {
|
|
hour = 12;
|
|
bcd &= ~DS1305_HR_PM;
|
|
}
|
|
hour += bcd2bin(bcd);
|
|
return hour - 1;
|
|
}
|
|
return bcd2bin(bcd);
|
|
}
|
|
|
|
static u8 hour2bcd(bool hr12, int hour)
|
|
{
|
|
if (hr12) {
|
|
hour++;
|
|
if (hour <= 12)
|
|
return DS1305_HR_12 | bin2bcd(hour);
|
|
hour -= 12;
|
|
return DS1305_HR_12 | DS1305_HR_PM | bin2bcd(hour);
|
|
}
|
|
return bin2bcd(hour);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------*/
|
|
|
|
/*
|
|
* Interface to RTC framework
|
|
*/
|
|
|
|
static int ds1305_alarm_irq_enable(struct device *dev, unsigned int enabled)
|
|
{
|
|
struct ds1305 *ds1305 = dev_get_drvdata(dev);
|
|
u8 buf[2];
|
|
long err = -EINVAL;
|
|
|
|
buf[0] = DS1305_WRITE | DS1305_CONTROL;
|
|
buf[1] = ds1305->ctrl[0];
|
|
|
|
if (enabled) {
|
|
if (ds1305->ctrl[0] & DS1305_AEI0)
|
|
goto done;
|
|
buf[1] |= DS1305_AEI0;
|
|
} else {
|
|
if (!(buf[1] & DS1305_AEI0))
|
|
goto done;
|
|
buf[1] &= ~DS1305_AEI0;
|
|
}
|
|
err = spi_write_then_read(ds1305->spi, buf, sizeof buf, NULL, 0);
|
|
if (err >= 0)
|
|
ds1305->ctrl[0] = buf[1];
|
|
done:
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
/*
|
|
* Get/set of date and time is pretty normal.
|
|
*/
|
|
|
|
static int ds1305_get_time(struct device *dev, struct rtc_time *time)
|
|
{
|
|
struct ds1305 *ds1305 = dev_get_drvdata(dev);
|
|
u8 addr = DS1305_SEC;
|
|
u8 buf[DS1305_RTC_LEN];
|
|
int status;
|
|
|
|
/* Use write-then-read to get all the date/time registers
|
|
* since dma from stack is nonportable
|
|
*/
|
|
status = spi_write_then_read(ds1305->spi, &addr, sizeof addr,
|
|
buf, sizeof buf);
|
|
if (status < 0)
|
|
return status;
|
|
|
|
dev_vdbg(dev, "%s: %02x %02x %02x, %02x %02x %02x %02x\n",
|
|
"read", buf[0], buf[1], buf[2], buf[3],
|
|
buf[4], buf[5], buf[6]);
|
|
|
|
/* Decode the registers */
|
|
time->tm_sec = bcd2bin(buf[DS1305_SEC]);
|
|
time->tm_min = bcd2bin(buf[DS1305_MIN]);
|
|
time->tm_hour = bcd2hour(buf[DS1305_HOUR]);
|
|
time->tm_wday = buf[DS1305_WDAY] - 1;
|
|
time->tm_mday = bcd2bin(buf[DS1305_MDAY]);
|
|
time->tm_mon = bcd2bin(buf[DS1305_MON]) - 1;
|
|
time->tm_year = bcd2bin(buf[DS1305_YEAR]) + 100;
|
|
|
|
dev_vdbg(dev, "%s secs=%d, mins=%d, "
|
|
"hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
|
|
"read", time->tm_sec, time->tm_min,
|
|
time->tm_hour, time->tm_mday,
|
|
time->tm_mon, time->tm_year, time->tm_wday);
|
|
|
|
/* Time may not be set */
|
|
return rtc_valid_tm(time);
|
|
}
|
|
|
|
static int ds1305_set_time(struct device *dev, struct rtc_time *time)
|
|
{
|
|
struct ds1305 *ds1305 = dev_get_drvdata(dev);
|
|
u8 buf[1 + DS1305_RTC_LEN];
|
|
u8 *bp = buf;
|
|
|
|
dev_vdbg(dev, "%s secs=%d, mins=%d, "
|
|
"hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
|
|
"write", time->tm_sec, time->tm_min,
|
|
time->tm_hour, time->tm_mday,
|
|
time->tm_mon, time->tm_year, time->tm_wday);
|
|
|
|
/* Write registers starting at the first time/date address. */
|
|
*bp++ = DS1305_WRITE | DS1305_SEC;
|
|
|
|
*bp++ = bin2bcd(time->tm_sec);
|
|
*bp++ = bin2bcd(time->tm_min);
|
|
*bp++ = hour2bcd(ds1305->hr12, time->tm_hour);
|
|
*bp++ = (time->tm_wday < 7) ? (time->tm_wday + 1) : 1;
|
|
*bp++ = bin2bcd(time->tm_mday);
|
|
*bp++ = bin2bcd(time->tm_mon + 1);
|
|
*bp++ = bin2bcd(time->tm_year - 100);
|
|
|
|
dev_dbg(dev, "%s: %02x %02x %02x, %02x %02x %02x %02x\n",
|
|
"write", buf[1], buf[2], buf[3],
|
|
buf[4], buf[5], buf[6], buf[7]);
|
|
|
|
/* use write-then-read since dma from stack is nonportable */
|
|
return spi_write_then_read(ds1305->spi, buf, sizeof buf,
|
|
NULL, 0);
|
|
}
|
|
|
|
/*
|
|
* Get/set of alarm is a bit funky:
|
|
*
|
|
* - First there's the inherent raciness of getting the (partitioned)
|
|
* status of an alarm that could trigger while we're reading parts
|
|
* of that status.
|
|
*
|
|
* - Second there's its limited range (we could increase it a bit by
|
|
* relying on WDAY), which means it will easily roll over.
|
|
*
|
|
* - Third there's the choice of two alarms and alarm signals.
|
|
* Here we use ALM0 and expect that nINT0 (open drain) is used;
|
|
* that's the only real option for DS1306 runtime alarms, and is
|
|
* natural on DS1305.
|
|
*
|
|
* - Fourth, there's also ALM1, and a second interrupt signal:
|
|
* + On DS1305 ALM1 uses nINT1 (when INTCN=1) else nINT0;
|
|
* + On DS1306 ALM1 only uses INT1 (an active high pulse)
|
|
* and it won't work when VCC1 is active.
|
|
*
|
|
* So to be most general, we should probably set both alarms to the
|
|
* same value, letting ALM1 be the wakeup event source on DS1306
|
|
* and handling several wiring options on DS1305.
|
|
*
|
|
* - Fifth, we support the polled mode (as well as possible; why not?)
|
|
* even when no interrupt line is wired to an IRQ.
|
|
*/
|
|
|
|
/*
|
|
* Context: caller holds rtc->ops_lock (to protect ds1305->ctrl)
|
|
*/
|
|
static int ds1305_get_alarm(struct device *dev, struct rtc_wkalrm *alm)
|
|
{
|
|
struct ds1305 *ds1305 = dev_get_drvdata(dev);
|
|
struct spi_device *spi = ds1305->spi;
|
|
u8 addr;
|
|
int status;
|
|
u8 buf[DS1305_ALM_LEN];
|
|
|
|
/* Refresh control register cache BEFORE reading ALM0 registers,
|
|
* since reading alarm registers acks any pending IRQ. That
|
|
* makes returning "pending" status a bit of a lie, but that bit
|
|
* of EFI status is at best fragile anyway (given IRQ handlers).
|
|
*/
|
|
addr = DS1305_CONTROL;
|
|
status = spi_write_then_read(spi, &addr, sizeof addr,
|
|
ds1305->ctrl, sizeof ds1305->ctrl);
|
|
if (status < 0)
|
|
return status;
|
|
|
|
alm->enabled = !!(ds1305->ctrl[0] & DS1305_AEI0);
|
|
alm->pending = !!(ds1305->ctrl[1] & DS1305_AEI0);
|
|
|
|
/* get and check ALM0 registers */
|
|
addr = DS1305_ALM0(DS1305_SEC);
|
|
status = spi_write_then_read(spi, &addr, sizeof addr,
|
|
buf, sizeof buf);
|
|
if (status < 0)
|
|
return status;
|
|
|
|
dev_vdbg(dev, "%s: %02x %02x %02x %02x\n",
|
|
"alm0 read", buf[DS1305_SEC], buf[DS1305_MIN],
|
|
buf[DS1305_HOUR], buf[DS1305_WDAY]);
|
|
|
|
if ((DS1305_ALM_DISABLE & buf[DS1305_SEC])
|
|
|| (DS1305_ALM_DISABLE & buf[DS1305_MIN])
|
|
|| (DS1305_ALM_DISABLE & buf[DS1305_HOUR]))
|
|
return -EIO;
|
|
|
|
/* Stuff these values into alm->time and let RTC framework code
|
|
* fill in the rest ... and also handle rollover to tomorrow when
|
|
* that's needed.
|
|
*/
|
|
alm->time.tm_sec = bcd2bin(buf[DS1305_SEC]);
|
|
alm->time.tm_min = bcd2bin(buf[DS1305_MIN]);
|
|
alm->time.tm_hour = bcd2hour(buf[DS1305_HOUR]);
|
|
alm->time.tm_mday = -1;
|
|
alm->time.tm_mon = -1;
|
|
alm->time.tm_year = -1;
|
|
/* next three fields are unused by Linux */
|
|
alm->time.tm_wday = -1;
|
|
alm->time.tm_mday = -1;
|
|
alm->time.tm_isdst = -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Context: caller holds rtc->ops_lock (to protect ds1305->ctrl)
|
|
*/
|
|
static int ds1305_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
|
|
{
|
|
struct ds1305 *ds1305 = dev_get_drvdata(dev);
|
|
struct spi_device *spi = ds1305->spi;
|
|
unsigned long now, later;
|
|
struct rtc_time tm;
|
|
int status;
|
|
u8 buf[1 + DS1305_ALM_LEN];
|
|
|
|
/* convert desired alarm to time_t */
|
|
status = rtc_tm_to_time(&alm->time, &later);
|
|
if (status < 0)
|
|
return status;
|
|
|
|
/* Read current time as time_t */
|
|
status = ds1305_get_time(dev, &tm);
|
|
if (status < 0)
|
|
return status;
|
|
status = rtc_tm_to_time(&tm, &now);
|
|
if (status < 0)
|
|
return status;
|
|
|
|
/* make sure alarm fires within the next 24 hours */
|
|
if (later <= now)
|
|
return -EINVAL;
|
|
if ((later - now) > 24 * 60 * 60)
|
|
return -EDOM;
|
|
|
|
/* disable alarm if needed */
|
|
if (ds1305->ctrl[0] & DS1305_AEI0) {
|
|
ds1305->ctrl[0] &= ~DS1305_AEI0;
|
|
|
|
buf[0] = DS1305_WRITE | DS1305_CONTROL;
|
|
buf[1] = ds1305->ctrl[0];
|
|
status = spi_write_then_read(ds1305->spi, buf, 2, NULL, 0);
|
|
if (status < 0)
|
|
return status;
|
|
}
|
|
|
|
/* write alarm */
|
|
buf[0] = DS1305_WRITE | DS1305_ALM0(DS1305_SEC);
|
|
buf[1 + DS1305_SEC] = bin2bcd(alm->time.tm_sec);
|
|
buf[1 + DS1305_MIN] = bin2bcd(alm->time.tm_min);
|
|
buf[1 + DS1305_HOUR] = hour2bcd(ds1305->hr12, alm->time.tm_hour);
|
|
buf[1 + DS1305_WDAY] = DS1305_ALM_DISABLE;
|
|
|
|
dev_dbg(dev, "%s: %02x %02x %02x %02x\n",
|
|
"alm0 write", buf[1 + DS1305_SEC], buf[1 + DS1305_MIN],
|
|
buf[1 + DS1305_HOUR], buf[1 + DS1305_WDAY]);
|
|
|
|
status = spi_write_then_read(spi, buf, sizeof buf, NULL, 0);
|
|
if (status < 0)
|
|
return status;
|
|
|
|
/* enable alarm if requested */
|
|
if (alm->enabled) {
|
|
ds1305->ctrl[0] |= DS1305_AEI0;
|
|
|
|
buf[0] = DS1305_WRITE | DS1305_CONTROL;
|
|
buf[1] = ds1305->ctrl[0];
|
|
status = spi_write_then_read(ds1305->spi, buf, 2, NULL, 0);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
|
|
static int ds1305_proc(struct device *dev, struct seq_file *seq)
|
|
{
|
|
struct ds1305 *ds1305 = dev_get_drvdata(dev);
|
|
char *diodes = "no";
|
|
char *resistors = "";
|
|
|
|
/* ctrl[2] is treated as read-only; no locking needed */
|
|
if ((ds1305->ctrl[2] & 0xf0) == DS1305_TRICKLE_MAGIC) {
|
|
switch (ds1305->ctrl[2] & 0x0c) {
|
|
case DS1305_TRICKLE_DS2:
|
|
diodes = "2 diodes, ";
|
|
break;
|
|
case DS1305_TRICKLE_DS1:
|
|
diodes = "1 diode, ";
|
|
break;
|
|
default:
|
|
goto done;
|
|
}
|
|
switch (ds1305->ctrl[2] & 0x03) {
|
|
case DS1305_TRICKLE_2K:
|
|
resistors = "2k Ohm";
|
|
break;
|
|
case DS1305_TRICKLE_4K:
|
|
resistors = "4k Ohm";
|
|
break;
|
|
case DS1305_TRICKLE_8K:
|
|
resistors = "8k Ohm";
|
|
break;
|
|
default:
|
|
diodes = "no";
|
|
break;
|
|
}
|
|
}
|
|
|
|
done:
|
|
return seq_printf(seq,
|
|
"trickle_charge\t: %s%s\n",
|
|
diodes, resistors);
|
|
}
|
|
|
|
#else
|
|
#define ds1305_proc NULL
|
|
#endif
|
|
|
|
static const struct rtc_class_ops ds1305_ops = {
|
|
.read_time = ds1305_get_time,
|
|
.set_time = ds1305_set_time,
|
|
.read_alarm = ds1305_get_alarm,
|
|
.set_alarm = ds1305_set_alarm,
|
|
.proc = ds1305_proc,
|
|
.alarm_irq_enable = ds1305_alarm_irq_enable,
|
|
};
|
|
|
|
static void ds1305_work(struct work_struct *work)
|
|
{
|
|
struct ds1305 *ds1305 = container_of(work, struct ds1305, work);
|
|
struct mutex *lock = &ds1305->rtc->ops_lock;
|
|
struct spi_device *spi = ds1305->spi;
|
|
u8 buf[3];
|
|
int status;
|
|
|
|
/* lock to protect ds1305->ctrl */
|
|
mutex_lock(lock);
|
|
|
|
/* Disable the IRQ, and clear its status ... for now, we "know"
|
|
* that if more than one alarm is active, they're in sync.
|
|
* Note that reading ALM data registers also clears IRQ status.
|
|
*/
|
|
ds1305->ctrl[0] &= ~(DS1305_AEI1 | DS1305_AEI0);
|
|
ds1305->ctrl[1] = 0;
|
|
|
|
buf[0] = DS1305_WRITE | DS1305_CONTROL;
|
|
buf[1] = ds1305->ctrl[0];
|
|
buf[2] = 0;
|
|
|
|
status = spi_write_then_read(spi, buf, sizeof buf,
|
|
NULL, 0);
|
|
if (status < 0)
|
|
dev_dbg(&spi->dev, "clear irq --> %d\n", status);
|
|
|
|
mutex_unlock(lock);
|
|
|
|
if (!test_bit(FLAG_EXITING, &ds1305->flags))
|
|
enable_irq(spi->irq);
|
|
|
|
rtc_update_irq(ds1305->rtc, 1, RTC_AF | RTC_IRQF);
|
|
}
|
|
|
|
/*
|
|
* This "real" IRQ handler hands off to a workqueue mostly to allow
|
|
* mutex locking for ds1305->ctrl ... unlike I2C, we could issue async
|
|
* I/O requests in IRQ context (to clear the IRQ status).
|
|
*/
|
|
static irqreturn_t ds1305_irq(int irq, void *p)
|
|
{
|
|
struct ds1305 *ds1305 = p;
|
|
|
|
disable_irq(irq);
|
|
schedule_work(&ds1305->work);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------*/
|
|
|
|
/*
|
|
* Interface for NVRAM
|
|
*/
|
|
|
|
static void msg_init(struct spi_message *m, struct spi_transfer *x,
|
|
u8 *addr, size_t count, char *tx, char *rx)
|
|
{
|
|
spi_message_init(m);
|
|
memset(x, 0, 2 * sizeof(*x));
|
|
|
|
x->tx_buf = addr;
|
|
x->len = 1;
|
|
spi_message_add_tail(x, m);
|
|
|
|
x++;
|
|
|
|
x->tx_buf = tx;
|
|
x->rx_buf = rx;
|
|
x->len = count;
|
|
spi_message_add_tail(x, m);
|
|
}
|
|
|
|
static ssize_t
|
|
ds1305_nvram_read(struct file *filp, struct kobject *kobj,
|
|
struct bin_attribute *attr,
|
|
char *buf, loff_t off, size_t count)
|
|
{
|
|
struct spi_device *spi;
|
|
u8 addr;
|
|
struct spi_message m;
|
|
struct spi_transfer x[2];
|
|
int status;
|
|
|
|
spi = container_of(kobj, struct spi_device, dev.kobj);
|
|
|
|
if (unlikely(off >= DS1305_NVRAM_LEN))
|
|
return 0;
|
|
if (count >= DS1305_NVRAM_LEN)
|
|
count = DS1305_NVRAM_LEN;
|
|
if ((off + count) > DS1305_NVRAM_LEN)
|
|
count = DS1305_NVRAM_LEN - off;
|
|
if (unlikely(!count))
|
|
return count;
|
|
|
|
addr = DS1305_NVRAM + off;
|
|
msg_init(&m, x, &addr, count, NULL, buf);
|
|
|
|
status = spi_sync(spi, &m);
|
|
if (status < 0)
|
|
dev_err(&spi->dev, "nvram %s error %d\n", "read", status);
|
|
return (status < 0) ? status : count;
|
|
}
|
|
|
|
static ssize_t
|
|
ds1305_nvram_write(struct file *filp, struct kobject *kobj,
|
|
struct bin_attribute *attr,
|
|
char *buf, loff_t off, size_t count)
|
|
{
|
|
struct spi_device *spi;
|
|
u8 addr;
|
|
struct spi_message m;
|
|
struct spi_transfer x[2];
|
|
int status;
|
|
|
|
spi = container_of(kobj, struct spi_device, dev.kobj);
|
|
|
|
if (unlikely(off >= DS1305_NVRAM_LEN))
|
|
return -EFBIG;
|
|
if (count >= DS1305_NVRAM_LEN)
|
|
count = DS1305_NVRAM_LEN;
|
|
if ((off + count) > DS1305_NVRAM_LEN)
|
|
count = DS1305_NVRAM_LEN - off;
|
|
if (unlikely(!count))
|
|
return count;
|
|
|
|
addr = (DS1305_WRITE | DS1305_NVRAM) + off;
|
|
msg_init(&m, x, &addr, count, buf, NULL);
|
|
|
|
status = spi_sync(spi, &m);
|
|
if (status < 0)
|
|
dev_err(&spi->dev, "nvram %s error %d\n", "write", status);
|
|
return (status < 0) ? status : count;
|
|
}
|
|
|
|
static struct bin_attribute nvram = {
|
|
.attr.name = "nvram",
|
|
.attr.mode = S_IRUGO | S_IWUSR,
|
|
.read = ds1305_nvram_read,
|
|
.write = ds1305_nvram_write,
|
|
.size = DS1305_NVRAM_LEN,
|
|
};
|
|
|
|
/*----------------------------------------------------------------------*/
|
|
|
|
/*
|
|
* Interface to SPI stack
|
|
*/
|
|
|
|
static int ds1305_probe(struct spi_device *spi)
|
|
{
|
|
struct ds1305 *ds1305;
|
|
int status;
|
|
u8 addr, value;
|
|
struct ds1305_platform_data *pdata = spi->dev.platform_data;
|
|
bool write_ctrl = false;
|
|
|
|
/* Sanity check board setup data. This may be hooked up
|
|
* in 3wire mode, but we don't care. Note that unless
|
|
* there's an inverter in place, this needs SPI_CS_HIGH!
|
|
*/
|
|
if ((spi->bits_per_word && spi->bits_per_word != 8)
|
|
|| (spi->max_speed_hz > 2000000)
|
|
|| !(spi->mode & SPI_CPHA))
|
|
return -EINVAL;
|
|
|
|
/* set up driver data */
|
|
ds1305 = kzalloc(sizeof *ds1305, GFP_KERNEL);
|
|
if (!ds1305)
|
|
return -ENOMEM;
|
|
ds1305->spi = spi;
|
|
spi_set_drvdata(spi, ds1305);
|
|
|
|
/* read and cache control registers */
|
|
addr = DS1305_CONTROL;
|
|
status = spi_write_then_read(spi, &addr, sizeof addr,
|
|
ds1305->ctrl, sizeof ds1305->ctrl);
|
|
if (status < 0) {
|
|
dev_dbg(&spi->dev, "can't %s, %d\n",
|
|
"read", status);
|
|
goto fail0;
|
|
}
|
|
|
|
dev_dbg(&spi->dev, "ctrl %s: %3ph\n", "read", ds1305->ctrl);
|
|
|
|
/* Sanity check register values ... partially compensating for the
|
|
* fact that SPI has no device handshake. A pullup on MISO would
|
|
* make these tests fail; but not all systems will have one. If
|
|
* some register is neither 0x00 nor 0xff, a chip is likely there.
|
|
*/
|
|
if ((ds1305->ctrl[0] & 0x38) != 0 || (ds1305->ctrl[1] & 0xfc) != 0) {
|
|
dev_dbg(&spi->dev, "RTC chip is not present\n");
|
|
status = -ENODEV;
|
|
goto fail0;
|
|
}
|
|
if (ds1305->ctrl[2] == 0)
|
|
dev_dbg(&spi->dev, "chip may not be present\n");
|
|
|
|
/* enable writes if needed ... if we were paranoid it would
|
|
* make sense to enable them only when absolutely necessary.
|
|
*/
|
|
if (ds1305->ctrl[0] & DS1305_WP) {
|
|
u8 buf[2];
|
|
|
|
ds1305->ctrl[0] &= ~DS1305_WP;
|
|
|
|
buf[0] = DS1305_WRITE | DS1305_CONTROL;
|
|
buf[1] = ds1305->ctrl[0];
|
|
status = spi_write_then_read(spi, buf, sizeof buf, NULL, 0);
|
|
|
|
dev_dbg(&spi->dev, "clear WP --> %d\n", status);
|
|
if (status < 0)
|
|
goto fail0;
|
|
}
|
|
|
|
/* on DS1305, maybe start oscillator; like most low power
|
|
* oscillators, it may take a second to stabilize
|
|
*/
|
|
if (ds1305->ctrl[0] & DS1305_nEOSC) {
|
|
ds1305->ctrl[0] &= ~DS1305_nEOSC;
|
|
write_ctrl = true;
|
|
dev_warn(&spi->dev, "SET TIME!\n");
|
|
}
|
|
|
|
/* ack any pending IRQs */
|
|
if (ds1305->ctrl[1]) {
|
|
ds1305->ctrl[1] = 0;
|
|
write_ctrl = true;
|
|
}
|
|
|
|
/* this may need one-time (re)init */
|
|
if (pdata) {
|
|
/* maybe enable trickle charge */
|
|
if (((ds1305->ctrl[2] & 0xf0) != DS1305_TRICKLE_MAGIC)) {
|
|
ds1305->ctrl[2] = DS1305_TRICKLE_MAGIC
|
|
| pdata->trickle;
|
|
write_ctrl = true;
|
|
}
|
|
|
|
/* on DS1306, configure 1 Hz signal */
|
|
if (pdata->is_ds1306) {
|
|
if (pdata->en_1hz) {
|
|
if (!(ds1305->ctrl[0] & DS1306_1HZ)) {
|
|
ds1305->ctrl[0] |= DS1306_1HZ;
|
|
write_ctrl = true;
|
|
}
|
|
} else {
|
|
if (ds1305->ctrl[0] & DS1306_1HZ) {
|
|
ds1305->ctrl[0] &= ~DS1306_1HZ;
|
|
write_ctrl = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (write_ctrl) {
|
|
u8 buf[4];
|
|
|
|
buf[0] = DS1305_WRITE | DS1305_CONTROL;
|
|
buf[1] = ds1305->ctrl[0];
|
|
buf[2] = ds1305->ctrl[1];
|
|
buf[3] = ds1305->ctrl[2];
|
|
status = spi_write_then_read(spi, buf, sizeof buf, NULL, 0);
|
|
if (status < 0) {
|
|
dev_dbg(&spi->dev, "can't %s, %d\n",
|
|
"write", status);
|
|
goto fail0;
|
|
}
|
|
|
|
dev_dbg(&spi->dev, "ctrl %s: %3ph\n", "write", ds1305->ctrl);
|
|
}
|
|
|
|
/* see if non-Linux software set up AM/PM mode */
|
|
addr = DS1305_HOUR;
|
|
status = spi_write_then_read(spi, &addr, sizeof addr,
|
|
&value, sizeof value);
|
|
if (status < 0) {
|
|
dev_dbg(&spi->dev, "read HOUR --> %d\n", status);
|
|
goto fail0;
|
|
}
|
|
|
|
ds1305->hr12 = (DS1305_HR_12 & value) != 0;
|
|
if (ds1305->hr12)
|
|
dev_dbg(&spi->dev, "AM/PM\n");
|
|
|
|
/* register RTC ... from here on, ds1305->ctrl needs locking */
|
|
ds1305->rtc = rtc_device_register("ds1305", &spi->dev,
|
|
&ds1305_ops, THIS_MODULE);
|
|
if (IS_ERR(ds1305->rtc)) {
|
|
status = PTR_ERR(ds1305->rtc);
|
|
dev_dbg(&spi->dev, "register rtc --> %d\n", status);
|
|
goto fail0;
|
|
}
|
|
|
|
/* Maybe set up alarm IRQ; be ready to handle it triggering right
|
|
* away. NOTE that we don't share this. The signal is active low,
|
|
* and we can't ack it before a SPI message delay. We temporarily
|
|
* disable the IRQ until it's acked, which lets us work with more
|
|
* IRQ trigger modes (not all IRQ controllers can do falling edge).
|
|
*/
|
|
if (spi->irq) {
|
|
INIT_WORK(&ds1305->work, ds1305_work);
|
|
status = request_irq(spi->irq, ds1305_irq,
|
|
0, dev_name(&ds1305->rtc->dev), ds1305);
|
|
if (status < 0) {
|
|
dev_dbg(&spi->dev, "request_irq %d --> %d\n",
|
|
spi->irq, status);
|
|
goto fail1;
|
|
}
|
|
|
|
device_set_wakeup_capable(&spi->dev, 1);
|
|
}
|
|
|
|
/* export NVRAM */
|
|
status = sysfs_create_bin_file(&spi->dev.kobj, &nvram);
|
|
if (status < 0) {
|
|
dev_dbg(&spi->dev, "register nvram --> %d\n", status);
|
|
goto fail2;
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail2:
|
|
free_irq(spi->irq, ds1305);
|
|
fail1:
|
|
rtc_device_unregister(ds1305->rtc);
|
|
fail0:
|
|
kfree(ds1305);
|
|
return status;
|
|
}
|
|
|
|
static int ds1305_remove(struct spi_device *spi)
|
|
{
|
|
struct ds1305 *ds1305 = spi_get_drvdata(spi);
|
|
|
|
sysfs_remove_bin_file(&spi->dev.kobj, &nvram);
|
|
|
|
/* carefully shut down irq and workqueue, if present */
|
|
if (spi->irq) {
|
|
set_bit(FLAG_EXITING, &ds1305->flags);
|
|
free_irq(spi->irq, ds1305);
|
|
cancel_work_sync(&ds1305->work);
|
|
}
|
|
|
|
rtc_device_unregister(ds1305->rtc);
|
|
spi_set_drvdata(spi, NULL);
|
|
kfree(ds1305);
|
|
return 0;
|
|
}
|
|
|
|
static struct spi_driver ds1305_driver = {
|
|
.driver.name = "rtc-ds1305",
|
|
.driver.owner = THIS_MODULE,
|
|
.probe = ds1305_probe,
|
|
.remove = ds1305_remove,
|
|
/* REVISIT add suspend/resume */
|
|
};
|
|
|
|
module_spi_driver(ds1305_driver);
|
|
|
|
MODULE_DESCRIPTION("RTC driver for DS1305 and DS1306 chips");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_ALIAS("spi:rtc-ds1305");
|