mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-27 00:04:47 +08:00
f7af5209b8
In existing real mode ICP code, when updating the virtual ICP state, if there is a required action that cannot be completely handled in real mode, as for instance, a VCPU needs to be woken up, flags are set in the ICP to indicate the required action. This is checked when returning from hypercalls to decide whether the call needs switch back to the host where the action can be performed in virtual mode. Note that if h_ipi_redirect is enabled, real mode code will first try to message a free host CPU to complete this job instead of returning the host to do it ourselves. Currently, the real mode PCI passthrough interrupt handling code checks if any of these flags are set and simply returns to the host. This is not good enough as the trap value (0x500) is treated as an external interrupt by the host code. It is only when the trap value is a hypercall that the host code searches for and acts on unfinished work by calling kvmppc_xics_rm_complete. This patch introduces a special trap BOOK3S_INTERRUPT_HV_RM_HARD which is returned by KVM if there is unfinished business to be completed in host virtual mode after handling a PCI passthrough interrupt. The host checks for this special interrupt condition and calls into the kvmppc_xics_rm_complete, which is made an exported function for this reason. [paulus@ozlabs.org - moved logic to set r12 to BOOK3S_INTERRUPT_HV_RM_HARD in book3s_hv_rmhandlers.S into the end of kvmppc_check_wake_reason.] Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
445 lines
11 KiB
C
445 lines
11 KiB
C
/*
|
|
* Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License, version 2, as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/cpu.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/preempt.h>
|
|
#include <linux/export.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/init.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/sizes.h>
|
|
#include <linux/cma.h>
|
|
#include <linux/bitops.h>
|
|
|
|
#include <asm/cputable.h>
|
|
#include <asm/kvm_ppc.h>
|
|
#include <asm/kvm_book3s.h>
|
|
#include <asm/archrandom.h>
|
|
#include <asm/xics.h>
|
|
#include <asm/dbell.h>
|
|
#include <asm/cputhreads.h>
|
|
#include <asm/io.h>
|
|
|
|
#define KVM_CMA_CHUNK_ORDER 18
|
|
|
|
/*
|
|
* Hash page table alignment on newer cpus(CPU_FTR_ARCH_206)
|
|
* should be power of 2.
|
|
*/
|
|
#define HPT_ALIGN_PAGES ((1 << 18) >> PAGE_SHIFT) /* 256k */
|
|
/*
|
|
* By default we reserve 5% of memory for hash pagetable allocation.
|
|
*/
|
|
static unsigned long kvm_cma_resv_ratio = 5;
|
|
|
|
static struct cma *kvm_cma;
|
|
|
|
static int __init early_parse_kvm_cma_resv(char *p)
|
|
{
|
|
pr_debug("%s(%s)\n", __func__, p);
|
|
if (!p)
|
|
return -EINVAL;
|
|
return kstrtoul(p, 0, &kvm_cma_resv_ratio);
|
|
}
|
|
early_param("kvm_cma_resv_ratio", early_parse_kvm_cma_resv);
|
|
|
|
struct page *kvm_alloc_hpt(unsigned long nr_pages)
|
|
{
|
|
VM_BUG_ON(order_base_2(nr_pages) < KVM_CMA_CHUNK_ORDER - PAGE_SHIFT);
|
|
|
|
return cma_alloc(kvm_cma, nr_pages, order_base_2(HPT_ALIGN_PAGES));
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_alloc_hpt);
|
|
|
|
void kvm_release_hpt(struct page *page, unsigned long nr_pages)
|
|
{
|
|
cma_release(kvm_cma, page, nr_pages);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_release_hpt);
|
|
|
|
/**
|
|
* kvm_cma_reserve() - reserve area for kvm hash pagetable
|
|
*
|
|
* This function reserves memory from early allocator. It should be
|
|
* called by arch specific code once the memblock allocator
|
|
* has been activated and all other subsystems have already allocated/reserved
|
|
* memory.
|
|
*/
|
|
void __init kvm_cma_reserve(void)
|
|
{
|
|
unsigned long align_size;
|
|
struct memblock_region *reg;
|
|
phys_addr_t selected_size = 0;
|
|
|
|
/*
|
|
* We need CMA reservation only when we are in HV mode
|
|
*/
|
|
if (!cpu_has_feature(CPU_FTR_HVMODE))
|
|
return;
|
|
/*
|
|
* We cannot use memblock_phys_mem_size() here, because
|
|
* memblock_analyze() has not been called yet.
|
|
*/
|
|
for_each_memblock(memory, reg)
|
|
selected_size += memblock_region_memory_end_pfn(reg) -
|
|
memblock_region_memory_base_pfn(reg);
|
|
|
|
selected_size = (selected_size * kvm_cma_resv_ratio / 100) << PAGE_SHIFT;
|
|
if (selected_size) {
|
|
pr_debug("%s: reserving %ld MiB for global area\n", __func__,
|
|
(unsigned long)selected_size / SZ_1M);
|
|
align_size = HPT_ALIGN_PAGES << PAGE_SHIFT;
|
|
cma_declare_contiguous(0, selected_size, 0, align_size,
|
|
KVM_CMA_CHUNK_ORDER - PAGE_SHIFT, false, &kvm_cma);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Real-mode H_CONFER implementation.
|
|
* We check if we are the only vcpu out of this virtual core
|
|
* still running in the guest and not ceded. If so, we pop up
|
|
* to the virtual-mode implementation; if not, just return to
|
|
* the guest.
|
|
*/
|
|
long int kvmppc_rm_h_confer(struct kvm_vcpu *vcpu, int target,
|
|
unsigned int yield_count)
|
|
{
|
|
struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
|
|
int ptid = local_paca->kvm_hstate.ptid;
|
|
int threads_running;
|
|
int threads_ceded;
|
|
int threads_conferring;
|
|
u64 stop = get_tb() + 10 * tb_ticks_per_usec;
|
|
int rv = H_SUCCESS; /* => don't yield */
|
|
|
|
set_bit(ptid, &vc->conferring_threads);
|
|
while ((get_tb() < stop) && !VCORE_IS_EXITING(vc)) {
|
|
threads_running = VCORE_ENTRY_MAP(vc);
|
|
threads_ceded = vc->napping_threads;
|
|
threads_conferring = vc->conferring_threads;
|
|
if ((threads_ceded | threads_conferring) == threads_running) {
|
|
rv = H_TOO_HARD; /* => do yield */
|
|
break;
|
|
}
|
|
}
|
|
clear_bit(ptid, &vc->conferring_threads);
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* When running HV mode KVM we need to block certain operations while KVM VMs
|
|
* exist in the system. We use a counter of VMs to track this.
|
|
*
|
|
* One of the operations we need to block is onlining of secondaries, so we
|
|
* protect hv_vm_count with get/put_online_cpus().
|
|
*/
|
|
static atomic_t hv_vm_count;
|
|
|
|
void kvm_hv_vm_activated(void)
|
|
{
|
|
get_online_cpus();
|
|
atomic_inc(&hv_vm_count);
|
|
put_online_cpus();
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_hv_vm_activated);
|
|
|
|
void kvm_hv_vm_deactivated(void)
|
|
{
|
|
get_online_cpus();
|
|
atomic_dec(&hv_vm_count);
|
|
put_online_cpus();
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_hv_vm_deactivated);
|
|
|
|
bool kvm_hv_mode_active(void)
|
|
{
|
|
return atomic_read(&hv_vm_count) != 0;
|
|
}
|
|
|
|
extern int hcall_real_table[], hcall_real_table_end[];
|
|
|
|
int kvmppc_hcall_impl_hv_realmode(unsigned long cmd)
|
|
{
|
|
cmd /= 4;
|
|
if (cmd < hcall_real_table_end - hcall_real_table &&
|
|
hcall_real_table[cmd])
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvmppc_hcall_impl_hv_realmode);
|
|
|
|
int kvmppc_hwrng_present(void)
|
|
{
|
|
return powernv_hwrng_present();
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvmppc_hwrng_present);
|
|
|
|
long kvmppc_h_random(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (powernv_get_random_real_mode(&vcpu->arch.gpr[4]))
|
|
return H_SUCCESS;
|
|
|
|
return H_HARDWARE;
|
|
}
|
|
|
|
static inline void rm_writeb(unsigned long paddr, u8 val)
|
|
{
|
|
__asm__ __volatile__("stbcix %0,0,%1"
|
|
: : "r" (val), "r" (paddr) : "memory");
|
|
}
|
|
|
|
/*
|
|
* Send an interrupt or message to another CPU.
|
|
* This can only be called in real mode.
|
|
* The caller needs to include any barrier needed to order writes
|
|
* to memory vs. the IPI/message.
|
|
*/
|
|
void kvmhv_rm_send_ipi(int cpu)
|
|
{
|
|
unsigned long xics_phys;
|
|
|
|
/* On POWER8 for IPIs to threads in the same core, use msgsnd */
|
|
if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
|
|
cpu_first_thread_sibling(cpu) ==
|
|
cpu_first_thread_sibling(raw_smp_processor_id())) {
|
|
unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
|
|
msg |= cpu_thread_in_core(cpu);
|
|
__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
|
|
return;
|
|
}
|
|
|
|
/* Else poke the target with an IPI */
|
|
xics_phys = paca[cpu].kvm_hstate.xics_phys;
|
|
rm_writeb(xics_phys + XICS_MFRR, IPI_PRIORITY);
|
|
}
|
|
|
|
/*
|
|
* The following functions are called from the assembly code
|
|
* in book3s_hv_rmhandlers.S.
|
|
*/
|
|
static void kvmhv_interrupt_vcore(struct kvmppc_vcore *vc, int active)
|
|
{
|
|
int cpu = vc->pcpu;
|
|
|
|
/* Order setting of exit map vs. msgsnd/IPI */
|
|
smp_mb();
|
|
for (; active; active >>= 1, ++cpu)
|
|
if (active & 1)
|
|
kvmhv_rm_send_ipi(cpu);
|
|
}
|
|
|
|
void kvmhv_commence_exit(int trap)
|
|
{
|
|
struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
|
|
int ptid = local_paca->kvm_hstate.ptid;
|
|
struct kvm_split_mode *sip = local_paca->kvm_hstate.kvm_split_mode;
|
|
int me, ee, i;
|
|
|
|
/* Set our bit in the threads-exiting-guest map in the 0xff00
|
|
bits of vcore->entry_exit_map */
|
|
me = 0x100 << ptid;
|
|
do {
|
|
ee = vc->entry_exit_map;
|
|
} while (cmpxchg(&vc->entry_exit_map, ee, ee | me) != ee);
|
|
|
|
/* Are we the first here? */
|
|
if ((ee >> 8) != 0)
|
|
return;
|
|
|
|
/*
|
|
* Trigger the other threads in this vcore to exit the guest.
|
|
* If this is a hypervisor decrementer interrupt then they
|
|
* will be already on their way out of the guest.
|
|
*/
|
|
if (trap != BOOK3S_INTERRUPT_HV_DECREMENTER)
|
|
kvmhv_interrupt_vcore(vc, ee & ~(1 << ptid));
|
|
|
|
/*
|
|
* If we are doing dynamic micro-threading, interrupt the other
|
|
* subcores to pull them out of their guests too.
|
|
*/
|
|
if (!sip)
|
|
return;
|
|
|
|
for (i = 0; i < MAX_SUBCORES; ++i) {
|
|
vc = sip->master_vcs[i];
|
|
if (!vc)
|
|
break;
|
|
do {
|
|
ee = vc->entry_exit_map;
|
|
/* Already asked to exit? */
|
|
if ((ee >> 8) != 0)
|
|
break;
|
|
} while (cmpxchg(&vc->entry_exit_map, ee,
|
|
ee | VCORE_EXIT_REQ) != ee);
|
|
if ((ee >> 8) == 0)
|
|
kvmhv_interrupt_vcore(vc, ee);
|
|
}
|
|
}
|
|
|
|
struct kvmppc_host_rm_ops *kvmppc_host_rm_ops_hv;
|
|
EXPORT_SYMBOL_GPL(kvmppc_host_rm_ops_hv);
|
|
|
|
#ifdef CONFIG_KVM_XICS
|
|
static struct kvmppc_irq_map *get_irqmap(struct kvmppc_passthru_irqmap *pimap,
|
|
u32 xisr)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* We access the mapped array here without a lock. That
|
|
* is safe because we never reduce the number of entries
|
|
* in the array and we never change the v_hwirq field of
|
|
* an entry once it is set.
|
|
*
|
|
* We have also carefully ordered the stores in the writer
|
|
* and the loads here in the reader, so that if we find a matching
|
|
* hwirq here, the associated GSI and irq_desc fields are valid.
|
|
*/
|
|
for (i = 0; i < pimap->n_mapped; i++) {
|
|
if (xisr == pimap->mapped[i].r_hwirq) {
|
|
/*
|
|
* Order subsequent reads in the caller to serialize
|
|
* with the writer.
|
|
*/
|
|
smp_rmb();
|
|
return &pimap->mapped[i];
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* If we have an interrupt that's not an IPI, check if we have a
|
|
* passthrough adapter and if so, check if this external interrupt
|
|
* is for the adapter.
|
|
* We will attempt to deliver the IRQ directly to the target VCPU's
|
|
* ICP, the virtual ICP (based on affinity - the xive value in ICS).
|
|
*
|
|
* If the delivery fails or if this is not for a passthrough adapter,
|
|
* return to the host to handle this interrupt. We earlier
|
|
* saved a copy of the XIRR in the PACA, it will be picked up by
|
|
* the host ICP driver.
|
|
*/
|
|
static int kvmppc_check_passthru(u32 xisr, __be32 xirr)
|
|
{
|
|
struct kvmppc_passthru_irqmap *pimap;
|
|
struct kvmppc_irq_map *irq_map;
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
vcpu = local_paca->kvm_hstate.kvm_vcpu;
|
|
if (!vcpu)
|
|
return 1;
|
|
pimap = kvmppc_get_passthru_irqmap(vcpu->kvm);
|
|
if (!pimap)
|
|
return 1;
|
|
irq_map = get_irqmap(pimap, xisr);
|
|
if (!irq_map)
|
|
return 1;
|
|
|
|
/* We're handling this interrupt, generic code doesn't need to */
|
|
local_paca->kvm_hstate.saved_xirr = 0;
|
|
|
|
return kvmppc_deliver_irq_passthru(vcpu, xirr, irq_map, pimap);
|
|
}
|
|
|
|
#else
|
|
static inline int kvmppc_check_passthru(u32 xisr, __be32 xirr)
|
|
{
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Determine what sort of external interrupt is pending (if any).
|
|
* Returns:
|
|
* 0 if no interrupt is pending
|
|
* 1 if an interrupt is pending that needs to be handled by the host
|
|
* 2 Passthrough that needs completion in the host
|
|
* -1 if there was a guest wakeup IPI (which has now been cleared)
|
|
* -2 if there is PCI passthrough external interrupt that was handled
|
|
*/
|
|
|
|
long kvmppc_read_intr(void)
|
|
{
|
|
unsigned long xics_phys;
|
|
u32 h_xirr;
|
|
__be32 xirr;
|
|
u32 xisr;
|
|
u8 host_ipi;
|
|
|
|
/* see if a host IPI is pending */
|
|
host_ipi = local_paca->kvm_hstate.host_ipi;
|
|
if (host_ipi)
|
|
return 1;
|
|
|
|
/* Now read the interrupt from the ICP */
|
|
xics_phys = local_paca->kvm_hstate.xics_phys;
|
|
if (unlikely(!xics_phys))
|
|
return 1;
|
|
|
|
/*
|
|
* Save XIRR for later. Since we get control in reverse endian
|
|
* on LE systems, save it byte reversed and fetch it back in
|
|
* host endian. Note that xirr is the value read from the
|
|
* XIRR register, while h_xirr is the host endian version.
|
|
*/
|
|
xirr = _lwzcix(xics_phys + XICS_XIRR);
|
|
h_xirr = be32_to_cpu(xirr);
|
|
local_paca->kvm_hstate.saved_xirr = h_xirr;
|
|
xisr = h_xirr & 0xffffff;
|
|
/*
|
|
* Ensure that the store/load complete to guarantee all side
|
|
* effects of loading from XIRR has completed
|
|
*/
|
|
smp_mb();
|
|
|
|
/* if nothing pending in the ICP */
|
|
if (!xisr)
|
|
return 0;
|
|
|
|
/* We found something in the ICP...
|
|
*
|
|
* If it is an IPI, clear the MFRR and EOI it.
|
|
*/
|
|
if (xisr == XICS_IPI) {
|
|
_stbcix(xics_phys + XICS_MFRR, 0xff);
|
|
_stwcix(xics_phys + XICS_XIRR, xirr);
|
|
/*
|
|
* Need to ensure side effects of above stores
|
|
* complete before proceeding.
|
|
*/
|
|
smp_mb();
|
|
|
|
/*
|
|
* We need to re-check host IPI now in case it got set in the
|
|
* meantime. If it's clear, we bounce the interrupt to the
|
|
* guest
|
|
*/
|
|
host_ipi = local_paca->kvm_hstate.host_ipi;
|
|
if (unlikely(host_ipi != 0)) {
|
|
/* We raced with the host,
|
|
* we need to resend that IPI, bummer
|
|
*/
|
|
_stbcix(xics_phys + XICS_MFRR, IPI_PRIORITY);
|
|
/* Let side effects complete */
|
|
smp_mb();
|
|
return 1;
|
|
}
|
|
|
|
/* OK, it's an IPI for us */
|
|
local_paca->kvm_hstate.saved_xirr = 0;
|
|
return -1;
|
|
}
|
|
|
|
return kvmppc_check_passthru(xisr, xirr);
|
|
}
|