linux/arch/x86/kvm/xen.c
Tom Lendacky b5aead0064 KVM: x86: Assume a 64-bit hypercall for guests with protected state
When processing a hypercall for a guest with protected state, currently
SEV-ES guests, the guest CS segment register can't be checked to
determine if the guest is in 64-bit mode. For an SEV-ES guest, it is
expected that communication between the guest and the hypervisor is
performed to shared memory using the GHCB. In order to use the GHCB, the
guest must have been in long mode, otherwise writes by the guest to the
GHCB would be encrypted and not be able to be comprehended by the
hypervisor.

Create a new helper function, is_64_bit_hypercall(), that assumes the
guest is in 64-bit mode when the guest has protected state, and returns
true, otherwise invoking is_64_bit_mode() to determine the mode. Update
the hypercall related routines to use is_64_bit_hypercall() instead of
is_64_bit_mode().

Add a WARN_ON_ONCE() to is_64_bit_mode() to catch occurences of calls to
this helper function for a guest running with protected state.

Fixes: f1c6366e30 ("KVM: SVM: Add required changes to support intercepts under SEV-ES")
Reported-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <e0b20c770c9d0d1403f23d83e785385104211f74.1621878537.git.thomas.lendacky@amd.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-18 02:12:13 -05:00

740 lines
19 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright © 2019 Oracle and/or its affiliates. All rights reserved.
* Copyright © 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* KVM Xen emulation
*/
#include "x86.h"
#include "xen.h"
#include "hyperv.h"
#include <linux/kvm_host.h>
#include <linux/sched/stat.h>
#include <trace/events/kvm.h>
#include <xen/interface/xen.h>
#include <xen/interface/vcpu.h>
#include "trace.h"
DEFINE_STATIC_KEY_DEFERRED_FALSE(kvm_xen_enabled, HZ);
static int kvm_xen_shared_info_init(struct kvm *kvm, gfn_t gfn)
{
gpa_t gpa = gfn_to_gpa(gfn);
int wc_ofs, sec_hi_ofs;
int ret = 0;
int idx = srcu_read_lock(&kvm->srcu);
if (kvm_is_error_hva(gfn_to_hva(kvm, gfn))) {
ret = -EFAULT;
goto out;
}
kvm->arch.xen.shinfo_gfn = gfn;
/* Paranoia checks on the 32-bit struct layout */
BUILD_BUG_ON(offsetof(struct compat_shared_info, wc) != 0x900);
BUILD_BUG_ON(offsetof(struct compat_shared_info, arch.wc_sec_hi) != 0x924);
BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
/* 32-bit location by default */
wc_ofs = offsetof(struct compat_shared_info, wc);
sec_hi_ofs = offsetof(struct compat_shared_info, arch.wc_sec_hi);
#ifdef CONFIG_X86_64
/* Paranoia checks on the 64-bit struct layout */
BUILD_BUG_ON(offsetof(struct shared_info, wc) != 0xc00);
BUILD_BUG_ON(offsetof(struct shared_info, wc_sec_hi) != 0xc0c);
if (kvm->arch.xen.long_mode) {
wc_ofs = offsetof(struct shared_info, wc);
sec_hi_ofs = offsetof(struct shared_info, wc_sec_hi);
}
#endif
kvm_write_wall_clock(kvm, gpa + wc_ofs, sec_hi_ofs - wc_ofs);
kvm_make_all_cpus_request(kvm, KVM_REQ_MASTERCLOCK_UPDATE);
out:
srcu_read_unlock(&kvm->srcu, idx);
return ret;
}
static void kvm_xen_update_runstate(struct kvm_vcpu *v, int state)
{
struct kvm_vcpu_xen *vx = &v->arch.xen;
u64 now = get_kvmclock_ns(v->kvm);
u64 delta_ns = now - vx->runstate_entry_time;
u64 run_delay = current->sched_info.run_delay;
if (unlikely(!vx->runstate_entry_time))
vx->current_runstate = RUNSTATE_offline;
/*
* Time waiting for the scheduler isn't "stolen" if the
* vCPU wasn't running anyway.
*/
if (vx->current_runstate == RUNSTATE_running) {
u64 steal_ns = run_delay - vx->last_steal;
delta_ns -= steal_ns;
vx->runstate_times[RUNSTATE_runnable] += steal_ns;
}
vx->last_steal = run_delay;
vx->runstate_times[vx->current_runstate] += delta_ns;
vx->current_runstate = state;
vx->runstate_entry_time = now;
}
void kvm_xen_update_runstate_guest(struct kvm_vcpu *v, int state)
{
struct kvm_vcpu_xen *vx = &v->arch.xen;
uint64_t state_entry_time;
unsigned int offset;
kvm_xen_update_runstate(v, state);
if (!vx->runstate_set)
return;
BUILD_BUG_ON(sizeof(struct compat_vcpu_runstate_info) != 0x2c);
offset = offsetof(struct compat_vcpu_runstate_info, state_entry_time);
#ifdef CONFIG_X86_64
/*
* The only difference is alignment of uint64_t in 32-bit.
* So the first field 'state' is accessed directly using
* offsetof() (where its offset happens to be zero), while the
* remaining fields which are all uint64_t, start at 'offset'
* which we tweak here by adding 4.
*/
BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
offsetof(struct compat_vcpu_runstate_info, state_entry_time) + 4);
BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, time) !=
offsetof(struct compat_vcpu_runstate_info, time) + 4);
if (v->kvm->arch.xen.long_mode)
offset = offsetof(struct vcpu_runstate_info, state_entry_time);
#endif
/*
* First write the updated state_entry_time at the appropriate
* location determined by 'offset'.
*/
state_entry_time = vx->runstate_entry_time;
state_entry_time |= XEN_RUNSTATE_UPDATE;
BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state_entry_time) !=
sizeof(state_entry_time));
BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state_entry_time) !=
sizeof(state_entry_time));
if (kvm_write_guest_offset_cached(v->kvm, &v->arch.xen.runstate_cache,
&state_entry_time, offset,
sizeof(state_entry_time)))
return;
smp_wmb();
/*
* Next, write the new runstate. This is in the *same* place
* for 32-bit and 64-bit guests, asserted here for paranoia.
*/
BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) !=
offsetof(struct compat_vcpu_runstate_info, state));
BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state) !=
sizeof(vx->current_runstate));
BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state) !=
sizeof(vx->current_runstate));
if (kvm_write_guest_offset_cached(v->kvm, &v->arch.xen.runstate_cache,
&vx->current_runstate,
offsetof(struct vcpu_runstate_info, state),
sizeof(vx->current_runstate)))
return;
/*
* Write the actual runstate times immediately after the
* runstate_entry_time.
*/
BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
offsetof(struct vcpu_runstate_info, time) - sizeof(u64));
BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state_entry_time) !=
offsetof(struct compat_vcpu_runstate_info, time) - sizeof(u64));
BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) !=
sizeof_field(struct compat_vcpu_runstate_info, time));
BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) !=
sizeof(vx->runstate_times));
if (kvm_write_guest_offset_cached(v->kvm, &v->arch.xen.runstate_cache,
&vx->runstate_times[0],
offset + sizeof(u64),
sizeof(vx->runstate_times)))
return;
smp_wmb();
/*
* Finally, clear the XEN_RUNSTATE_UPDATE bit in the guest's
* runstate_entry_time field.
*/
state_entry_time &= ~XEN_RUNSTATE_UPDATE;
if (kvm_write_guest_offset_cached(v->kvm, &v->arch.xen.runstate_cache,
&state_entry_time, offset,
sizeof(state_entry_time)))
return;
}
int __kvm_xen_has_interrupt(struct kvm_vcpu *v)
{
int err;
u8 rc = 0;
/*
* If the global upcall vector (HVMIRQ_callback_vector) is set and
* the vCPU's evtchn_upcall_pending flag is set, the IRQ is pending.
*/
struct gfn_to_hva_cache *ghc = &v->arch.xen.vcpu_info_cache;
struct kvm_memslots *slots = kvm_memslots(v->kvm);
unsigned int offset = offsetof(struct vcpu_info, evtchn_upcall_pending);
/* No need for compat handling here */
BUILD_BUG_ON(offsetof(struct vcpu_info, evtchn_upcall_pending) !=
offsetof(struct compat_vcpu_info, evtchn_upcall_pending));
BUILD_BUG_ON(sizeof(rc) !=
sizeof_field(struct vcpu_info, evtchn_upcall_pending));
BUILD_BUG_ON(sizeof(rc) !=
sizeof_field(struct compat_vcpu_info, evtchn_upcall_pending));
/*
* For efficiency, this mirrors the checks for using the valid
* cache in kvm_read_guest_offset_cached(), but just uses
* __get_user() instead. And falls back to the slow path.
*/
if (likely(slots->generation == ghc->generation &&
!kvm_is_error_hva(ghc->hva) && ghc->memslot)) {
/* Fast path */
pagefault_disable();
err = __get_user(rc, (u8 __user *)ghc->hva + offset);
pagefault_enable();
if (!err)
return rc;
}
/* Slow path */
/*
* This function gets called from kvm_vcpu_block() after setting the
* task to TASK_INTERRUPTIBLE, to see if it needs to wake immediately
* from a HLT. So we really mustn't sleep. If the page ended up absent
* at that point, just return 1 in order to trigger an immediate wake,
* and we'll end up getting called again from a context where we *can*
* fault in the page and wait for it.
*/
if (in_atomic() || !task_is_running(current))
return 1;
kvm_read_guest_offset_cached(v->kvm, ghc, &rc, offset,
sizeof(rc));
return rc;
}
int kvm_xen_hvm_set_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
{
int r = -ENOENT;
mutex_lock(&kvm->lock);
switch (data->type) {
case KVM_XEN_ATTR_TYPE_LONG_MODE:
if (!IS_ENABLED(CONFIG_64BIT) && data->u.long_mode) {
r = -EINVAL;
} else {
kvm->arch.xen.long_mode = !!data->u.long_mode;
r = 0;
}
break;
case KVM_XEN_ATTR_TYPE_SHARED_INFO:
if (data->u.shared_info.gfn == GPA_INVALID) {
kvm->arch.xen.shinfo_gfn = GPA_INVALID;
r = 0;
break;
}
r = kvm_xen_shared_info_init(kvm, data->u.shared_info.gfn);
break;
case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
if (data->u.vector && data->u.vector < 0x10)
r = -EINVAL;
else {
kvm->arch.xen.upcall_vector = data->u.vector;
r = 0;
}
break;
default:
break;
}
mutex_unlock(&kvm->lock);
return r;
}
int kvm_xen_hvm_get_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
{
int r = -ENOENT;
mutex_lock(&kvm->lock);
switch (data->type) {
case KVM_XEN_ATTR_TYPE_LONG_MODE:
data->u.long_mode = kvm->arch.xen.long_mode;
r = 0;
break;
case KVM_XEN_ATTR_TYPE_SHARED_INFO:
data->u.shared_info.gfn = kvm->arch.xen.shinfo_gfn;
r = 0;
break;
case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
data->u.vector = kvm->arch.xen.upcall_vector;
r = 0;
break;
default:
break;
}
mutex_unlock(&kvm->lock);
return r;
}
int kvm_xen_vcpu_set_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
{
int idx, r = -ENOENT;
mutex_lock(&vcpu->kvm->lock);
idx = srcu_read_lock(&vcpu->kvm->srcu);
switch (data->type) {
case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
/* No compat necessary here. */
BUILD_BUG_ON(sizeof(struct vcpu_info) !=
sizeof(struct compat_vcpu_info));
BUILD_BUG_ON(offsetof(struct vcpu_info, time) !=
offsetof(struct compat_vcpu_info, time));
if (data->u.gpa == GPA_INVALID) {
vcpu->arch.xen.vcpu_info_set = false;
r = 0;
break;
}
r = kvm_gfn_to_hva_cache_init(vcpu->kvm,
&vcpu->arch.xen.vcpu_info_cache,
data->u.gpa,
sizeof(struct vcpu_info));
if (!r) {
vcpu->arch.xen.vcpu_info_set = true;
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
}
break;
case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
if (data->u.gpa == GPA_INVALID) {
vcpu->arch.xen.vcpu_time_info_set = false;
r = 0;
break;
}
r = kvm_gfn_to_hva_cache_init(vcpu->kvm,
&vcpu->arch.xen.vcpu_time_info_cache,
data->u.gpa,
sizeof(struct pvclock_vcpu_time_info));
if (!r) {
vcpu->arch.xen.vcpu_time_info_set = true;
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
}
break;
case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR:
if (!sched_info_on()) {
r = -EOPNOTSUPP;
break;
}
if (data->u.gpa == GPA_INVALID) {
vcpu->arch.xen.runstate_set = false;
r = 0;
break;
}
r = kvm_gfn_to_hva_cache_init(vcpu->kvm,
&vcpu->arch.xen.runstate_cache,
data->u.gpa,
sizeof(struct vcpu_runstate_info));
if (!r) {
vcpu->arch.xen.runstate_set = true;
}
break;
case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
if (!sched_info_on()) {
r = -EOPNOTSUPP;
break;
}
if (data->u.runstate.state > RUNSTATE_offline) {
r = -EINVAL;
break;
}
kvm_xen_update_runstate(vcpu, data->u.runstate.state);
r = 0;
break;
case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
if (!sched_info_on()) {
r = -EOPNOTSUPP;
break;
}
if (data->u.runstate.state > RUNSTATE_offline) {
r = -EINVAL;
break;
}
if (data->u.runstate.state_entry_time !=
(data->u.runstate.time_running +
data->u.runstate.time_runnable +
data->u.runstate.time_blocked +
data->u.runstate.time_offline)) {
r = -EINVAL;
break;
}
if (get_kvmclock_ns(vcpu->kvm) <
data->u.runstate.state_entry_time) {
r = -EINVAL;
break;
}
vcpu->arch.xen.current_runstate = data->u.runstate.state;
vcpu->arch.xen.runstate_entry_time =
data->u.runstate.state_entry_time;
vcpu->arch.xen.runstate_times[RUNSTATE_running] =
data->u.runstate.time_running;
vcpu->arch.xen.runstate_times[RUNSTATE_runnable] =
data->u.runstate.time_runnable;
vcpu->arch.xen.runstate_times[RUNSTATE_blocked] =
data->u.runstate.time_blocked;
vcpu->arch.xen.runstate_times[RUNSTATE_offline] =
data->u.runstate.time_offline;
vcpu->arch.xen.last_steal = current->sched_info.run_delay;
r = 0;
break;
case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
if (!sched_info_on()) {
r = -EOPNOTSUPP;
break;
}
if (data->u.runstate.state > RUNSTATE_offline &&
data->u.runstate.state != (u64)-1) {
r = -EINVAL;
break;
}
/* The adjustment must add up */
if (data->u.runstate.state_entry_time !=
(data->u.runstate.time_running +
data->u.runstate.time_runnable +
data->u.runstate.time_blocked +
data->u.runstate.time_offline)) {
r = -EINVAL;
break;
}
if (get_kvmclock_ns(vcpu->kvm) <
(vcpu->arch.xen.runstate_entry_time +
data->u.runstate.state_entry_time)) {
r = -EINVAL;
break;
}
vcpu->arch.xen.runstate_entry_time +=
data->u.runstate.state_entry_time;
vcpu->arch.xen.runstate_times[RUNSTATE_running] +=
data->u.runstate.time_running;
vcpu->arch.xen.runstate_times[RUNSTATE_runnable] +=
data->u.runstate.time_runnable;
vcpu->arch.xen.runstate_times[RUNSTATE_blocked] +=
data->u.runstate.time_blocked;
vcpu->arch.xen.runstate_times[RUNSTATE_offline] +=
data->u.runstate.time_offline;
if (data->u.runstate.state <= RUNSTATE_offline)
kvm_xen_update_runstate(vcpu, data->u.runstate.state);
r = 0;
break;
default:
break;
}
srcu_read_unlock(&vcpu->kvm->srcu, idx);
mutex_unlock(&vcpu->kvm->lock);
return r;
}
int kvm_xen_vcpu_get_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
{
int r = -ENOENT;
mutex_lock(&vcpu->kvm->lock);
switch (data->type) {
case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
if (vcpu->arch.xen.vcpu_info_set)
data->u.gpa = vcpu->arch.xen.vcpu_info_cache.gpa;
else
data->u.gpa = GPA_INVALID;
r = 0;
break;
case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
if (vcpu->arch.xen.vcpu_time_info_set)
data->u.gpa = vcpu->arch.xen.vcpu_time_info_cache.gpa;
else
data->u.gpa = GPA_INVALID;
r = 0;
break;
case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR:
if (!sched_info_on()) {
r = -EOPNOTSUPP;
break;
}
if (vcpu->arch.xen.runstate_set) {
data->u.gpa = vcpu->arch.xen.runstate_cache.gpa;
r = 0;
}
break;
case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
if (!sched_info_on()) {
r = -EOPNOTSUPP;
break;
}
data->u.runstate.state = vcpu->arch.xen.current_runstate;
r = 0;
break;
case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
if (!sched_info_on()) {
r = -EOPNOTSUPP;
break;
}
data->u.runstate.state = vcpu->arch.xen.current_runstate;
data->u.runstate.state_entry_time =
vcpu->arch.xen.runstate_entry_time;
data->u.runstate.time_running =
vcpu->arch.xen.runstate_times[RUNSTATE_running];
data->u.runstate.time_runnable =
vcpu->arch.xen.runstate_times[RUNSTATE_runnable];
data->u.runstate.time_blocked =
vcpu->arch.xen.runstate_times[RUNSTATE_blocked];
data->u.runstate.time_offline =
vcpu->arch.xen.runstate_times[RUNSTATE_offline];
r = 0;
break;
case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
r = -EINVAL;
break;
default:
break;
}
mutex_unlock(&vcpu->kvm->lock);
return r;
}
int kvm_xen_write_hypercall_page(struct kvm_vcpu *vcpu, u64 data)
{
struct kvm *kvm = vcpu->kvm;
u32 page_num = data & ~PAGE_MASK;
u64 page_addr = data & PAGE_MASK;
bool lm = is_long_mode(vcpu);
/* Latch long_mode for shared_info pages etc. */
vcpu->kvm->arch.xen.long_mode = lm;
/*
* If Xen hypercall intercept is enabled, fill the hypercall
* page with VMCALL/VMMCALL instructions since that's what
* we catch. Else the VMM has provided the hypercall pages
* with instructions of its own choosing, so use those.
*/
if (kvm_xen_hypercall_enabled(kvm)) {
u8 instructions[32];
int i;
if (page_num)
return 1;
/* mov imm32, %eax */
instructions[0] = 0xb8;
/* vmcall / vmmcall */
kvm_x86_ops.patch_hypercall(vcpu, instructions + 5);
/* ret */
instructions[8] = 0xc3;
/* int3 to pad */
memset(instructions + 9, 0xcc, sizeof(instructions) - 9);
for (i = 0; i < PAGE_SIZE / sizeof(instructions); i++) {
*(u32 *)&instructions[1] = i;
if (kvm_vcpu_write_guest(vcpu,
page_addr + (i * sizeof(instructions)),
instructions, sizeof(instructions)))
return 1;
}
} else {
/*
* Note, truncation is a non-issue as 'lm' is guaranteed to be
* false for a 32-bit kernel, i.e. when hva_t is only 4 bytes.
*/
hva_t blob_addr = lm ? kvm->arch.xen_hvm_config.blob_addr_64
: kvm->arch.xen_hvm_config.blob_addr_32;
u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
: kvm->arch.xen_hvm_config.blob_size_32;
u8 *page;
if (page_num >= blob_size)
return 1;
blob_addr += page_num * PAGE_SIZE;
page = memdup_user((u8 __user *)blob_addr, PAGE_SIZE);
if (IS_ERR(page))
return PTR_ERR(page);
if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) {
kfree(page);
return 1;
}
}
return 0;
}
int kvm_xen_hvm_config(struct kvm *kvm, struct kvm_xen_hvm_config *xhc)
{
if (xhc->flags & ~KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL)
return -EINVAL;
/*
* With hypercall interception the kernel generates its own
* hypercall page so it must not be provided.
*/
if ((xhc->flags & KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL) &&
(xhc->blob_addr_32 || xhc->blob_addr_64 ||
xhc->blob_size_32 || xhc->blob_size_64))
return -EINVAL;
mutex_lock(&kvm->lock);
if (xhc->msr && !kvm->arch.xen_hvm_config.msr)
static_branch_inc(&kvm_xen_enabled.key);
else if (!xhc->msr && kvm->arch.xen_hvm_config.msr)
static_branch_slow_dec_deferred(&kvm_xen_enabled);
memcpy(&kvm->arch.xen_hvm_config, xhc, sizeof(*xhc));
mutex_unlock(&kvm->lock);
return 0;
}
void kvm_xen_init_vm(struct kvm *kvm)
{
kvm->arch.xen.shinfo_gfn = GPA_INVALID;
}
void kvm_xen_destroy_vm(struct kvm *kvm)
{
if (kvm->arch.xen_hvm_config.msr)
static_branch_slow_dec_deferred(&kvm_xen_enabled);
}
static int kvm_xen_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
{
kvm_rax_write(vcpu, result);
return kvm_skip_emulated_instruction(vcpu);
}
static int kvm_xen_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
{
struct kvm_run *run = vcpu->run;
if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.xen.hypercall_rip)))
return 1;
return kvm_xen_hypercall_set_result(vcpu, run->xen.u.hcall.result);
}
int kvm_xen_hypercall(struct kvm_vcpu *vcpu)
{
bool longmode;
u64 input, params[6];
input = (u64)kvm_register_read(vcpu, VCPU_REGS_RAX);
/* Hyper-V hypercalls get bit 31 set in EAX */
if ((input & 0x80000000) &&
kvm_hv_hypercall_enabled(vcpu))
return kvm_hv_hypercall(vcpu);
longmode = is_64_bit_hypercall(vcpu);
if (!longmode) {
params[0] = (u32)kvm_rbx_read(vcpu);
params[1] = (u32)kvm_rcx_read(vcpu);
params[2] = (u32)kvm_rdx_read(vcpu);
params[3] = (u32)kvm_rsi_read(vcpu);
params[4] = (u32)kvm_rdi_read(vcpu);
params[5] = (u32)kvm_rbp_read(vcpu);
}
#ifdef CONFIG_X86_64
else {
params[0] = (u64)kvm_rdi_read(vcpu);
params[1] = (u64)kvm_rsi_read(vcpu);
params[2] = (u64)kvm_rdx_read(vcpu);
params[3] = (u64)kvm_r10_read(vcpu);
params[4] = (u64)kvm_r8_read(vcpu);
params[5] = (u64)kvm_r9_read(vcpu);
}
#endif
trace_kvm_xen_hypercall(input, params[0], params[1], params[2],
params[3], params[4], params[5]);
vcpu->run->exit_reason = KVM_EXIT_XEN;
vcpu->run->xen.type = KVM_EXIT_XEN_HCALL;
vcpu->run->xen.u.hcall.longmode = longmode;
vcpu->run->xen.u.hcall.cpl = kvm_x86_ops.get_cpl(vcpu);
vcpu->run->xen.u.hcall.input = input;
vcpu->run->xen.u.hcall.params[0] = params[0];
vcpu->run->xen.u.hcall.params[1] = params[1];
vcpu->run->xen.u.hcall.params[2] = params[2];
vcpu->run->xen.u.hcall.params[3] = params[3];
vcpu->run->xen.u.hcall.params[4] = params[4];
vcpu->run->xen.u.hcall.params[5] = params[5];
vcpu->arch.xen.hypercall_rip = kvm_get_linear_rip(vcpu);
vcpu->arch.complete_userspace_io =
kvm_xen_hypercall_complete_userspace;
return 0;
}