mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-08 14:54:23 +08:00
8b5553ace8
Having two ring buffers per-peer means that every peer results in two
massive ring allocations. On an 8-core x86_64 machine, this commit
reduces the per-peer allocation from 18,688 bytes to 1,856 bytes, which
is an 90% reduction. Ninety percent! With some single-machine
deployments approaching 500,000 peers, we're talking about a reduction
from 7 gigs of memory down to 700 megs of memory.
In order to get rid of these per-peer allocations, this commit switches
to using a list-based queueing approach. Currently GSO fragments are
chained together using the skb->next pointer (the skb_list_* singly
linked list approach), so we form the per-peer queue around the unused
skb->prev pointer (which sort of makes sense because the links are
pointing backwards). Use of skb_queue_* is not possible here, because
that is based on doubly linked lists and spinlocks. Multiple cores can
write into the queue at any given time, because its writes occur in the
start_xmit path or in the udp_recv path. But reads happen in a single
workqueue item per-peer, amounting to a multi-producer, single-consumer
paradigm.
The MPSC queue is implemented locklessly and never blocks. However, it
is not linearizable (though it is serializable), with a very tight and
unlikely race on writes, which, when hit (some tiny fraction of the
0.15% of partial adds on a fully loaded 16-core x86_64 system), causes
the queue reader to terminate early. However, because every packet sent
queues up the same workqueue item after it is fully added, the worker
resumes again, and stopping early isn't actually a problem, since at
that point the packet wouldn't have yet been added to the encryption
queue. These properties allow us to avoid disabling interrupts or
spinning. The design is based on Dmitry Vyukov's algorithm [1].
Performance-wise, ordinarily list-based queues aren't preferable to
ringbuffers, because of cache misses when following pointers around.
However, we *already* have to follow the adjacent pointers when working
through fragments, so there shouldn't actually be any change there. A
potential downside is that dequeueing is a bit more complicated, but the
ptr_ring structure used prior had a spinlock when dequeueing, so all and
all the difference appears to be a wash.
Actually, from profiling, the biggest performance hit, by far, of this
commit winds up being atomic_add_unless(count, 1, max) and atomic_
dec(count), which account for the majority of CPU time, according to
perf. In that sense, the previous ring buffer was superior in that it
could check if it was full by head==tail, which the list-based approach
cannot do.
But all and all, this enables us to get massive memory savings, allowing
WireGuard to scale for real world deployments, without taking much of a
performance hit.
[1] http://www.1024cores.net/home/lock-free-algorithms/queues/intrusive-mpsc-node-based-queue
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Toke Høiland-Jørgensen <toke@redhat.com>
Fixes: e7096c131e
("net: WireGuard secure network tunnel")
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
587 lines
17 KiB
C
587 lines
17 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2015-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
|
|
*/
|
|
|
|
#include "queueing.h"
|
|
#include "device.h"
|
|
#include "peer.h"
|
|
#include "timers.h"
|
|
#include "messages.h"
|
|
#include "cookie.h"
|
|
#include "socket.h"
|
|
|
|
#include <linux/ip.h>
|
|
#include <linux/ipv6.h>
|
|
#include <linux/udp.h>
|
|
#include <net/ip_tunnels.h>
|
|
|
|
/* Must be called with bh disabled. */
|
|
static void update_rx_stats(struct wg_peer *peer, size_t len)
|
|
{
|
|
struct pcpu_sw_netstats *tstats =
|
|
get_cpu_ptr(peer->device->dev->tstats);
|
|
|
|
u64_stats_update_begin(&tstats->syncp);
|
|
++tstats->rx_packets;
|
|
tstats->rx_bytes += len;
|
|
peer->rx_bytes += len;
|
|
u64_stats_update_end(&tstats->syncp);
|
|
put_cpu_ptr(tstats);
|
|
}
|
|
|
|
#define SKB_TYPE_LE32(skb) (((struct message_header *)(skb)->data)->type)
|
|
|
|
static size_t validate_header_len(struct sk_buff *skb)
|
|
{
|
|
if (unlikely(skb->len < sizeof(struct message_header)))
|
|
return 0;
|
|
if (SKB_TYPE_LE32(skb) == cpu_to_le32(MESSAGE_DATA) &&
|
|
skb->len >= MESSAGE_MINIMUM_LENGTH)
|
|
return sizeof(struct message_data);
|
|
if (SKB_TYPE_LE32(skb) == cpu_to_le32(MESSAGE_HANDSHAKE_INITIATION) &&
|
|
skb->len == sizeof(struct message_handshake_initiation))
|
|
return sizeof(struct message_handshake_initiation);
|
|
if (SKB_TYPE_LE32(skb) == cpu_to_le32(MESSAGE_HANDSHAKE_RESPONSE) &&
|
|
skb->len == sizeof(struct message_handshake_response))
|
|
return sizeof(struct message_handshake_response);
|
|
if (SKB_TYPE_LE32(skb) == cpu_to_le32(MESSAGE_HANDSHAKE_COOKIE) &&
|
|
skb->len == sizeof(struct message_handshake_cookie))
|
|
return sizeof(struct message_handshake_cookie);
|
|
return 0;
|
|
}
|
|
|
|
static int prepare_skb_header(struct sk_buff *skb, struct wg_device *wg)
|
|
{
|
|
size_t data_offset, data_len, header_len;
|
|
struct udphdr *udp;
|
|
|
|
if (unlikely(!wg_check_packet_protocol(skb) ||
|
|
skb_transport_header(skb) < skb->head ||
|
|
(skb_transport_header(skb) + sizeof(struct udphdr)) >
|
|
skb_tail_pointer(skb)))
|
|
return -EINVAL; /* Bogus IP header */
|
|
udp = udp_hdr(skb);
|
|
data_offset = (u8 *)udp - skb->data;
|
|
if (unlikely(data_offset > U16_MAX ||
|
|
data_offset + sizeof(struct udphdr) > skb->len))
|
|
/* Packet has offset at impossible location or isn't big enough
|
|
* to have UDP fields.
|
|
*/
|
|
return -EINVAL;
|
|
data_len = ntohs(udp->len);
|
|
if (unlikely(data_len < sizeof(struct udphdr) ||
|
|
data_len > skb->len - data_offset))
|
|
/* UDP packet is reporting too small of a size or lying about
|
|
* its size.
|
|
*/
|
|
return -EINVAL;
|
|
data_len -= sizeof(struct udphdr);
|
|
data_offset = (u8 *)udp + sizeof(struct udphdr) - skb->data;
|
|
if (unlikely(!pskb_may_pull(skb,
|
|
data_offset + sizeof(struct message_header)) ||
|
|
pskb_trim(skb, data_len + data_offset) < 0))
|
|
return -EINVAL;
|
|
skb_pull(skb, data_offset);
|
|
if (unlikely(skb->len != data_len))
|
|
/* Final len does not agree with calculated len */
|
|
return -EINVAL;
|
|
header_len = validate_header_len(skb);
|
|
if (unlikely(!header_len))
|
|
return -EINVAL;
|
|
__skb_push(skb, data_offset);
|
|
if (unlikely(!pskb_may_pull(skb, data_offset + header_len)))
|
|
return -EINVAL;
|
|
__skb_pull(skb, data_offset);
|
|
return 0;
|
|
}
|
|
|
|
static void wg_receive_handshake_packet(struct wg_device *wg,
|
|
struct sk_buff *skb)
|
|
{
|
|
enum cookie_mac_state mac_state;
|
|
struct wg_peer *peer = NULL;
|
|
/* This is global, so that our load calculation applies to the whole
|
|
* system. We don't care about races with it at all.
|
|
*/
|
|
static u64 last_under_load;
|
|
bool packet_needs_cookie;
|
|
bool under_load;
|
|
|
|
if (SKB_TYPE_LE32(skb) == cpu_to_le32(MESSAGE_HANDSHAKE_COOKIE)) {
|
|
net_dbg_skb_ratelimited("%s: Receiving cookie response from %pISpfsc\n",
|
|
wg->dev->name, skb);
|
|
wg_cookie_message_consume(
|
|
(struct message_handshake_cookie *)skb->data, wg);
|
|
return;
|
|
}
|
|
|
|
under_load = skb_queue_len(&wg->incoming_handshakes) >=
|
|
MAX_QUEUED_INCOMING_HANDSHAKES / 8;
|
|
if (under_load) {
|
|
last_under_load = ktime_get_coarse_boottime_ns();
|
|
} else if (last_under_load) {
|
|
under_load = !wg_birthdate_has_expired(last_under_load, 1);
|
|
if (!under_load)
|
|
last_under_load = 0;
|
|
}
|
|
mac_state = wg_cookie_validate_packet(&wg->cookie_checker, skb,
|
|
under_load);
|
|
if ((under_load && mac_state == VALID_MAC_WITH_COOKIE) ||
|
|
(!under_load && mac_state == VALID_MAC_BUT_NO_COOKIE)) {
|
|
packet_needs_cookie = false;
|
|
} else if (under_load && mac_state == VALID_MAC_BUT_NO_COOKIE) {
|
|
packet_needs_cookie = true;
|
|
} else {
|
|
net_dbg_skb_ratelimited("%s: Invalid MAC of handshake, dropping packet from %pISpfsc\n",
|
|
wg->dev->name, skb);
|
|
return;
|
|
}
|
|
|
|
switch (SKB_TYPE_LE32(skb)) {
|
|
case cpu_to_le32(MESSAGE_HANDSHAKE_INITIATION): {
|
|
struct message_handshake_initiation *message =
|
|
(struct message_handshake_initiation *)skb->data;
|
|
|
|
if (packet_needs_cookie) {
|
|
wg_packet_send_handshake_cookie(wg, skb,
|
|
message->sender_index);
|
|
return;
|
|
}
|
|
peer = wg_noise_handshake_consume_initiation(message, wg);
|
|
if (unlikely(!peer)) {
|
|
net_dbg_skb_ratelimited("%s: Invalid handshake initiation from %pISpfsc\n",
|
|
wg->dev->name, skb);
|
|
return;
|
|
}
|
|
wg_socket_set_peer_endpoint_from_skb(peer, skb);
|
|
net_dbg_ratelimited("%s: Receiving handshake initiation from peer %llu (%pISpfsc)\n",
|
|
wg->dev->name, peer->internal_id,
|
|
&peer->endpoint.addr);
|
|
wg_packet_send_handshake_response(peer);
|
|
break;
|
|
}
|
|
case cpu_to_le32(MESSAGE_HANDSHAKE_RESPONSE): {
|
|
struct message_handshake_response *message =
|
|
(struct message_handshake_response *)skb->data;
|
|
|
|
if (packet_needs_cookie) {
|
|
wg_packet_send_handshake_cookie(wg, skb,
|
|
message->sender_index);
|
|
return;
|
|
}
|
|
peer = wg_noise_handshake_consume_response(message, wg);
|
|
if (unlikely(!peer)) {
|
|
net_dbg_skb_ratelimited("%s: Invalid handshake response from %pISpfsc\n",
|
|
wg->dev->name, skb);
|
|
return;
|
|
}
|
|
wg_socket_set_peer_endpoint_from_skb(peer, skb);
|
|
net_dbg_ratelimited("%s: Receiving handshake response from peer %llu (%pISpfsc)\n",
|
|
wg->dev->name, peer->internal_id,
|
|
&peer->endpoint.addr);
|
|
if (wg_noise_handshake_begin_session(&peer->handshake,
|
|
&peer->keypairs)) {
|
|
wg_timers_session_derived(peer);
|
|
wg_timers_handshake_complete(peer);
|
|
/* Calling this function will either send any existing
|
|
* packets in the queue and not send a keepalive, which
|
|
* is the best case, Or, if there's nothing in the
|
|
* queue, it will send a keepalive, in order to give
|
|
* immediate confirmation of the session.
|
|
*/
|
|
wg_packet_send_keepalive(peer);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (unlikely(!peer)) {
|
|
WARN(1, "Somehow a wrong type of packet wound up in the handshake queue!\n");
|
|
return;
|
|
}
|
|
|
|
local_bh_disable();
|
|
update_rx_stats(peer, skb->len);
|
|
local_bh_enable();
|
|
|
|
wg_timers_any_authenticated_packet_received(peer);
|
|
wg_timers_any_authenticated_packet_traversal(peer);
|
|
wg_peer_put(peer);
|
|
}
|
|
|
|
void wg_packet_handshake_receive_worker(struct work_struct *work)
|
|
{
|
|
struct wg_device *wg = container_of(work, struct multicore_worker,
|
|
work)->ptr;
|
|
struct sk_buff *skb;
|
|
|
|
while ((skb = skb_dequeue(&wg->incoming_handshakes)) != NULL) {
|
|
wg_receive_handshake_packet(wg, skb);
|
|
dev_kfree_skb(skb);
|
|
cond_resched();
|
|
}
|
|
}
|
|
|
|
static void keep_key_fresh(struct wg_peer *peer)
|
|
{
|
|
struct noise_keypair *keypair;
|
|
bool send;
|
|
|
|
if (peer->sent_lastminute_handshake)
|
|
return;
|
|
|
|
rcu_read_lock_bh();
|
|
keypair = rcu_dereference_bh(peer->keypairs.current_keypair);
|
|
send = keypair && READ_ONCE(keypair->sending.is_valid) &&
|
|
keypair->i_am_the_initiator &&
|
|
wg_birthdate_has_expired(keypair->sending.birthdate,
|
|
REJECT_AFTER_TIME - KEEPALIVE_TIMEOUT - REKEY_TIMEOUT);
|
|
rcu_read_unlock_bh();
|
|
|
|
if (unlikely(send)) {
|
|
peer->sent_lastminute_handshake = true;
|
|
wg_packet_send_queued_handshake_initiation(peer, false);
|
|
}
|
|
}
|
|
|
|
static bool decrypt_packet(struct sk_buff *skb, struct noise_keypair *keypair)
|
|
{
|
|
struct scatterlist sg[MAX_SKB_FRAGS + 8];
|
|
struct sk_buff *trailer;
|
|
unsigned int offset;
|
|
int num_frags;
|
|
|
|
if (unlikely(!keypair))
|
|
return false;
|
|
|
|
if (unlikely(!READ_ONCE(keypair->receiving.is_valid) ||
|
|
wg_birthdate_has_expired(keypair->receiving.birthdate, REJECT_AFTER_TIME) ||
|
|
keypair->receiving_counter.counter >= REJECT_AFTER_MESSAGES)) {
|
|
WRITE_ONCE(keypair->receiving.is_valid, false);
|
|
return false;
|
|
}
|
|
|
|
PACKET_CB(skb)->nonce =
|
|
le64_to_cpu(((struct message_data *)skb->data)->counter);
|
|
|
|
/* We ensure that the network header is part of the packet before we
|
|
* call skb_cow_data, so that there's no chance that data is removed
|
|
* from the skb, so that later we can extract the original endpoint.
|
|
*/
|
|
offset = skb->data - skb_network_header(skb);
|
|
skb_push(skb, offset);
|
|
num_frags = skb_cow_data(skb, 0, &trailer);
|
|
offset += sizeof(struct message_data);
|
|
skb_pull(skb, offset);
|
|
if (unlikely(num_frags < 0 || num_frags > ARRAY_SIZE(sg)))
|
|
return false;
|
|
|
|
sg_init_table(sg, num_frags);
|
|
if (skb_to_sgvec(skb, sg, 0, skb->len) <= 0)
|
|
return false;
|
|
|
|
if (!chacha20poly1305_decrypt_sg_inplace(sg, skb->len, NULL, 0,
|
|
PACKET_CB(skb)->nonce,
|
|
keypair->receiving.key))
|
|
return false;
|
|
|
|
/* Another ugly situation of pushing and pulling the header so as to
|
|
* keep endpoint information intact.
|
|
*/
|
|
skb_push(skb, offset);
|
|
if (pskb_trim(skb, skb->len - noise_encrypted_len(0)))
|
|
return false;
|
|
skb_pull(skb, offset);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* This is RFC6479, a replay detection bitmap algorithm that avoids bitshifts */
|
|
static bool counter_validate(struct noise_replay_counter *counter, u64 their_counter)
|
|
{
|
|
unsigned long index, index_current, top, i;
|
|
bool ret = false;
|
|
|
|
spin_lock_bh(&counter->lock);
|
|
|
|
if (unlikely(counter->counter >= REJECT_AFTER_MESSAGES + 1 ||
|
|
their_counter >= REJECT_AFTER_MESSAGES))
|
|
goto out;
|
|
|
|
++their_counter;
|
|
|
|
if (unlikely((COUNTER_WINDOW_SIZE + their_counter) <
|
|
counter->counter))
|
|
goto out;
|
|
|
|
index = their_counter >> ilog2(BITS_PER_LONG);
|
|
|
|
if (likely(their_counter > counter->counter)) {
|
|
index_current = counter->counter >> ilog2(BITS_PER_LONG);
|
|
top = min_t(unsigned long, index - index_current,
|
|
COUNTER_BITS_TOTAL / BITS_PER_LONG);
|
|
for (i = 1; i <= top; ++i)
|
|
counter->backtrack[(i + index_current) &
|
|
((COUNTER_BITS_TOTAL / BITS_PER_LONG) - 1)] = 0;
|
|
counter->counter = their_counter;
|
|
}
|
|
|
|
index &= (COUNTER_BITS_TOTAL / BITS_PER_LONG) - 1;
|
|
ret = !test_and_set_bit(their_counter & (BITS_PER_LONG - 1),
|
|
&counter->backtrack[index]);
|
|
|
|
out:
|
|
spin_unlock_bh(&counter->lock);
|
|
return ret;
|
|
}
|
|
|
|
#include "selftest/counter.c"
|
|
|
|
static void wg_packet_consume_data_done(struct wg_peer *peer,
|
|
struct sk_buff *skb,
|
|
struct endpoint *endpoint)
|
|
{
|
|
struct net_device *dev = peer->device->dev;
|
|
unsigned int len, len_before_trim;
|
|
struct wg_peer *routed_peer;
|
|
|
|
wg_socket_set_peer_endpoint(peer, endpoint);
|
|
|
|
if (unlikely(wg_noise_received_with_keypair(&peer->keypairs,
|
|
PACKET_CB(skb)->keypair))) {
|
|
wg_timers_handshake_complete(peer);
|
|
wg_packet_send_staged_packets(peer);
|
|
}
|
|
|
|
keep_key_fresh(peer);
|
|
|
|
wg_timers_any_authenticated_packet_received(peer);
|
|
wg_timers_any_authenticated_packet_traversal(peer);
|
|
|
|
/* A packet with length 0 is a keepalive packet */
|
|
if (unlikely(!skb->len)) {
|
|
update_rx_stats(peer, message_data_len(0));
|
|
net_dbg_ratelimited("%s: Receiving keepalive packet from peer %llu (%pISpfsc)\n",
|
|
dev->name, peer->internal_id,
|
|
&peer->endpoint.addr);
|
|
goto packet_processed;
|
|
}
|
|
|
|
wg_timers_data_received(peer);
|
|
|
|
if (unlikely(skb_network_header(skb) < skb->head))
|
|
goto dishonest_packet_size;
|
|
if (unlikely(!(pskb_network_may_pull(skb, sizeof(struct iphdr)) &&
|
|
(ip_hdr(skb)->version == 4 ||
|
|
(ip_hdr(skb)->version == 6 &&
|
|
pskb_network_may_pull(skb, sizeof(struct ipv6hdr)))))))
|
|
goto dishonest_packet_type;
|
|
|
|
skb->dev = dev;
|
|
/* We've already verified the Poly1305 auth tag, which means this packet
|
|
* was not modified in transit. We can therefore tell the networking
|
|
* stack that all checksums of every layer of encapsulation have already
|
|
* been checked "by the hardware" and therefore is unnecessary to check
|
|
* again in software.
|
|
*/
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
skb->csum_level = ~0; /* All levels */
|
|
skb->protocol = ip_tunnel_parse_protocol(skb);
|
|
if (skb->protocol == htons(ETH_P_IP)) {
|
|
len = ntohs(ip_hdr(skb)->tot_len);
|
|
if (unlikely(len < sizeof(struct iphdr)))
|
|
goto dishonest_packet_size;
|
|
INET_ECN_decapsulate(skb, PACKET_CB(skb)->ds, ip_hdr(skb)->tos);
|
|
} else if (skb->protocol == htons(ETH_P_IPV6)) {
|
|
len = ntohs(ipv6_hdr(skb)->payload_len) +
|
|
sizeof(struct ipv6hdr);
|
|
INET_ECN_decapsulate(skb, PACKET_CB(skb)->ds, ipv6_get_dsfield(ipv6_hdr(skb)));
|
|
} else {
|
|
goto dishonest_packet_type;
|
|
}
|
|
|
|
if (unlikely(len > skb->len))
|
|
goto dishonest_packet_size;
|
|
len_before_trim = skb->len;
|
|
if (unlikely(pskb_trim(skb, len)))
|
|
goto packet_processed;
|
|
|
|
routed_peer = wg_allowedips_lookup_src(&peer->device->peer_allowedips,
|
|
skb);
|
|
wg_peer_put(routed_peer); /* We don't need the extra reference. */
|
|
|
|
if (unlikely(routed_peer != peer))
|
|
goto dishonest_packet_peer;
|
|
|
|
napi_gro_receive(&peer->napi, skb);
|
|
update_rx_stats(peer, message_data_len(len_before_trim));
|
|
return;
|
|
|
|
dishonest_packet_peer:
|
|
net_dbg_skb_ratelimited("%s: Packet has unallowed src IP (%pISc) from peer %llu (%pISpfsc)\n",
|
|
dev->name, skb, peer->internal_id,
|
|
&peer->endpoint.addr);
|
|
++dev->stats.rx_errors;
|
|
++dev->stats.rx_frame_errors;
|
|
goto packet_processed;
|
|
dishonest_packet_type:
|
|
net_dbg_ratelimited("%s: Packet is neither ipv4 nor ipv6 from peer %llu (%pISpfsc)\n",
|
|
dev->name, peer->internal_id, &peer->endpoint.addr);
|
|
++dev->stats.rx_errors;
|
|
++dev->stats.rx_frame_errors;
|
|
goto packet_processed;
|
|
dishonest_packet_size:
|
|
net_dbg_ratelimited("%s: Packet has incorrect size from peer %llu (%pISpfsc)\n",
|
|
dev->name, peer->internal_id, &peer->endpoint.addr);
|
|
++dev->stats.rx_errors;
|
|
++dev->stats.rx_length_errors;
|
|
goto packet_processed;
|
|
packet_processed:
|
|
dev_kfree_skb(skb);
|
|
}
|
|
|
|
int wg_packet_rx_poll(struct napi_struct *napi, int budget)
|
|
{
|
|
struct wg_peer *peer = container_of(napi, struct wg_peer, napi);
|
|
struct noise_keypair *keypair;
|
|
struct endpoint endpoint;
|
|
enum packet_state state;
|
|
struct sk_buff *skb;
|
|
int work_done = 0;
|
|
bool free;
|
|
|
|
if (unlikely(budget <= 0))
|
|
return 0;
|
|
|
|
while ((skb = wg_prev_queue_peek(&peer->rx_queue)) != NULL &&
|
|
(state = atomic_read_acquire(&PACKET_CB(skb)->state)) !=
|
|
PACKET_STATE_UNCRYPTED) {
|
|
wg_prev_queue_drop_peeked(&peer->rx_queue);
|
|
keypair = PACKET_CB(skb)->keypair;
|
|
free = true;
|
|
|
|
if (unlikely(state != PACKET_STATE_CRYPTED))
|
|
goto next;
|
|
|
|
if (unlikely(!counter_validate(&keypair->receiving_counter,
|
|
PACKET_CB(skb)->nonce))) {
|
|
net_dbg_ratelimited("%s: Packet has invalid nonce %llu (max %llu)\n",
|
|
peer->device->dev->name,
|
|
PACKET_CB(skb)->nonce,
|
|
keypair->receiving_counter.counter);
|
|
goto next;
|
|
}
|
|
|
|
if (unlikely(wg_socket_endpoint_from_skb(&endpoint, skb)))
|
|
goto next;
|
|
|
|
wg_reset_packet(skb, false);
|
|
wg_packet_consume_data_done(peer, skb, &endpoint);
|
|
free = false;
|
|
|
|
next:
|
|
wg_noise_keypair_put(keypair, false);
|
|
wg_peer_put(peer);
|
|
if (unlikely(free))
|
|
dev_kfree_skb(skb);
|
|
|
|
if (++work_done >= budget)
|
|
break;
|
|
}
|
|
|
|
if (work_done < budget)
|
|
napi_complete_done(napi, work_done);
|
|
|
|
return work_done;
|
|
}
|
|
|
|
void wg_packet_decrypt_worker(struct work_struct *work)
|
|
{
|
|
struct crypt_queue *queue = container_of(work, struct multicore_worker,
|
|
work)->ptr;
|
|
struct sk_buff *skb;
|
|
|
|
while ((skb = ptr_ring_consume_bh(&queue->ring)) != NULL) {
|
|
enum packet_state state =
|
|
likely(decrypt_packet(skb, PACKET_CB(skb)->keypair)) ?
|
|
PACKET_STATE_CRYPTED : PACKET_STATE_DEAD;
|
|
wg_queue_enqueue_per_peer_rx(skb, state);
|
|
if (need_resched())
|
|
cond_resched();
|
|
}
|
|
}
|
|
|
|
static void wg_packet_consume_data(struct wg_device *wg, struct sk_buff *skb)
|
|
{
|
|
__le32 idx = ((struct message_data *)skb->data)->key_idx;
|
|
struct wg_peer *peer = NULL;
|
|
int ret;
|
|
|
|
rcu_read_lock_bh();
|
|
PACKET_CB(skb)->keypair =
|
|
(struct noise_keypair *)wg_index_hashtable_lookup(
|
|
wg->index_hashtable, INDEX_HASHTABLE_KEYPAIR, idx,
|
|
&peer);
|
|
if (unlikely(!wg_noise_keypair_get(PACKET_CB(skb)->keypair)))
|
|
goto err_keypair;
|
|
|
|
if (unlikely(READ_ONCE(peer->is_dead)))
|
|
goto err;
|
|
|
|
ret = wg_queue_enqueue_per_device_and_peer(&wg->decrypt_queue, &peer->rx_queue, skb,
|
|
wg->packet_crypt_wq, &wg->decrypt_queue.last_cpu);
|
|
if (unlikely(ret == -EPIPE))
|
|
wg_queue_enqueue_per_peer_rx(skb, PACKET_STATE_DEAD);
|
|
if (likely(!ret || ret == -EPIPE)) {
|
|
rcu_read_unlock_bh();
|
|
return;
|
|
}
|
|
err:
|
|
wg_noise_keypair_put(PACKET_CB(skb)->keypair, false);
|
|
err_keypair:
|
|
rcu_read_unlock_bh();
|
|
wg_peer_put(peer);
|
|
dev_kfree_skb(skb);
|
|
}
|
|
|
|
void wg_packet_receive(struct wg_device *wg, struct sk_buff *skb)
|
|
{
|
|
if (unlikely(prepare_skb_header(skb, wg) < 0))
|
|
goto err;
|
|
switch (SKB_TYPE_LE32(skb)) {
|
|
case cpu_to_le32(MESSAGE_HANDSHAKE_INITIATION):
|
|
case cpu_to_le32(MESSAGE_HANDSHAKE_RESPONSE):
|
|
case cpu_to_le32(MESSAGE_HANDSHAKE_COOKIE): {
|
|
int cpu;
|
|
|
|
if (skb_queue_len(&wg->incoming_handshakes) >
|
|
MAX_QUEUED_INCOMING_HANDSHAKES ||
|
|
unlikely(!rng_is_initialized())) {
|
|
net_dbg_skb_ratelimited("%s: Dropping handshake packet from %pISpfsc\n",
|
|
wg->dev->name, skb);
|
|
goto err;
|
|
}
|
|
skb_queue_tail(&wg->incoming_handshakes, skb);
|
|
/* Queues up a call to packet_process_queued_handshake_
|
|
* packets(skb):
|
|
*/
|
|
cpu = wg_cpumask_next_online(&wg->incoming_handshake_cpu);
|
|
queue_work_on(cpu, wg->handshake_receive_wq,
|
|
&per_cpu_ptr(wg->incoming_handshakes_worker, cpu)->work);
|
|
break;
|
|
}
|
|
case cpu_to_le32(MESSAGE_DATA):
|
|
PACKET_CB(skb)->ds = ip_tunnel_get_dsfield(ip_hdr(skb), skb);
|
|
wg_packet_consume_data(wg, skb);
|
|
break;
|
|
default:
|
|
WARN(1, "Non-exhaustive parsing of packet header lead to unknown packet type!\n");
|
|
goto err;
|
|
}
|
|
return;
|
|
|
|
err:
|
|
dev_kfree_skb(skb);
|
|
}
|