linux/drivers/net/ethernet/freescale/fman/fman_dtsec.c
Florinel Iordache cc5d229a12 fsl/fman: check dereferencing null pointer
Add a safe check to avoid dereferencing null pointer

Fixes: 57ba4c9b56 ("fsl/fman: Add FMan MAC support")
Signed-off-by: Florinel Iordache <florinel.iordache@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-08-03 16:20:15 -07:00

1564 lines
43 KiB
C

/*
* Copyright 2008-2015 Freescale Semiconductor Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Freescale Semiconductor nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
*
* ALTERNATIVELY, this software may be distributed under the terms of the
* GNU General Public License ("GPL") as published by the Free Software
* Foundation, either version 2 of that License or (at your option) any
* later version.
*
* THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include "fman_dtsec.h"
#include "fman.h"
#include <linux/slab.h>
#include <linux/bitrev.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/phy.h>
#include <linux/crc32.h>
#include <linux/of_mdio.h>
#include <linux/mii.h>
/* TBI register addresses */
#define MII_TBICON 0x11
/* TBICON register bit fields */
#define TBICON_SOFT_RESET 0x8000 /* Soft reset */
#define TBICON_DISABLE_RX_DIS 0x2000 /* Disable receive disparity */
#define TBICON_DISABLE_TX_DIS 0x1000 /* Disable transmit disparity */
#define TBICON_AN_SENSE 0x0100 /* Auto-negotiation sense enable */
#define TBICON_CLK_SELECT 0x0020 /* Clock select */
#define TBICON_MI_MODE 0x0010 /* GMII mode (TBI if not set) */
#define TBIANA_SGMII 0x4001
#define TBIANA_1000X 0x01a0
/* Interrupt Mask Register (IMASK) */
#define DTSEC_IMASK_BREN 0x80000000
#define DTSEC_IMASK_RXCEN 0x40000000
#define DTSEC_IMASK_MSROEN 0x04000000
#define DTSEC_IMASK_GTSCEN 0x02000000
#define DTSEC_IMASK_BTEN 0x01000000
#define DTSEC_IMASK_TXCEN 0x00800000
#define DTSEC_IMASK_TXEEN 0x00400000
#define DTSEC_IMASK_LCEN 0x00040000
#define DTSEC_IMASK_CRLEN 0x00020000
#define DTSEC_IMASK_XFUNEN 0x00010000
#define DTSEC_IMASK_ABRTEN 0x00008000
#define DTSEC_IMASK_IFERREN 0x00004000
#define DTSEC_IMASK_MAGEN 0x00000800
#define DTSEC_IMASK_MMRDEN 0x00000400
#define DTSEC_IMASK_MMWREN 0x00000200
#define DTSEC_IMASK_GRSCEN 0x00000100
#define DTSEC_IMASK_TDPEEN 0x00000002
#define DTSEC_IMASK_RDPEEN 0x00000001
#define DTSEC_EVENTS_MASK \
((u32)(DTSEC_IMASK_BREN | \
DTSEC_IMASK_RXCEN | \
DTSEC_IMASK_BTEN | \
DTSEC_IMASK_TXCEN | \
DTSEC_IMASK_TXEEN | \
DTSEC_IMASK_ABRTEN | \
DTSEC_IMASK_LCEN | \
DTSEC_IMASK_CRLEN | \
DTSEC_IMASK_XFUNEN | \
DTSEC_IMASK_IFERREN | \
DTSEC_IMASK_MAGEN | \
DTSEC_IMASK_TDPEEN | \
DTSEC_IMASK_RDPEEN))
/* dtsec timestamp event bits */
#define TMR_PEMASK_TSREEN 0x00010000
#define TMR_PEVENT_TSRE 0x00010000
/* Group address bit indication */
#define MAC_GROUP_ADDRESS 0x0000010000000000ULL
/* Defaults */
#define DEFAULT_HALFDUP_RETRANSMIT 0xf
#define DEFAULT_HALFDUP_COLL_WINDOW 0x37
#define DEFAULT_TX_PAUSE_TIME 0xf000
#define DEFAULT_RX_PREPEND 0
#define DEFAULT_PREAMBLE_LEN 7
#define DEFAULT_TX_PAUSE_TIME_EXTD 0
#define DEFAULT_NON_BACK_TO_BACK_IPG1 0x40
#define DEFAULT_NON_BACK_TO_BACK_IPG2 0x60
#define DEFAULT_MIN_IFG_ENFORCEMENT 0x50
#define DEFAULT_BACK_TO_BACK_IPG 0x60
#define DEFAULT_MAXIMUM_FRAME 0x600
/* register related defines (bits, field offsets..) */
#define DTSEC_ID2_INT_REDUCED_OFF 0x00010000
#define DTSEC_ECNTRL_GMIIM 0x00000040
#define DTSEC_ECNTRL_TBIM 0x00000020
#define DTSEC_ECNTRL_SGMIIM 0x00000002
#define DTSEC_ECNTRL_RPM 0x00000010
#define DTSEC_ECNTRL_R100M 0x00000008
#define DTSEC_ECNTRL_QSGMIIM 0x00000001
#define TCTRL_TTSE 0x00000040
#define TCTRL_GTS 0x00000020
#define RCTRL_PAL_MASK 0x001f0000
#define RCTRL_PAL_SHIFT 16
#define RCTRL_GHTX 0x00000400
#define RCTRL_RTSE 0x00000040
#define RCTRL_GRS 0x00000020
#define RCTRL_MPROM 0x00000008
#define RCTRL_RSF 0x00000004
#define RCTRL_UPROM 0x00000001
#define MACCFG1_SOFT_RESET 0x80000000
#define MACCFG1_RX_FLOW 0x00000020
#define MACCFG1_TX_FLOW 0x00000010
#define MACCFG1_TX_EN 0x00000001
#define MACCFG1_RX_EN 0x00000004
#define MACCFG2_NIBBLE_MODE 0x00000100
#define MACCFG2_BYTE_MODE 0x00000200
#define MACCFG2_PAD_CRC_EN 0x00000004
#define MACCFG2_FULL_DUPLEX 0x00000001
#define MACCFG2_PREAMBLE_LENGTH_MASK 0x0000f000
#define MACCFG2_PREAMBLE_LENGTH_SHIFT 12
#define IPGIFG_NON_BACK_TO_BACK_IPG_1_SHIFT 24
#define IPGIFG_NON_BACK_TO_BACK_IPG_2_SHIFT 16
#define IPGIFG_MIN_IFG_ENFORCEMENT_SHIFT 8
#define IPGIFG_NON_BACK_TO_BACK_IPG_1 0x7F000000
#define IPGIFG_NON_BACK_TO_BACK_IPG_2 0x007F0000
#define IPGIFG_MIN_IFG_ENFORCEMENT 0x0000FF00
#define IPGIFG_BACK_TO_BACK_IPG 0x0000007F
#define HAFDUP_EXCESS_DEFER 0x00010000
#define HAFDUP_COLLISION_WINDOW 0x000003ff
#define HAFDUP_RETRANSMISSION_MAX_SHIFT 12
#define HAFDUP_RETRANSMISSION_MAX 0x0000f000
#define NUM_OF_HASH_REGS 8 /* Number of hash table registers */
#define PTV_PTE_MASK 0xffff0000
#define PTV_PT_MASK 0x0000ffff
#define PTV_PTE_SHIFT 16
#define MAX_PACKET_ALIGNMENT 31
#define MAX_INTER_PACKET_GAP 0x7f
#define MAX_RETRANSMISSION 0x0f
#define MAX_COLLISION_WINDOW 0x03ff
/* Hash table size (32 bits*8 regs) */
#define DTSEC_HASH_TABLE_SIZE 256
/* Extended Hash table size (32 bits*16 regs) */
#define EXTENDED_HASH_TABLE_SIZE 512
/* dTSEC Memory Map registers */
struct dtsec_regs {
/* dTSEC General Control and Status Registers */
u32 tsec_id; /* 0x000 ETSEC_ID register */
u32 tsec_id2; /* 0x004 ETSEC_ID2 register */
u32 ievent; /* 0x008 Interrupt event register */
u32 imask; /* 0x00C Interrupt mask register */
u32 reserved0010[1];
u32 ecntrl; /* 0x014 E control register */
u32 ptv; /* 0x018 Pause time value register */
u32 tbipa; /* 0x01C TBI PHY address register */
u32 tmr_ctrl; /* 0x020 Time-stamp Control register */
u32 tmr_pevent; /* 0x024 Time-stamp event register */
u32 tmr_pemask; /* 0x028 Timer event mask register */
u32 reserved002c[5];
u32 tctrl; /* 0x040 Transmit control register */
u32 reserved0044[3];
u32 rctrl; /* 0x050 Receive control register */
u32 reserved0054[11];
u32 igaddr[8]; /* 0x080-0x09C Individual/group address */
u32 gaddr[8]; /* 0x0A0-0x0BC Group address registers 0-7 */
u32 reserved00c0[16];
u32 maccfg1; /* 0x100 MAC configuration #1 */
u32 maccfg2; /* 0x104 MAC configuration #2 */
u32 ipgifg; /* 0x108 IPG/IFG */
u32 hafdup; /* 0x10C Half-duplex */
u32 maxfrm; /* 0x110 Maximum frame */
u32 reserved0114[10];
u32 ifstat; /* 0x13C Interface status */
u32 macstnaddr1; /* 0x140 Station Address,part 1 */
u32 macstnaddr2; /* 0x144 Station Address,part 2 */
struct {
u32 exact_match1; /* octets 1-4 */
u32 exact_match2; /* octets 5-6 */
} macaddr[15]; /* 0x148-0x1BC mac exact match addresses 1-15 */
u32 reserved01c0[16];
u32 tr64; /* 0x200 Tx and Rx 64 byte frame counter */
u32 tr127; /* 0x204 Tx and Rx 65 to 127 byte frame counter */
u32 tr255; /* 0x208 Tx and Rx 128 to 255 byte frame counter */
u32 tr511; /* 0x20C Tx and Rx 256 to 511 byte frame counter */
u32 tr1k; /* 0x210 Tx and Rx 512 to 1023 byte frame counter */
u32 trmax; /* 0x214 Tx and Rx 1024 to 1518 byte frame counter */
u32 trmgv;
/* 0x218 Tx and Rx 1519 to 1522 byte good VLAN frame count */
u32 rbyt; /* 0x21C receive byte counter */
u32 rpkt; /* 0x220 receive packet counter */
u32 rfcs; /* 0x224 receive FCS error counter */
u32 rmca; /* 0x228 RMCA Rx multicast packet counter */
u32 rbca; /* 0x22C Rx broadcast packet counter */
u32 rxcf; /* 0x230 Rx control frame packet counter */
u32 rxpf; /* 0x234 Rx pause frame packet counter */
u32 rxuo; /* 0x238 Rx unknown OP code counter */
u32 raln; /* 0x23C Rx alignment error counter */
u32 rflr; /* 0x240 Rx frame length error counter */
u32 rcde; /* 0x244 Rx code error counter */
u32 rcse; /* 0x248 Rx carrier sense error counter */
u32 rund; /* 0x24C Rx undersize packet counter */
u32 rovr; /* 0x250 Rx oversize packet counter */
u32 rfrg; /* 0x254 Rx fragments counter */
u32 rjbr; /* 0x258 Rx jabber counter */
u32 rdrp; /* 0x25C Rx drop */
u32 tbyt; /* 0x260 Tx byte counter */
u32 tpkt; /* 0x264 Tx packet counter */
u32 tmca; /* 0x268 Tx multicast packet counter */
u32 tbca; /* 0x26C Tx broadcast packet counter */
u32 txpf; /* 0x270 Tx pause control frame counter */
u32 tdfr; /* 0x274 Tx deferral packet counter */
u32 tedf; /* 0x278 Tx excessive deferral packet counter */
u32 tscl; /* 0x27C Tx single collision packet counter */
u32 tmcl; /* 0x280 Tx multiple collision packet counter */
u32 tlcl; /* 0x284 Tx late collision packet counter */
u32 txcl; /* 0x288 Tx excessive collision packet counter */
u32 tncl; /* 0x28C Tx total collision counter */
u32 reserved0290[1];
u32 tdrp; /* 0x294 Tx drop frame counter */
u32 tjbr; /* 0x298 Tx jabber frame counter */
u32 tfcs; /* 0x29C Tx FCS error counter */
u32 txcf; /* 0x2A0 Tx control frame counter */
u32 tovr; /* 0x2A4 Tx oversize frame counter */
u32 tund; /* 0x2A8 Tx undersize frame counter */
u32 tfrg; /* 0x2AC Tx fragments frame counter */
u32 car1; /* 0x2B0 carry register one register* */
u32 car2; /* 0x2B4 carry register two register* */
u32 cam1; /* 0x2B8 carry register one mask register */
u32 cam2; /* 0x2BC carry register two mask register */
u32 reserved02c0[848];
};
/* struct dtsec_cfg - dTSEC configuration
* Transmit half-duplex flow control, under software control for 10/100-Mbps
* half-duplex media. If set, back pressure is applied to media by raising
* carrier.
* halfdup_retransmit:
* Number of retransmission attempts following a collision.
* If this is exceeded dTSEC aborts transmission due to excessive collisions.
* The standard specifies the attempt limit to be 15.
* halfdup_coll_window:
* The number of bytes of the frame during which collisions may occur.
* The default value of 55 corresponds to the frame byte at the end of the
* standard 512-bit slot time window. If collisions are detected after this
* byte, the late collision event is asserted and transmission of current
* frame is aborted.
* tx_pad_crc:
* Pad and append CRC. If set, the MAC pads all ransmitted short frames and
* appends a CRC to every frame regardless of padding requirement.
* tx_pause_time:
* Transmit pause time value. This pause value is used as part of the pause
* frame to be sent when a transmit pause frame is initiated.
* If set to 0 this disables transmission of pause frames.
* preamble_len:
* Length, in bytes, of the preamble field preceding each Ethernet
* start-of-frame delimiter byte. The default value of 0x7 should be used in
* order to guarantee reliable operation with IEEE 802.3 compliant hardware.
* rx_prepend:
* Packet alignment padding length. The specified number of bytes (1-31)
* of zero padding are inserted before the start of each received frame.
* For Ethernet, where optional preamble extraction is enabled, the padding
* appears before the preamble, otherwise the padding precedes the
* layer 2 header.
*
* This structure contains basic dTSEC configuration and must be passed to
* init() function. A default set of configuration values can be
* obtained by calling set_dflts().
*/
struct dtsec_cfg {
u16 halfdup_retransmit;
u16 halfdup_coll_window;
bool tx_pad_crc;
u16 tx_pause_time;
bool ptp_tsu_en;
bool ptp_exception_en;
u32 preamble_len;
u32 rx_prepend;
u16 tx_pause_time_extd;
u16 maximum_frame;
u32 non_back_to_back_ipg1;
u32 non_back_to_back_ipg2;
u32 min_ifg_enforcement;
u32 back_to_back_ipg;
};
struct fman_mac {
/* pointer to dTSEC memory mapped registers */
struct dtsec_regs __iomem *regs;
/* MAC address of device */
u64 addr;
/* Ethernet physical interface */
phy_interface_t phy_if;
u16 max_speed;
void *dev_id; /* device cookie used by the exception cbs */
fman_mac_exception_cb *exception_cb;
fman_mac_exception_cb *event_cb;
/* Number of individual addresses in registers for this station */
u8 num_of_ind_addr_in_regs;
/* pointer to driver's global address hash table */
struct eth_hash_t *multicast_addr_hash;
/* pointer to driver's individual address hash table */
struct eth_hash_t *unicast_addr_hash;
u8 mac_id;
u32 exceptions;
bool ptp_tsu_enabled;
bool en_tsu_err_exception;
struct dtsec_cfg *dtsec_drv_param;
void *fm;
struct fman_rev_info fm_rev_info;
bool basex_if;
struct phy_device *tbiphy;
};
static void set_dflts(struct dtsec_cfg *cfg)
{
cfg->halfdup_retransmit = DEFAULT_HALFDUP_RETRANSMIT;
cfg->halfdup_coll_window = DEFAULT_HALFDUP_COLL_WINDOW;
cfg->tx_pad_crc = true;
cfg->tx_pause_time = DEFAULT_TX_PAUSE_TIME;
/* PHY address 0 is reserved (DPAA RM) */
cfg->rx_prepend = DEFAULT_RX_PREPEND;
cfg->ptp_tsu_en = true;
cfg->ptp_exception_en = true;
cfg->preamble_len = DEFAULT_PREAMBLE_LEN;
cfg->tx_pause_time_extd = DEFAULT_TX_PAUSE_TIME_EXTD;
cfg->non_back_to_back_ipg1 = DEFAULT_NON_BACK_TO_BACK_IPG1;
cfg->non_back_to_back_ipg2 = DEFAULT_NON_BACK_TO_BACK_IPG2;
cfg->min_ifg_enforcement = DEFAULT_MIN_IFG_ENFORCEMENT;
cfg->back_to_back_ipg = DEFAULT_BACK_TO_BACK_IPG;
cfg->maximum_frame = DEFAULT_MAXIMUM_FRAME;
}
static void set_mac_address(struct dtsec_regs __iomem *regs, u8 *adr)
{
u32 tmp;
tmp = (u32)((adr[5] << 24) |
(adr[4] << 16) | (adr[3] << 8) | adr[2]);
iowrite32be(tmp, &regs->macstnaddr1);
tmp = (u32)((adr[1] << 24) | (adr[0] << 16));
iowrite32be(tmp, &regs->macstnaddr2);
}
static int init(struct dtsec_regs __iomem *regs, struct dtsec_cfg *cfg,
phy_interface_t iface, u16 iface_speed, u64 addr,
u32 exception_mask, u8 tbi_addr)
{
bool is_rgmii, is_sgmii, is_qsgmii;
enet_addr_t eth_addr;
u32 tmp;
int i;
/* Soft reset */
iowrite32be(MACCFG1_SOFT_RESET, &regs->maccfg1);
iowrite32be(0, &regs->maccfg1);
/* dtsec_id2 */
tmp = ioread32be(&regs->tsec_id2);
/* check RGMII support */
if (iface == PHY_INTERFACE_MODE_RGMII ||
iface == PHY_INTERFACE_MODE_RGMII_ID ||
iface == PHY_INTERFACE_MODE_RGMII_RXID ||
iface == PHY_INTERFACE_MODE_RGMII_TXID ||
iface == PHY_INTERFACE_MODE_RMII)
if (tmp & DTSEC_ID2_INT_REDUCED_OFF)
return -EINVAL;
if (iface == PHY_INTERFACE_MODE_SGMII ||
iface == PHY_INTERFACE_MODE_MII)
if (tmp & DTSEC_ID2_INT_REDUCED_OFF)
return -EINVAL;
is_rgmii = iface == PHY_INTERFACE_MODE_RGMII ||
iface == PHY_INTERFACE_MODE_RGMII_ID ||
iface == PHY_INTERFACE_MODE_RGMII_RXID ||
iface == PHY_INTERFACE_MODE_RGMII_TXID;
is_sgmii = iface == PHY_INTERFACE_MODE_SGMII;
is_qsgmii = iface == PHY_INTERFACE_MODE_QSGMII;
tmp = 0;
if (is_rgmii || iface == PHY_INTERFACE_MODE_GMII)
tmp |= DTSEC_ECNTRL_GMIIM;
if (is_sgmii)
tmp |= (DTSEC_ECNTRL_SGMIIM | DTSEC_ECNTRL_TBIM);
if (is_qsgmii)
tmp |= (DTSEC_ECNTRL_SGMIIM | DTSEC_ECNTRL_TBIM |
DTSEC_ECNTRL_QSGMIIM);
if (is_rgmii)
tmp |= DTSEC_ECNTRL_RPM;
if (iface_speed == SPEED_100)
tmp |= DTSEC_ECNTRL_R100M;
iowrite32be(tmp, &regs->ecntrl);
tmp = 0;
if (cfg->tx_pause_time)
tmp |= cfg->tx_pause_time;
if (cfg->tx_pause_time_extd)
tmp |= cfg->tx_pause_time_extd << PTV_PTE_SHIFT;
iowrite32be(tmp, &regs->ptv);
tmp = 0;
tmp |= (cfg->rx_prepend << RCTRL_PAL_SHIFT) & RCTRL_PAL_MASK;
/* Accept short frames */
tmp |= RCTRL_RSF;
iowrite32be(tmp, &regs->rctrl);
/* Assign a Phy Address to the TBI (TBIPA).
* Done also in cases where TBI is not selected to avoid conflict with
* the external PHY's Physical address
*/
iowrite32be(tbi_addr, &regs->tbipa);
iowrite32be(0, &regs->tmr_ctrl);
if (cfg->ptp_tsu_en) {
tmp = 0;
tmp |= TMR_PEVENT_TSRE;
iowrite32be(tmp, &regs->tmr_pevent);
if (cfg->ptp_exception_en) {
tmp = 0;
tmp |= TMR_PEMASK_TSREEN;
iowrite32be(tmp, &regs->tmr_pemask);
}
}
tmp = 0;
tmp |= MACCFG1_RX_FLOW;
tmp |= MACCFG1_TX_FLOW;
iowrite32be(tmp, &regs->maccfg1);
tmp = 0;
if (iface_speed < SPEED_1000)
tmp |= MACCFG2_NIBBLE_MODE;
else if (iface_speed == SPEED_1000)
tmp |= MACCFG2_BYTE_MODE;
tmp |= (cfg->preamble_len << MACCFG2_PREAMBLE_LENGTH_SHIFT) &
MACCFG2_PREAMBLE_LENGTH_MASK;
if (cfg->tx_pad_crc)
tmp |= MACCFG2_PAD_CRC_EN;
/* Full Duplex */
tmp |= MACCFG2_FULL_DUPLEX;
iowrite32be(tmp, &regs->maccfg2);
tmp = (((cfg->non_back_to_back_ipg1 <<
IPGIFG_NON_BACK_TO_BACK_IPG_1_SHIFT)
& IPGIFG_NON_BACK_TO_BACK_IPG_1)
| ((cfg->non_back_to_back_ipg2 <<
IPGIFG_NON_BACK_TO_BACK_IPG_2_SHIFT)
& IPGIFG_NON_BACK_TO_BACK_IPG_2)
| ((cfg->min_ifg_enforcement << IPGIFG_MIN_IFG_ENFORCEMENT_SHIFT)
& IPGIFG_MIN_IFG_ENFORCEMENT)
| (cfg->back_to_back_ipg & IPGIFG_BACK_TO_BACK_IPG));
iowrite32be(tmp, &regs->ipgifg);
tmp = 0;
tmp |= HAFDUP_EXCESS_DEFER;
tmp |= ((cfg->halfdup_retransmit << HAFDUP_RETRANSMISSION_MAX_SHIFT)
& HAFDUP_RETRANSMISSION_MAX);
tmp |= (cfg->halfdup_coll_window & HAFDUP_COLLISION_WINDOW);
iowrite32be(tmp, &regs->hafdup);
/* Initialize Maximum frame length */
iowrite32be(cfg->maximum_frame, &regs->maxfrm);
iowrite32be(0xffffffff, &regs->cam1);
iowrite32be(0xffffffff, &regs->cam2);
iowrite32be(exception_mask, &regs->imask);
iowrite32be(0xffffffff, &regs->ievent);
if (addr) {
MAKE_ENET_ADDR_FROM_UINT64(addr, eth_addr);
set_mac_address(regs, (u8 *)eth_addr);
}
/* HASH */
for (i = 0; i < NUM_OF_HASH_REGS; i++) {
/* Initialize IADDRx */
iowrite32be(0, &regs->igaddr[i]);
/* Initialize GADDRx */
iowrite32be(0, &regs->gaddr[i]);
}
return 0;
}
static void set_bucket(struct dtsec_regs __iomem *regs, int bucket,
bool enable)
{
int reg_idx = (bucket >> 5) & 0xf;
int bit_idx = bucket & 0x1f;
u32 bit_mask = 0x80000000 >> bit_idx;
u32 __iomem *reg;
if (reg_idx > 7)
reg = &regs->gaddr[reg_idx - 8];
else
reg = &regs->igaddr[reg_idx];
if (enable)
iowrite32be(ioread32be(reg) | bit_mask, reg);
else
iowrite32be(ioread32be(reg) & (~bit_mask), reg);
}
static int check_init_parameters(struct fman_mac *dtsec)
{
if (dtsec->max_speed >= SPEED_10000) {
pr_err("1G MAC driver supports 1G or lower speeds\n");
return -EINVAL;
}
if ((dtsec->dtsec_drv_param)->rx_prepend >
MAX_PACKET_ALIGNMENT) {
pr_err("packetAlignmentPadding can't be > than %d\n",
MAX_PACKET_ALIGNMENT);
return -EINVAL;
}
if (((dtsec->dtsec_drv_param)->non_back_to_back_ipg1 >
MAX_INTER_PACKET_GAP) ||
((dtsec->dtsec_drv_param)->non_back_to_back_ipg2 >
MAX_INTER_PACKET_GAP) ||
((dtsec->dtsec_drv_param)->back_to_back_ipg >
MAX_INTER_PACKET_GAP)) {
pr_err("Inter packet gap can't be greater than %d\n",
MAX_INTER_PACKET_GAP);
return -EINVAL;
}
if ((dtsec->dtsec_drv_param)->halfdup_retransmit >
MAX_RETRANSMISSION) {
pr_err("maxRetransmission can't be greater than %d\n",
MAX_RETRANSMISSION);
return -EINVAL;
}
if ((dtsec->dtsec_drv_param)->halfdup_coll_window >
MAX_COLLISION_WINDOW) {
pr_err("collisionWindow can't be greater than %d\n",
MAX_COLLISION_WINDOW);
return -EINVAL;
/* If Auto negotiation process is disabled, need to set up the PHY
* using the MII Management Interface
*/
}
if (!dtsec->exception_cb) {
pr_err("uninitialized exception_cb\n");
return -EINVAL;
}
if (!dtsec->event_cb) {
pr_err("uninitialized event_cb\n");
return -EINVAL;
}
return 0;
}
static int get_exception_flag(enum fman_mac_exceptions exception)
{
u32 bit_mask;
switch (exception) {
case FM_MAC_EX_1G_BAB_RX:
bit_mask = DTSEC_IMASK_BREN;
break;
case FM_MAC_EX_1G_RX_CTL:
bit_mask = DTSEC_IMASK_RXCEN;
break;
case FM_MAC_EX_1G_GRATEFUL_TX_STP_COMPLET:
bit_mask = DTSEC_IMASK_GTSCEN;
break;
case FM_MAC_EX_1G_BAB_TX:
bit_mask = DTSEC_IMASK_BTEN;
break;
case FM_MAC_EX_1G_TX_CTL:
bit_mask = DTSEC_IMASK_TXCEN;
break;
case FM_MAC_EX_1G_TX_ERR:
bit_mask = DTSEC_IMASK_TXEEN;
break;
case FM_MAC_EX_1G_LATE_COL:
bit_mask = DTSEC_IMASK_LCEN;
break;
case FM_MAC_EX_1G_COL_RET_LMT:
bit_mask = DTSEC_IMASK_CRLEN;
break;
case FM_MAC_EX_1G_TX_FIFO_UNDRN:
bit_mask = DTSEC_IMASK_XFUNEN;
break;
case FM_MAC_EX_1G_MAG_PCKT:
bit_mask = DTSEC_IMASK_MAGEN;
break;
case FM_MAC_EX_1G_MII_MNG_RD_COMPLET:
bit_mask = DTSEC_IMASK_MMRDEN;
break;
case FM_MAC_EX_1G_MII_MNG_WR_COMPLET:
bit_mask = DTSEC_IMASK_MMWREN;
break;
case FM_MAC_EX_1G_GRATEFUL_RX_STP_COMPLET:
bit_mask = DTSEC_IMASK_GRSCEN;
break;
case FM_MAC_EX_1G_DATA_ERR:
bit_mask = DTSEC_IMASK_TDPEEN;
break;
case FM_MAC_EX_1G_RX_MIB_CNT_OVFL:
bit_mask = DTSEC_IMASK_MSROEN;
break;
default:
bit_mask = 0;
break;
}
return bit_mask;
}
static bool is_init_done(struct dtsec_cfg *dtsec_drv_params)
{
/* Checks if dTSEC driver parameters were initialized */
if (!dtsec_drv_params)
return true;
return false;
}
static u16 dtsec_get_max_frame_length(struct fman_mac *dtsec)
{
struct dtsec_regs __iomem *regs = dtsec->regs;
if (is_init_done(dtsec->dtsec_drv_param))
return 0;
return (u16)ioread32be(&regs->maxfrm);
}
static void dtsec_isr(void *handle)
{
struct fman_mac *dtsec = (struct fman_mac *)handle;
struct dtsec_regs __iomem *regs = dtsec->regs;
u32 event;
/* do not handle MDIO events */
event = ioread32be(&regs->ievent) &
(u32)(~(DTSEC_IMASK_MMRDEN | DTSEC_IMASK_MMWREN));
event &= ioread32be(&regs->imask);
iowrite32be(event, &regs->ievent);
if (event & DTSEC_IMASK_BREN)
dtsec->exception_cb(dtsec->dev_id, FM_MAC_EX_1G_BAB_RX);
if (event & DTSEC_IMASK_RXCEN)
dtsec->exception_cb(dtsec->dev_id, FM_MAC_EX_1G_RX_CTL);
if (event & DTSEC_IMASK_GTSCEN)
dtsec->exception_cb(dtsec->dev_id,
FM_MAC_EX_1G_GRATEFUL_TX_STP_COMPLET);
if (event & DTSEC_IMASK_BTEN)
dtsec->exception_cb(dtsec->dev_id, FM_MAC_EX_1G_BAB_TX);
if (event & DTSEC_IMASK_TXCEN)
dtsec->exception_cb(dtsec->dev_id, FM_MAC_EX_1G_TX_CTL);
if (event & DTSEC_IMASK_TXEEN)
dtsec->exception_cb(dtsec->dev_id, FM_MAC_EX_1G_TX_ERR);
if (event & DTSEC_IMASK_LCEN)
dtsec->exception_cb(dtsec->dev_id, FM_MAC_EX_1G_LATE_COL);
if (event & DTSEC_IMASK_CRLEN)
dtsec->exception_cb(dtsec->dev_id, FM_MAC_EX_1G_COL_RET_LMT);
if (event & DTSEC_IMASK_XFUNEN) {
/* FM_TX_LOCKUP_ERRATA_DTSEC6 Errata workaround */
if (dtsec->fm_rev_info.major == 2) {
u32 tpkt1, tmp_reg1, tpkt2, tmp_reg2, i;
/* a. Write 0x00E0_0C00 to DTSEC_ID
* This is a read only register
* b. Read and save the value of TPKT
*/
tpkt1 = ioread32be(&regs->tpkt);
/* c. Read the register at dTSEC address offset 0x32C */
tmp_reg1 = ioread32be(&regs->reserved02c0[27]);
/* d. Compare bits [9:15] to bits [25:31] of the
* register at address offset 0x32C.
*/
if ((tmp_reg1 & 0x007F0000) !=
(tmp_reg1 & 0x0000007F)) {
/* If they are not equal, save the value of
* this register and wait for at least
* MAXFRM*16 ns
*/
usleep_range((u32)(min
(dtsec_get_max_frame_length(dtsec) *
16 / 1000, 1)), (u32)
(min(dtsec_get_max_frame_length
(dtsec) * 16 / 1000, 1) + 1));
}
/* e. Read and save TPKT again and read the register
* at dTSEC address offset 0x32C again
*/
tpkt2 = ioread32be(&regs->tpkt);
tmp_reg2 = ioread32be(&regs->reserved02c0[27]);
/* f. Compare the value of TPKT saved in step b to
* value read in step e. Also compare bits [9:15] of
* the register at offset 0x32C saved in step d to the
* value of bits [9:15] saved in step e. If the two
* registers values are unchanged, then the transmit
* portion of the dTSEC controller is locked up and
* the user should proceed to the recover sequence.
*/
if ((tpkt1 == tpkt2) && ((tmp_reg1 & 0x007F0000) ==
(tmp_reg2 & 0x007F0000))) {
/* recover sequence */
/* a.Write a 1 to RCTRL[GRS] */
iowrite32be(ioread32be(&regs->rctrl) |
RCTRL_GRS, &regs->rctrl);
/* b.Wait until IEVENT[GRSC]=1, or at least
* 100 us has elapsed.
*/
for (i = 0; i < 100; i++) {
if (ioread32be(&regs->ievent) &
DTSEC_IMASK_GRSCEN)
break;
udelay(1);
}
if (ioread32be(&regs->ievent) &
DTSEC_IMASK_GRSCEN)
iowrite32be(DTSEC_IMASK_GRSCEN,
&regs->ievent);
else
pr_debug("Rx lockup due to Tx lockup\n");
/* c.Write a 1 to bit n of FM_RSTC
* (offset 0x0CC of FPM)
*/
fman_reset_mac(dtsec->fm, dtsec->mac_id);
/* d.Wait 4 Tx clocks (32 ns) */
udelay(1);
/* e.Write a 0 to bit n of FM_RSTC. */
/* cleared by FMAN
*/
}
}
dtsec->exception_cb(dtsec->dev_id, FM_MAC_EX_1G_TX_FIFO_UNDRN);
}
if (event & DTSEC_IMASK_MAGEN)
dtsec->exception_cb(dtsec->dev_id, FM_MAC_EX_1G_MAG_PCKT);
if (event & DTSEC_IMASK_GRSCEN)
dtsec->exception_cb(dtsec->dev_id,
FM_MAC_EX_1G_GRATEFUL_RX_STP_COMPLET);
if (event & DTSEC_IMASK_TDPEEN)
dtsec->exception_cb(dtsec->dev_id, FM_MAC_EX_1G_DATA_ERR);
if (event & DTSEC_IMASK_RDPEEN)
dtsec->exception_cb(dtsec->dev_id, FM_MAC_1G_RX_DATA_ERR);
/* masked interrupts */
WARN_ON(event & DTSEC_IMASK_ABRTEN);
WARN_ON(event & DTSEC_IMASK_IFERREN);
}
static void dtsec_1588_isr(void *handle)
{
struct fman_mac *dtsec = (struct fman_mac *)handle;
struct dtsec_regs __iomem *regs = dtsec->regs;
u32 event;
if (dtsec->ptp_tsu_enabled) {
event = ioread32be(&regs->tmr_pevent);
event &= ioread32be(&regs->tmr_pemask);
if (event) {
iowrite32be(event, &regs->tmr_pevent);
WARN_ON(event & TMR_PEVENT_TSRE);
dtsec->exception_cb(dtsec->dev_id,
FM_MAC_EX_1G_1588_TS_RX_ERR);
}
}
}
static void free_init_resources(struct fman_mac *dtsec)
{
fman_unregister_intr(dtsec->fm, FMAN_MOD_MAC, dtsec->mac_id,
FMAN_INTR_TYPE_ERR);
fman_unregister_intr(dtsec->fm, FMAN_MOD_MAC, dtsec->mac_id,
FMAN_INTR_TYPE_NORMAL);
/* release the driver's group hash table */
free_hash_table(dtsec->multicast_addr_hash);
dtsec->multicast_addr_hash = NULL;
/* release the driver's individual hash table */
free_hash_table(dtsec->unicast_addr_hash);
dtsec->unicast_addr_hash = NULL;
}
int dtsec_cfg_max_frame_len(struct fman_mac *dtsec, u16 new_val)
{
if (is_init_done(dtsec->dtsec_drv_param))
return -EINVAL;
dtsec->dtsec_drv_param->maximum_frame = new_val;
return 0;
}
int dtsec_cfg_pad_and_crc(struct fman_mac *dtsec, bool new_val)
{
if (is_init_done(dtsec->dtsec_drv_param))
return -EINVAL;
dtsec->dtsec_drv_param->tx_pad_crc = new_val;
return 0;
}
static void graceful_start(struct fman_mac *dtsec, enum comm_mode mode)
{
struct dtsec_regs __iomem *regs = dtsec->regs;
if (mode & COMM_MODE_TX)
iowrite32be(ioread32be(&regs->tctrl) &
~TCTRL_GTS, &regs->tctrl);
if (mode & COMM_MODE_RX)
iowrite32be(ioread32be(&regs->rctrl) &
~RCTRL_GRS, &regs->rctrl);
}
static void graceful_stop(struct fman_mac *dtsec, enum comm_mode mode)
{
struct dtsec_regs __iomem *regs = dtsec->regs;
u32 tmp;
/* Graceful stop - Assert the graceful Rx stop bit */
if (mode & COMM_MODE_RX) {
tmp = ioread32be(&regs->rctrl) | RCTRL_GRS;
iowrite32be(tmp, &regs->rctrl);
if (dtsec->fm_rev_info.major == 2) {
/* Workaround for dTSEC Errata A002 */
usleep_range(100, 200);
} else {
/* Workaround for dTSEC Errata A004839 */
usleep_range(10, 50);
}
}
/* Graceful stop - Assert the graceful Tx stop bit */
if (mode & COMM_MODE_TX) {
if (dtsec->fm_rev_info.major == 2) {
/* dTSEC Errata A004: Do not use TCTRL[GTS]=1 */
pr_debug("GTS not supported due to DTSEC_A004 Errata.\n");
} else {
tmp = ioread32be(&regs->tctrl) | TCTRL_GTS;
iowrite32be(tmp, &regs->tctrl);
/* Workaround for dTSEC Errata A0012, A0014 */
usleep_range(10, 50);
}
}
}
int dtsec_enable(struct fman_mac *dtsec, enum comm_mode mode)
{
struct dtsec_regs __iomem *regs = dtsec->regs;
u32 tmp;
if (!is_init_done(dtsec->dtsec_drv_param))
return -EINVAL;
/* Enable */
tmp = ioread32be(&regs->maccfg1);
if (mode & COMM_MODE_RX)
tmp |= MACCFG1_RX_EN;
if (mode & COMM_MODE_TX)
tmp |= MACCFG1_TX_EN;
iowrite32be(tmp, &regs->maccfg1);
/* Graceful start - clear the graceful Rx/Tx stop bit */
graceful_start(dtsec, mode);
return 0;
}
int dtsec_disable(struct fman_mac *dtsec, enum comm_mode mode)
{
struct dtsec_regs __iomem *regs = dtsec->regs;
u32 tmp;
if (!is_init_done(dtsec->dtsec_drv_param))
return -EINVAL;
/* Graceful stop - Assert the graceful Rx/Tx stop bit */
graceful_stop(dtsec, mode);
tmp = ioread32be(&regs->maccfg1);
if (mode & COMM_MODE_RX)
tmp &= ~MACCFG1_RX_EN;
if (mode & COMM_MODE_TX)
tmp &= ~MACCFG1_TX_EN;
iowrite32be(tmp, &regs->maccfg1);
return 0;
}
int dtsec_set_tx_pause_frames(struct fman_mac *dtsec,
u8 __maybe_unused priority,
u16 pause_time, u16 __maybe_unused thresh_time)
{
struct dtsec_regs __iomem *regs = dtsec->regs;
enum comm_mode mode = COMM_MODE_NONE;
u32 ptv = 0;
if (!is_init_done(dtsec->dtsec_drv_param))
return -EINVAL;
if ((ioread32be(&regs->rctrl) & RCTRL_GRS) == 0)
mode |= COMM_MODE_RX;
if ((ioread32be(&regs->tctrl) & TCTRL_GTS) == 0)
mode |= COMM_MODE_TX;
graceful_stop(dtsec, mode);
if (pause_time) {
/* FM_BAD_TX_TS_IN_B_2_B_ERRATA_DTSEC_A003 Errata workaround */
if (dtsec->fm_rev_info.major == 2 && pause_time <= 320) {
pr_warn("pause-time: %d illegal.Should be > 320\n",
pause_time);
return -EINVAL;
}
ptv = ioread32be(&regs->ptv);
ptv &= PTV_PTE_MASK;
ptv |= pause_time & PTV_PT_MASK;
iowrite32be(ptv, &regs->ptv);
/* trigger the transmission of a flow-control pause frame */
iowrite32be(ioread32be(&regs->maccfg1) | MACCFG1_TX_FLOW,
&regs->maccfg1);
} else
iowrite32be(ioread32be(&regs->maccfg1) & ~MACCFG1_TX_FLOW,
&regs->maccfg1);
graceful_start(dtsec, mode);
return 0;
}
int dtsec_accept_rx_pause_frames(struct fman_mac *dtsec, bool en)
{
struct dtsec_regs __iomem *regs = dtsec->regs;
enum comm_mode mode = COMM_MODE_NONE;
u32 tmp;
if (!is_init_done(dtsec->dtsec_drv_param))
return -EINVAL;
if ((ioread32be(&regs->rctrl) & RCTRL_GRS) == 0)
mode |= COMM_MODE_RX;
if ((ioread32be(&regs->tctrl) & TCTRL_GTS) == 0)
mode |= COMM_MODE_TX;
graceful_stop(dtsec, mode);
tmp = ioread32be(&regs->maccfg1);
if (en)
tmp |= MACCFG1_RX_FLOW;
else
tmp &= ~MACCFG1_RX_FLOW;
iowrite32be(tmp, &regs->maccfg1);
graceful_start(dtsec, mode);
return 0;
}
int dtsec_modify_mac_address(struct fman_mac *dtsec, enet_addr_t *enet_addr)
{
struct dtsec_regs __iomem *regs = dtsec->regs;
enum comm_mode mode = COMM_MODE_NONE;
if (!is_init_done(dtsec->dtsec_drv_param))
return -EINVAL;
if ((ioread32be(&regs->rctrl) & RCTRL_GRS) == 0)
mode |= COMM_MODE_RX;
if ((ioread32be(&regs->tctrl) & TCTRL_GTS) == 0)
mode |= COMM_MODE_TX;
graceful_stop(dtsec, mode);
/* Initialize MAC Station Address registers (1 & 2)
* Station address have to be swapped (big endian to little endian
*/
dtsec->addr = ENET_ADDR_TO_UINT64(*enet_addr);
set_mac_address(dtsec->regs, (u8 *)(*enet_addr));
graceful_start(dtsec, mode);
return 0;
}
int dtsec_add_hash_mac_address(struct fman_mac *dtsec, enet_addr_t *eth_addr)
{
struct dtsec_regs __iomem *regs = dtsec->regs;
struct eth_hash_entry *hash_entry;
u64 addr;
s32 bucket;
u32 crc = 0xFFFFFFFF;
bool mcast, ghtx;
if (!is_init_done(dtsec->dtsec_drv_param))
return -EINVAL;
addr = ENET_ADDR_TO_UINT64(*eth_addr);
ghtx = (bool)((ioread32be(&regs->rctrl) & RCTRL_GHTX) ? true : false);
mcast = (bool)((addr & MAC_GROUP_ADDRESS) ? true : false);
/* Cannot handle unicast mac addr when GHTX is on */
if (ghtx && !mcast) {
pr_err("Could not compute hash bucket\n");
return -EINVAL;
}
crc = crc32_le(crc, (u8 *)eth_addr, ETH_ALEN);
crc = bitrev32(crc);
/* considering the 9 highest order bits in crc H[8:0]:
*if ghtx = 0 H[8:6] (highest order 3 bits) identify the hash register
*and H[5:1] (next 5 bits) identify the hash bit
*if ghts = 1 H[8:5] (highest order 4 bits) identify the hash register
*and H[4:0] (next 5 bits) identify the hash bit.
*
*In bucket index output the low 5 bits identify the hash register
*bit, while the higher 4 bits identify the hash register
*/
if (ghtx) {
bucket = (s32)((crc >> 23) & 0x1ff);
} else {
bucket = (s32)((crc >> 24) & 0xff);
/* if !ghtx and mcast the bit must be set in gaddr instead of
*igaddr.
*/
if (mcast)
bucket += 0x100;
}
set_bucket(dtsec->regs, bucket, true);
/* Create element to be added to the driver hash table */
hash_entry = kmalloc(sizeof(*hash_entry), GFP_ATOMIC);
if (!hash_entry)
return -ENOMEM;
hash_entry->addr = addr;
INIT_LIST_HEAD(&hash_entry->node);
if (addr & MAC_GROUP_ADDRESS)
/* Group Address */
list_add_tail(&hash_entry->node,
&dtsec->multicast_addr_hash->lsts[bucket]);
else
list_add_tail(&hash_entry->node,
&dtsec->unicast_addr_hash->lsts[bucket]);
return 0;
}
int dtsec_set_allmulti(struct fman_mac *dtsec, bool enable)
{
u32 tmp;
struct dtsec_regs __iomem *regs = dtsec->regs;
if (!is_init_done(dtsec->dtsec_drv_param))
return -EINVAL;
tmp = ioread32be(&regs->rctrl);
if (enable)
tmp |= RCTRL_MPROM;
else
tmp &= ~RCTRL_MPROM;
iowrite32be(tmp, &regs->rctrl);
return 0;
}
int dtsec_set_tstamp(struct fman_mac *dtsec, bool enable)
{
struct dtsec_regs __iomem *regs = dtsec->regs;
u32 rctrl, tctrl;
if (!is_init_done(dtsec->dtsec_drv_param))
return -EINVAL;
rctrl = ioread32be(&regs->rctrl);
tctrl = ioread32be(&regs->tctrl);
if (enable) {
rctrl |= RCTRL_RTSE;
tctrl |= TCTRL_TTSE;
} else {
rctrl &= ~RCTRL_RTSE;
tctrl &= ~TCTRL_TTSE;
}
iowrite32be(rctrl, &regs->rctrl);
iowrite32be(tctrl, &regs->tctrl);
return 0;
}
int dtsec_del_hash_mac_address(struct fman_mac *dtsec, enet_addr_t *eth_addr)
{
struct dtsec_regs __iomem *regs = dtsec->regs;
struct list_head *pos;
struct eth_hash_entry *hash_entry = NULL;
u64 addr;
s32 bucket;
u32 crc = 0xFFFFFFFF;
bool mcast, ghtx;
if (!is_init_done(dtsec->dtsec_drv_param))
return -EINVAL;
addr = ENET_ADDR_TO_UINT64(*eth_addr);
ghtx = (bool)((ioread32be(&regs->rctrl) & RCTRL_GHTX) ? true : false);
mcast = (bool)((addr & MAC_GROUP_ADDRESS) ? true : false);
/* Cannot handle unicast mac addr when GHTX is on */
if (ghtx && !mcast) {
pr_err("Could not compute hash bucket\n");
return -EINVAL;
}
crc = crc32_le(crc, (u8 *)eth_addr, ETH_ALEN);
crc = bitrev32(crc);
if (ghtx) {
bucket = (s32)((crc >> 23) & 0x1ff);
} else {
bucket = (s32)((crc >> 24) & 0xff);
/* if !ghtx and mcast the bit must be set
* in gaddr instead of igaddr.
*/
if (mcast)
bucket += 0x100;
}
if (addr & MAC_GROUP_ADDRESS) {
/* Group Address */
list_for_each(pos,
&dtsec->multicast_addr_hash->lsts[bucket]) {
hash_entry = ETH_HASH_ENTRY_OBJ(pos);
if (hash_entry && hash_entry->addr == addr) {
list_del_init(&hash_entry->node);
kfree(hash_entry);
break;
}
}
if (list_empty(&dtsec->multicast_addr_hash->lsts[bucket]))
set_bucket(dtsec->regs, bucket, false);
} else {
/* Individual Address */
list_for_each(pos,
&dtsec->unicast_addr_hash->lsts[bucket]) {
hash_entry = ETH_HASH_ENTRY_OBJ(pos);
if (hash_entry && hash_entry->addr == addr) {
list_del_init(&hash_entry->node);
kfree(hash_entry);
break;
}
}
if (list_empty(&dtsec->unicast_addr_hash->lsts[bucket]))
set_bucket(dtsec->regs, bucket, false);
}
/* address does not exist */
WARN_ON(!hash_entry);
return 0;
}
int dtsec_set_promiscuous(struct fman_mac *dtsec, bool new_val)
{
struct dtsec_regs __iomem *regs = dtsec->regs;
u32 tmp;
if (!is_init_done(dtsec->dtsec_drv_param))
return -EINVAL;
/* Set unicast promiscuous */
tmp = ioread32be(&regs->rctrl);
if (new_val)
tmp |= RCTRL_UPROM;
else
tmp &= ~RCTRL_UPROM;
iowrite32be(tmp, &regs->rctrl);
/* Set multicast promiscuous */
tmp = ioread32be(&regs->rctrl);
if (new_val)
tmp |= RCTRL_MPROM;
else
tmp &= ~RCTRL_MPROM;
iowrite32be(tmp, &regs->rctrl);
return 0;
}
int dtsec_adjust_link(struct fman_mac *dtsec, u16 speed)
{
struct dtsec_regs __iomem *regs = dtsec->regs;
enum comm_mode mode = COMM_MODE_NONE;
u32 tmp;
if (!is_init_done(dtsec->dtsec_drv_param))
return -EINVAL;
if ((ioread32be(&regs->rctrl) & RCTRL_GRS) == 0)
mode |= COMM_MODE_RX;
if ((ioread32be(&regs->tctrl) & TCTRL_GTS) == 0)
mode |= COMM_MODE_TX;
graceful_stop(dtsec, mode);
tmp = ioread32be(&regs->maccfg2);
/* Full Duplex */
tmp |= MACCFG2_FULL_DUPLEX;
tmp &= ~(MACCFG2_NIBBLE_MODE | MACCFG2_BYTE_MODE);
if (speed < SPEED_1000)
tmp |= MACCFG2_NIBBLE_MODE;
else if (speed == SPEED_1000)
tmp |= MACCFG2_BYTE_MODE;
iowrite32be(tmp, &regs->maccfg2);
tmp = ioread32be(&regs->ecntrl);
if (speed == SPEED_100)
tmp |= DTSEC_ECNTRL_R100M;
else
tmp &= ~DTSEC_ECNTRL_R100M;
iowrite32be(tmp, &regs->ecntrl);
graceful_start(dtsec, mode);
return 0;
}
int dtsec_restart_autoneg(struct fman_mac *dtsec)
{
u16 tmp_reg16;
if (!is_init_done(dtsec->dtsec_drv_param))
return -EINVAL;
tmp_reg16 = phy_read(dtsec->tbiphy, MII_BMCR);
tmp_reg16 &= ~(BMCR_SPEED100 | BMCR_SPEED1000);
tmp_reg16 |= (BMCR_ANENABLE | BMCR_ANRESTART |
BMCR_FULLDPLX | BMCR_SPEED1000);
phy_write(dtsec->tbiphy, MII_BMCR, tmp_reg16);
return 0;
}
int dtsec_get_version(struct fman_mac *dtsec, u32 *mac_version)
{
struct dtsec_regs __iomem *regs = dtsec->regs;
if (!is_init_done(dtsec->dtsec_drv_param))
return -EINVAL;
*mac_version = ioread32be(&regs->tsec_id);
return 0;
}
int dtsec_set_exception(struct fman_mac *dtsec,
enum fman_mac_exceptions exception, bool enable)
{
struct dtsec_regs __iomem *regs = dtsec->regs;
u32 bit_mask = 0;
if (!is_init_done(dtsec->dtsec_drv_param))
return -EINVAL;
if (exception != FM_MAC_EX_1G_1588_TS_RX_ERR) {
bit_mask = get_exception_flag(exception);
if (bit_mask) {
if (enable)
dtsec->exceptions |= bit_mask;
else
dtsec->exceptions &= ~bit_mask;
} else {
pr_err("Undefined exception\n");
return -EINVAL;
}
if (enable)
iowrite32be(ioread32be(&regs->imask) | bit_mask,
&regs->imask);
else
iowrite32be(ioread32be(&regs->imask) & ~bit_mask,
&regs->imask);
} else {
if (!dtsec->ptp_tsu_enabled) {
pr_err("Exception valid for 1588 only\n");
return -EINVAL;
}
switch (exception) {
case FM_MAC_EX_1G_1588_TS_RX_ERR:
if (enable) {
dtsec->en_tsu_err_exception = true;
iowrite32be(ioread32be(&regs->tmr_pemask) |
TMR_PEMASK_TSREEN,
&regs->tmr_pemask);
} else {
dtsec->en_tsu_err_exception = false;
iowrite32be(ioread32be(&regs->tmr_pemask) &
~TMR_PEMASK_TSREEN,
&regs->tmr_pemask);
}
break;
default:
pr_err("Undefined exception\n");
return -EINVAL;
}
}
return 0;
}
int dtsec_init(struct fman_mac *dtsec)
{
struct dtsec_regs __iomem *regs = dtsec->regs;
struct dtsec_cfg *dtsec_drv_param;
u16 max_frm_ln;
int err;
if (is_init_done(dtsec->dtsec_drv_param))
return -EINVAL;
if (DEFAULT_RESET_ON_INIT &&
(fman_reset_mac(dtsec->fm, dtsec->mac_id) != 0)) {
pr_err("Can't reset MAC!\n");
return -EINVAL;
}
err = check_init_parameters(dtsec);
if (err)
return err;
dtsec_drv_param = dtsec->dtsec_drv_param;
err = init(dtsec->regs, dtsec_drv_param, dtsec->phy_if,
dtsec->max_speed, dtsec->addr, dtsec->exceptions,
dtsec->tbiphy->mdio.addr);
if (err) {
free_init_resources(dtsec);
pr_err("DTSEC version doesn't support this i/f mode\n");
return err;
}
if (dtsec->phy_if == PHY_INTERFACE_MODE_SGMII) {
u16 tmp_reg16;
/* Configure the TBI PHY Control Register */
tmp_reg16 = TBICON_CLK_SELECT | TBICON_SOFT_RESET;
phy_write(dtsec->tbiphy, MII_TBICON, tmp_reg16);
tmp_reg16 = TBICON_CLK_SELECT;
phy_write(dtsec->tbiphy, MII_TBICON, tmp_reg16);
tmp_reg16 = (BMCR_RESET | BMCR_ANENABLE |
BMCR_FULLDPLX | BMCR_SPEED1000);
phy_write(dtsec->tbiphy, MII_BMCR, tmp_reg16);
if (dtsec->basex_if)
tmp_reg16 = TBIANA_1000X;
else
tmp_reg16 = TBIANA_SGMII;
phy_write(dtsec->tbiphy, MII_ADVERTISE, tmp_reg16);
tmp_reg16 = (BMCR_ANENABLE | BMCR_ANRESTART |
BMCR_FULLDPLX | BMCR_SPEED1000);
phy_write(dtsec->tbiphy, MII_BMCR, tmp_reg16);
}
/* Max Frame Length */
max_frm_ln = (u16)ioread32be(&regs->maxfrm);
err = fman_set_mac_max_frame(dtsec->fm, dtsec->mac_id, max_frm_ln);
if (err) {
pr_err("Setting max frame length failed\n");
free_init_resources(dtsec);
return -EINVAL;
}
dtsec->multicast_addr_hash =
alloc_hash_table(EXTENDED_HASH_TABLE_SIZE);
if (!dtsec->multicast_addr_hash) {
free_init_resources(dtsec);
pr_err("MC hash table is failed\n");
return -ENOMEM;
}
dtsec->unicast_addr_hash = alloc_hash_table(DTSEC_HASH_TABLE_SIZE);
if (!dtsec->unicast_addr_hash) {
free_init_resources(dtsec);
pr_err("UC hash table is failed\n");
return -ENOMEM;
}
/* register err intr handler for dtsec to FPM (err) */
fman_register_intr(dtsec->fm, FMAN_MOD_MAC, dtsec->mac_id,
FMAN_INTR_TYPE_ERR, dtsec_isr, dtsec);
/* register 1588 intr handler for TMR to FPM (normal) */
fman_register_intr(dtsec->fm, FMAN_MOD_MAC, dtsec->mac_id,
FMAN_INTR_TYPE_NORMAL, dtsec_1588_isr, dtsec);
kfree(dtsec_drv_param);
dtsec->dtsec_drv_param = NULL;
return 0;
}
int dtsec_free(struct fman_mac *dtsec)
{
free_init_resources(dtsec);
kfree(dtsec->dtsec_drv_param);
dtsec->dtsec_drv_param = NULL;
kfree(dtsec);
return 0;
}
struct fman_mac *dtsec_config(struct fman_mac_params *params)
{
struct fman_mac *dtsec;
struct dtsec_cfg *dtsec_drv_param;
void __iomem *base_addr;
base_addr = params->base_addr;
/* allocate memory for the UCC GETH data structure. */
dtsec = kzalloc(sizeof(*dtsec), GFP_KERNEL);
if (!dtsec)
return NULL;
/* allocate memory for the d_tsec driver parameters data structure. */
dtsec_drv_param = kzalloc(sizeof(*dtsec_drv_param), GFP_KERNEL);
if (!dtsec_drv_param)
goto err_dtsec;
/* Plant parameter structure pointer */
dtsec->dtsec_drv_param = dtsec_drv_param;
set_dflts(dtsec_drv_param);
dtsec->regs = base_addr;
dtsec->addr = ENET_ADDR_TO_UINT64(params->addr);
dtsec->max_speed = params->max_speed;
dtsec->phy_if = params->phy_if;
dtsec->mac_id = params->mac_id;
dtsec->exceptions = (DTSEC_IMASK_BREN |
DTSEC_IMASK_RXCEN |
DTSEC_IMASK_BTEN |
DTSEC_IMASK_TXCEN |
DTSEC_IMASK_TXEEN |
DTSEC_IMASK_ABRTEN |
DTSEC_IMASK_LCEN |
DTSEC_IMASK_CRLEN |
DTSEC_IMASK_XFUNEN |
DTSEC_IMASK_IFERREN |
DTSEC_IMASK_MAGEN |
DTSEC_IMASK_TDPEEN |
DTSEC_IMASK_RDPEEN);
dtsec->exception_cb = params->exception_cb;
dtsec->event_cb = params->event_cb;
dtsec->dev_id = params->dev_id;
dtsec->ptp_tsu_enabled = dtsec->dtsec_drv_param->ptp_tsu_en;
dtsec->en_tsu_err_exception = dtsec->dtsec_drv_param->ptp_exception_en;
dtsec->fm = params->fm;
dtsec->basex_if = params->basex_if;
if (!params->internal_phy_node) {
pr_err("TBI PHY node is not available\n");
goto err_dtsec_drv_param;
}
dtsec->tbiphy = of_phy_find_device(params->internal_phy_node);
if (!dtsec->tbiphy) {
pr_err("of_phy_find_device (TBI PHY) failed\n");
goto err_dtsec_drv_param;
}
put_device(&dtsec->tbiphy->mdio.dev);
/* Save FMan revision */
fman_get_revision(dtsec->fm, &dtsec->fm_rev_info);
return dtsec;
err_dtsec_drv_param:
kfree(dtsec_drv_param);
err_dtsec:
kfree(dtsec);
return NULL;
}