mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-07 22:34:18 +08:00
ce3497e207
Add support for receive timestamping. When enabled, the hardware adds a timestamp into the receive queue descriptor for all received packets with no filtering. Hence, we can only support NONE or ALL receive filter modes. The timestamp in the receive queue contains two bit sof seconds and the full nanosecond timestamp. This has to be merged with the remainder of the seconds from the TAI clock to arrive at a full timestamp before we can convert it to a ktime for the skb hardware timestamp field. Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk> Acked-by: Richard Cochran <richardcochran@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
458 lines
13 KiB
C
458 lines
13 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Marvell PP2.2 TAI support
|
|
*
|
|
* Note:
|
|
* Do NOT use the event capture support.
|
|
* Do Not even set the MPP muxes to allow PTP_EVENT_REQ to be used.
|
|
* It will disrupt the operation of this driver, and there is nothing
|
|
* that this driver can do to prevent that. Even using PTP_EVENT_REQ
|
|
* as an output will be seen as a trigger input, which can't be masked.
|
|
* When ever a trigger input is seen, the action in the TCFCR0_TCF
|
|
* field will be performed - whether it is a set, increment, decrement
|
|
* read, or frequency update.
|
|
*
|
|
* Other notes (useful, not specified in the documentation):
|
|
* - PTP_PULSE_OUT (PTP_EVENT_REQ MPP)
|
|
* It looks like the hardware can't generate a pulse at nsec=0. (The
|
|
* output doesn't trigger if the nsec field is zero.)
|
|
* Note: when configured as an output via the register at 0xfX441120,
|
|
* the input is still very much alive, and will trigger the current TCF
|
|
* function.
|
|
* - PTP_CLK_OUT (PTP_TRIG_GEN MPP)
|
|
* This generates a "PPS" signal determined by the CCC registers. It
|
|
* seems this is not aligned to the TOD counter in any way (it may be
|
|
* initially, but if you specify a non-round second interval, it won't,
|
|
* and you can't easily get it back.)
|
|
* - PTP_PCLK_OUT
|
|
* This generates a 50% duty cycle clock based on the TOD counter, and
|
|
* seems it can be set to any period of 1ns resolution. It is probably
|
|
* limited by the TOD step size. Its period is defined by the PCLK_CCC
|
|
* registers. Again, its alignment to the second is questionable.
|
|
*
|
|
* Consequently, we support none of these.
|
|
*/
|
|
#include <linux/io.h>
|
|
#include <linux/ptp_clock_kernel.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include "mvpp2.h"
|
|
|
|
#define CR0_SW_NRESET BIT(0)
|
|
|
|
#define TCFCR0_PHASE_UPDATE_ENABLE BIT(8)
|
|
#define TCFCR0_TCF_MASK (7 << 2)
|
|
#define TCFCR0_TCF_UPDATE (0 << 2)
|
|
#define TCFCR0_TCF_FREQUPDATE (1 << 2)
|
|
#define TCFCR0_TCF_INCREMENT (2 << 2)
|
|
#define TCFCR0_TCF_DECREMENT (3 << 2)
|
|
#define TCFCR0_TCF_CAPTURE (4 << 2)
|
|
#define TCFCR0_TCF_NOP (7 << 2)
|
|
#define TCFCR0_TCF_TRIGGER BIT(0)
|
|
|
|
#define TCSR_CAPTURE_1_VALID BIT(1)
|
|
#define TCSR_CAPTURE_0_VALID BIT(0)
|
|
|
|
struct mvpp2_tai {
|
|
struct ptp_clock_info caps;
|
|
struct ptp_clock *ptp_clock;
|
|
void __iomem *base;
|
|
spinlock_t lock;
|
|
u64 period; // nanosecond period in 32.32 fixed point
|
|
/* This timestamp is updated every two seconds */
|
|
struct timespec64 stamp;
|
|
};
|
|
|
|
static void mvpp2_tai_modify(void __iomem *reg, u32 mask, u32 set)
|
|
{
|
|
u32 val;
|
|
|
|
val = readl_relaxed(reg) & ~mask;
|
|
val |= set & mask;
|
|
writel(val, reg);
|
|
}
|
|
|
|
static void mvpp2_tai_write(u32 val, void __iomem *reg)
|
|
{
|
|
writel_relaxed(val & 0xffff, reg);
|
|
}
|
|
|
|
static u32 mvpp2_tai_read(void __iomem *reg)
|
|
{
|
|
return readl_relaxed(reg) & 0xffff;
|
|
}
|
|
|
|
static struct mvpp2_tai *ptp_to_tai(struct ptp_clock_info *ptp)
|
|
{
|
|
return container_of(ptp, struct mvpp2_tai, caps);
|
|
}
|
|
|
|
static void mvpp22_tai_read_ts(struct timespec64 *ts, void __iomem *base)
|
|
{
|
|
ts->tv_sec = (u64)mvpp2_tai_read(base + 0) << 32 |
|
|
mvpp2_tai_read(base + 4) << 16 |
|
|
mvpp2_tai_read(base + 8);
|
|
|
|
ts->tv_nsec = mvpp2_tai_read(base + 12) << 16 |
|
|
mvpp2_tai_read(base + 16);
|
|
|
|
/* Read and discard fractional part */
|
|
readl_relaxed(base + 20);
|
|
readl_relaxed(base + 24);
|
|
}
|
|
|
|
static void mvpp2_tai_write_tlv(const struct timespec64 *ts, u32 frac,
|
|
void __iomem *base)
|
|
{
|
|
mvpp2_tai_write(ts->tv_sec >> 32, base + MVPP22_TAI_TLV_SEC_HIGH);
|
|
mvpp2_tai_write(ts->tv_sec >> 16, base + MVPP22_TAI_TLV_SEC_MED);
|
|
mvpp2_tai_write(ts->tv_sec, base + MVPP22_TAI_TLV_SEC_LOW);
|
|
mvpp2_tai_write(ts->tv_nsec >> 16, base + MVPP22_TAI_TLV_NANO_HIGH);
|
|
mvpp2_tai_write(ts->tv_nsec, base + MVPP22_TAI_TLV_NANO_LOW);
|
|
mvpp2_tai_write(frac >> 16, base + MVPP22_TAI_TLV_FRAC_HIGH);
|
|
mvpp2_tai_write(frac, base + MVPP22_TAI_TLV_FRAC_LOW);
|
|
}
|
|
|
|
static void mvpp2_tai_op(u32 op, void __iomem *base)
|
|
{
|
|
/* Trigger the operation. Note that an external unmaskable
|
|
* event on PTP_EVENT_REQ will also trigger this action.
|
|
*/
|
|
mvpp2_tai_modify(base + MVPP22_TAI_TCFCR0,
|
|
TCFCR0_TCF_MASK | TCFCR0_TCF_TRIGGER,
|
|
op | TCFCR0_TCF_TRIGGER);
|
|
mvpp2_tai_modify(base + MVPP22_TAI_TCFCR0, TCFCR0_TCF_MASK,
|
|
TCFCR0_TCF_NOP);
|
|
}
|
|
|
|
/* The adjustment has a range of +0.5ns to -0.5ns in 2^32 steps, so has units
|
|
* of 2^-32 ns.
|
|
*
|
|
* units(s) = 1 / (2^32 * 10^9)
|
|
* fractional = abs_scaled_ppm / (2^16 * 10^6)
|
|
*
|
|
* What we want to achieve:
|
|
* freq_adjusted = freq_nominal * (1 + fractional)
|
|
* freq_delta = freq_adjusted - freq_nominal => positive = faster
|
|
* freq_delta = freq_nominal * (1 + fractional) - freq_nominal
|
|
* So: freq_delta = freq_nominal * fractional
|
|
*
|
|
* However, we are dealing with periods, so:
|
|
* period_adjusted = period_nominal / (1 + fractional)
|
|
* period_delta = period_nominal - period_adjusted => positive = faster
|
|
* period_delta = period_nominal * fractional / (1 + fractional)
|
|
*
|
|
* Hence:
|
|
* period_delta = period_nominal * abs_scaled_ppm /
|
|
* (2^16 * 10^6 + abs_scaled_ppm)
|
|
*
|
|
* To avoid overflow, we reduce both sides of the divide operation by a factor
|
|
* of 16.
|
|
*/
|
|
static u64 mvpp22_calc_frac_ppm(struct mvpp2_tai *tai, long abs_scaled_ppm)
|
|
{
|
|
u64 val = tai->period * abs_scaled_ppm >> 4;
|
|
|
|
return div_u64(val, (1000000 << 12) + (abs_scaled_ppm >> 4));
|
|
}
|
|
|
|
static s32 mvpp22_calc_max_adj(struct mvpp2_tai *tai)
|
|
{
|
|
return 1000000;
|
|
}
|
|
|
|
static int mvpp22_tai_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
|
|
{
|
|
struct mvpp2_tai *tai = ptp_to_tai(ptp);
|
|
unsigned long flags;
|
|
void __iomem *base;
|
|
bool neg_adj;
|
|
s32 frac;
|
|
u64 val;
|
|
|
|
neg_adj = scaled_ppm < 0;
|
|
if (neg_adj)
|
|
scaled_ppm = -scaled_ppm;
|
|
|
|
val = mvpp22_calc_frac_ppm(tai, scaled_ppm);
|
|
|
|
/* Convert to a signed 32-bit adjustment */
|
|
if (neg_adj) {
|
|
/* -S32_MIN warns, -val < S32_MIN fails, so go for the easy
|
|
* solution.
|
|
*/
|
|
if (val > 0x80000000)
|
|
return -ERANGE;
|
|
|
|
frac = -val;
|
|
} else {
|
|
if (val > S32_MAX)
|
|
return -ERANGE;
|
|
|
|
frac = val;
|
|
}
|
|
|
|
base = tai->base;
|
|
spin_lock_irqsave(&tai->lock, flags);
|
|
mvpp2_tai_write(frac >> 16, base + MVPP22_TAI_TLV_FRAC_HIGH);
|
|
mvpp2_tai_write(frac, base + MVPP22_TAI_TLV_FRAC_LOW);
|
|
mvpp2_tai_op(TCFCR0_TCF_FREQUPDATE, base);
|
|
spin_unlock_irqrestore(&tai->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mvpp22_tai_adjtime(struct ptp_clock_info *ptp, s64 delta)
|
|
{
|
|
struct mvpp2_tai *tai = ptp_to_tai(ptp);
|
|
struct timespec64 ts;
|
|
unsigned long flags;
|
|
void __iomem *base;
|
|
u32 tcf;
|
|
|
|
/* We can't deal with S64_MIN */
|
|
if (delta == S64_MIN)
|
|
return -ERANGE;
|
|
|
|
if (delta < 0) {
|
|
delta = -delta;
|
|
tcf = TCFCR0_TCF_DECREMENT;
|
|
} else {
|
|
tcf = TCFCR0_TCF_INCREMENT;
|
|
}
|
|
|
|
ts = ns_to_timespec64(delta);
|
|
|
|
base = tai->base;
|
|
spin_lock_irqsave(&tai->lock, flags);
|
|
mvpp2_tai_write_tlv(&ts, 0, base);
|
|
mvpp2_tai_op(tcf, base);
|
|
spin_unlock_irqrestore(&tai->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mvpp22_tai_gettimex64(struct ptp_clock_info *ptp,
|
|
struct timespec64 *ts,
|
|
struct ptp_system_timestamp *sts)
|
|
{
|
|
struct mvpp2_tai *tai = ptp_to_tai(ptp);
|
|
unsigned long flags;
|
|
void __iomem *base;
|
|
u32 tcsr;
|
|
int ret;
|
|
|
|
base = tai->base;
|
|
spin_lock_irqsave(&tai->lock, flags);
|
|
/* XXX: the only way to read the PTP time is for the CPU to trigger
|
|
* an event. However, there is no way to distinguish between the CPU
|
|
* triggered event, and an external event on PTP_EVENT_REQ. So this
|
|
* is incompatible with external use of PTP_EVENT_REQ.
|
|
*/
|
|
ptp_read_system_prets(sts);
|
|
mvpp2_tai_modify(base + MVPP22_TAI_TCFCR0,
|
|
TCFCR0_TCF_MASK | TCFCR0_TCF_TRIGGER,
|
|
TCFCR0_TCF_CAPTURE | TCFCR0_TCF_TRIGGER);
|
|
ptp_read_system_postts(sts);
|
|
mvpp2_tai_modify(base + MVPP22_TAI_TCFCR0, TCFCR0_TCF_MASK,
|
|
TCFCR0_TCF_NOP);
|
|
|
|
tcsr = readl(base + MVPP22_TAI_TCSR);
|
|
if (tcsr & TCSR_CAPTURE_1_VALID) {
|
|
mvpp22_tai_read_ts(ts, base + MVPP22_TAI_TCV1_SEC_HIGH);
|
|
ret = 0;
|
|
} else if (tcsr & TCSR_CAPTURE_0_VALID) {
|
|
mvpp22_tai_read_ts(ts, base + MVPP22_TAI_TCV0_SEC_HIGH);
|
|
ret = 0;
|
|
} else {
|
|
/* We don't seem to have a reading... */
|
|
ret = -EBUSY;
|
|
}
|
|
spin_unlock_irqrestore(&tai->lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int mvpp22_tai_settime64(struct ptp_clock_info *ptp,
|
|
const struct timespec64 *ts)
|
|
{
|
|
struct mvpp2_tai *tai = ptp_to_tai(ptp);
|
|
unsigned long flags;
|
|
void __iomem *base;
|
|
|
|
base = tai->base;
|
|
spin_lock_irqsave(&tai->lock, flags);
|
|
mvpp2_tai_write_tlv(ts, 0, base);
|
|
|
|
/* Trigger an update to load the value from the TLV registers
|
|
* into the TOD counter. Note that an external unmaskable event on
|
|
* PTP_EVENT_REQ will also trigger this action.
|
|
*/
|
|
mvpp2_tai_modify(base + MVPP22_TAI_TCFCR0,
|
|
TCFCR0_PHASE_UPDATE_ENABLE |
|
|
TCFCR0_TCF_MASK | TCFCR0_TCF_TRIGGER,
|
|
TCFCR0_TCF_UPDATE | TCFCR0_TCF_TRIGGER);
|
|
mvpp2_tai_modify(base + MVPP22_TAI_TCFCR0, TCFCR0_TCF_MASK,
|
|
TCFCR0_TCF_NOP);
|
|
spin_unlock_irqrestore(&tai->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static long mvpp22_tai_aux_work(struct ptp_clock_info *ptp)
|
|
{
|
|
struct mvpp2_tai *tai = ptp_to_tai(ptp);
|
|
|
|
mvpp22_tai_gettimex64(ptp, &tai->stamp, NULL);
|
|
|
|
return msecs_to_jiffies(2000);
|
|
}
|
|
|
|
static void mvpp22_tai_set_step(struct mvpp2_tai *tai)
|
|
{
|
|
void __iomem *base = tai->base;
|
|
u32 nano, frac;
|
|
|
|
nano = upper_32_bits(tai->period);
|
|
frac = lower_32_bits(tai->period);
|
|
|
|
/* As the fractional nanosecond is a signed offset, if the MSB (sign)
|
|
* bit is set, we have to increment the whole nanoseconds.
|
|
*/
|
|
if (frac >= 0x80000000)
|
|
nano += 1;
|
|
|
|
mvpp2_tai_write(nano, base + MVPP22_TAI_TOD_STEP_NANO_CR);
|
|
mvpp2_tai_write(frac >> 16, base + MVPP22_TAI_TOD_STEP_FRAC_HIGH);
|
|
mvpp2_tai_write(frac, base + MVPP22_TAI_TOD_STEP_FRAC_LOW);
|
|
}
|
|
|
|
static void mvpp22_tai_init(struct mvpp2_tai *tai)
|
|
{
|
|
void __iomem *base = tai->base;
|
|
|
|
mvpp22_tai_set_step(tai);
|
|
|
|
/* Release the TAI reset */
|
|
mvpp2_tai_modify(base + MVPP22_TAI_CR0, CR0_SW_NRESET, CR0_SW_NRESET);
|
|
}
|
|
|
|
int mvpp22_tai_ptp_clock_index(struct mvpp2_tai *tai)
|
|
{
|
|
return ptp_clock_index(tai->ptp_clock);
|
|
}
|
|
|
|
void mvpp22_tai_tstamp(struct mvpp2_tai *tai, u32 tstamp,
|
|
struct skb_shared_hwtstamps *hwtstamp)
|
|
{
|
|
struct timespec64 ts;
|
|
int delta;
|
|
|
|
/* The tstamp consists of 2 bits of seconds and 30 bits of nanoseconds.
|
|
* We use our stored timestamp (tai->stamp) to form a full timestamp,
|
|
* and we must read the seconds exactly once.
|
|
*/
|
|
ts.tv_sec = READ_ONCE(tai->stamp.tv_sec);
|
|
ts.tv_nsec = tstamp & 0x3fffffff;
|
|
|
|
/* Calculate the delta in seconds between our stored timestamp and
|
|
* the value read from the queue. Allow timestamps one second in the
|
|
* past, otherwise consider them to be in the future.
|
|
*/
|
|
delta = ((tstamp >> 30) - (ts.tv_sec & 3)) & 3;
|
|
if (delta == 3)
|
|
delta -= 4;
|
|
ts.tv_sec += delta;
|
|
|
|
memset(hwtstamp, 0, sizeof(*hwtstamp));
|
|
hwtstamp->hwtstamp = timespec64_to_ktime(ts);
|
|
}
|
|
|
|
void mvpp22_tai_start(struct mvpp2_tai *tai)
|
|
{
|
|
long delay;
|
|
|
|
delay = mvpp22_tai_aux_work(&tai->caps);
|
|
|
|
ptp_schedule_worker(tai->ptp_clock, delay);
|
|
}
|
|
|
|
void mvpp22_tai_stop(struct mvpp2_tai *tai)
|
|
{
|
|
ptp_cancel_worker_sync(tai->ptp_clock);
|
|
}
|
|
|
|
static void mvpp22_tai_remove(void *priv)
|
|
{
|
|
struct mvpp2_tai *tai = priv;
|
|
|
|
if (!IS_ERR(tai->ptp_clock))
|
|
ptp_clock_unregister(tai->ptp_clock);
|
|
}
|
|
|
|
int mvpp22_tai_probe(struct device *dev, struct mvpp2 *priv)
|
|
{
|
|
struct mvpp2_tai *tai;
|
|
int ret;
|
|
|
|
tai = devm_kzalloc(dev, sizeof(*tai), GFP_KERNEL);
|
|
if (!tai)
|
|
return -ENOMEM;
|
|
|
|
spin_lock_init(&tai->lock);
|
|
|
|
tai->base = priv->iface_base;
|
|
|
|
/* The step size consists of three registers - a 16-bit nanosecond step
|
|
* size, and a 32-bit fractional nanosecond step size split over two
|
|
* registers. The fractional nanosecond step size has units of 2^-32ns.
|
|
*
|
|
* To calculate this, we calculate:
|
|
* (10^9 + freq / 2) / (freq * 2^-32)
|
|
* which gives us the nanosecond step to the nearest integer in 16.32
|
|
* fixed point format, and the fractional part of the step size with
|
|
* the MSB inverted. With rounding of the fractional nanosecond, and
|
|
* simplification, this becomes:
|
|
* (10^9 << 32 + freq << 31 + (freq + 1) >> 1) / freq
|
|
*
|
|
* So:
|
|
* div = (10^9 << 32 + freq << 31 + (freq + 1) >> 1) / freq
|
|
* nano = upper_32_bits(div);
|
|
* frac = lower_32_bits(div) ^ 0x80000000;
|
|
* Will give the values for the registers.
|
|
*
|
|
* This is all seems perfect, but alas it is not when considering the
|
|
* whole story. The system is clocked from 25MHz, which is multiplied
|
|
* by a PLL to 1GHz, and then divided by three, giving 333333333Hz
|
|
* (recurring). This gives exactly 3ns, but using 333333333Hz with
|
|
* the above gives an error of 13*2^-32ns.
|
|
*
|
|
* Consequently, we use the period rather than calculating from the
|
|
* frequency.
|
|
*/
|
|
tai->period = 3ULL << 32;
|
|
|
|
mvpp22_tai_init(tai);
|
|
|
|
tai->caps.owner = THIS_MODULE;
|
|
strscpy(tai->caps.name, "Marvell PP2.2", sizeof(tai->caps.name));
|
|
tai->caps.max_adj = mvpp22_calc_max_adj(tai);
|
|
tai->caps.adjfine = mvpp22_tai_adjfine;
|
|
tai->caps.adjtime = mvpp22_tai_adjtime;
|
|
tai->caps.gettimex64 = mvpp22_tai_gettimex64;
|
|
tai->caps.settime64 = mvpp22_tai_settime64;
|
|
tai->caps.do_aux_work = mvpp22_tai_aux_work;
|
|
|
|
ret = devm_add_action(dev, mvpp22_tai_remove, tai);
|
|
if (ret)
|
|
return ret;
|
|
|
|
tai->ptp_clock = ptp_clock_register(&tai->caps, dev);
|
|
if (IS_ERR(tai->ptp_clock))
|
|
return PTR_ERR(tai->ptp_clock);
|
|
|
|
priv->tai = tai;
|
|
|
|
return 0;
|
|
}
|