mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-12 05:24:12 +08:00
fd8f58c40b
Add a test which shows a race in the multi-order iteration code. This test reliably hits the race in under a second on my machine, and is the result of a real bug report against kernel a production v4.15 based kernel (4.15.6-300.fc27.x86_64). With a real kernel this issue is hit when using order 9 PMD DAX radix tree entries. The race has to do with how we tear down multi-order sibling entries when we are removing an item from the tree. Remember that an order 2 entry looks like this: struct radix_tree_node.slots[] = [entry][sibling][sibling][sibling] where 'entry' is in some slot in the struct radix_tree_node, and the three slots following 'entry' contain sibling pointers which point back to 'entry.' When we delete 'entry' from the tree, we call : radix_tree_delete() radix_tree_delete_item() __radix_tree_delete() replace_slot() replace_slot() first removes the siblings in order from the first to the last, then at then replaces 'entry' with NULL. This means that for a brief period of time we end up with one or more of the siblings removed, so: struct radix_tree_node.slots[] = [entry][NULL][sibling][sibling] This causes an issue if you have a reader iterating over the slots in the tree via radix_tree_for_each_slot() while only under rcu_read_lock()/rcu_read_unlock() protection. This is a common case in mm/filemap.c. The issue is that when __radix_tree_next_slot() => skip_siblings() tries to skip over the sibling entries in the slots, it currently does so with an exact match on the slot directly preceding our current slot. Normally this works: V preceding slot struct radix_tree_node.slots[] = [entry][sibling][sibling][sibling] ^ current slot This lets you find the first sibling, and you skip them all in order. But in the case where one of the siblings is NULL, that slot is skipped and then our sibling detection is interrupted: V preceding slot struct radix_tree_node.slots[] = [entry][NULL][sibling][sibling] ^ current slot This means that the sibling pointers aren't recognized since they point all the way back to 'entry', so we think that they are normal internal radix tree pointers. This causes us to think we need to walk down to a struct radix_tree_node starting at the address of 'entry'. In a real running kernel this will crash the thread with a GP fault when you try and dereference the slots in your broken node starting at 'entry'. In the radix tree test suite this will be caught by the address sanitizer: ==27063==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x60c0008ae400 at pc 0x00000040ce4f bp 0x7fa89b8fcad0 sp 0x7fa89b8fcac0 READ of size 8 at 0x60c0008ae400 thread T3 #0 0x40ce4e in __radix_tree_next_slot /home/rzwisler/project/linux/tools/testing/radix-tree/radix-tree.c:1660 #1 0x4022cc in radix_tree_next_slot linux/../../../../include/linux/radix-tree.h:567 #2 0x4022cc in iterator_func /home/rzwisler/project/linux/tools/testing/radix-tree/multiorder.c:655 #3 0x7fa8a088d50a in start_thread (/lib64/libpthread.so.0+0x750a) #4 0x7fa8a03bd16e in clone (/lib64/libc.so.6+0xf516e) Link: http://lkml.kernel.org/r/20180503192430.7582-5-ross.zwisler@linux.intel.com Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Christoph Hellwig <hch@lst.de> Cc: CR, Sapthagirish <sapthagirish.cr@intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Jan Kara <jack@suse.cz> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
720 lines
18 KiB
C
720 lines
18 KiB
C
/*
|
|
* multiorder.c: Multi-order radix tree entry testing
|
|
* Copyright (c) 2016 Intel Corporation
|
|
* Author: Ross Zwisler <ross.zwisler@linux.intel.com>
|
|
* Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*/
|
|
#include <linux/radix-tree.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/errno.h>
|
|
#include <pthread.h>
|
|
|
|
#include "test.h"
|
|
|
|
#define for_each_index(i, base, order) \
|
|
for (i = base; i < base + (1 << order); i++)
|
|
|
|
static void __multiorder_tag_test(int index, int order)
|
|
{
|
|
RADIX_TREE(tree, GFP_KERNEL);
|
|
int base, err, i;
|
|
|
|
/* our canonical entry */
|
|
base = index & ~((1 << order) - 1);
|
|
|
|
printv(2, "Multiorder tag test with index %d, canonical entry %d\n",
|
|
index, base);
|
|
|
|
err = item_insert_order(&tree, index, order);
|
|
assert(!err);
|
|
|
|
/*
|
|
* Verify we get collisions for covered indices. We try and fail to
|
|
* insert an exceptional entry so we don't leak memory via
|
|
* item_insert_order().
|
|
*/
|
|
for_each_index(i, base, order) {
|
|
err = __radix_tree_insert(&tree, i, order,
|
|
(void *)(0xA0 | RADIX_TREE_EXCEPTIONAL_ENTRY));
|
|
assert(err == -EEXIST);
|
|
}
|
|
|
|
for_each_index(i, base, order) {
|
|
assert(!radix_tree_tag_get(&tree, i, 0));
|
|
assert(!radix_tree_tag_get(&tree, i, 1));
|
|
}
|
|
|
|
assert(radix_tree_tag_set(&tree, index, 0));
|
|
|
|
for_each_index(i, base, order) {
|
|
assert(radix_tree_tag_get(&tree, i, 0));
|
|
assert(!radix_tree_tag_get(&tree, i, 1));
|
|
}
|
|
|
|
assert(tag_tagged_items(&tree, NULL, 0, ~0UL, 10, 0, 1) == 1);
|
|
assert(radix_tree_tag_clear(&tree, index, 0));
|
|
|
|
for_each_index(i, base, order) {
|
|
assert(!radix_tree_tag_get(&tree, i, 0));
|
|
assert(radix_tree_tag_get(&tree, i, 1));
|
|
}
|
|
|
|
assert(radix_tree_tag_clear(&tree, index, 1));
|
|
|
|
assert(!radix_tree_tagged(&tree, 0));
|
|
assert(!radix_tree_tagged(&tree, 1));
|
|
|
|
item_kill_tree(&tree);
|
|
}
|
|
|
|
static void __multiorder_tag_test2(unsigned order, unsigned long index2)
|
|
{
|
|
RADIX_TREE(tree, GFP_KERNEL);
|
|
unsigned long index = (1 << order);
|
|
index2 += index;
|
|
|
|
assert(item_insert_order(&tree, 0, order) == 0);
|
|
assert(item_insert(&tree, index2) == 0);
|
|
|
|
assert(radix_tree_tag_set(&tree, 0, 0));
|
|
assert(radix_tree_tag_set(&tree, index2, 0));
|
|
|
|
assert(tag_tagged_items(&tree, NULL, 0, ~0UL, 10, 0, 1) == 2);
|
|
|
|
item_kill_tree(&tree);
|
|
}
|
|
|
|
static void multiorder_tag_tests(void)
|
|
{
|
|
int i, j;
|
|
|
|
/* test multi-order entry for indices 0-7 with no sibling pointers */
|
|
__multiorder_tag_test(0, 3);
|
|
__multiorder_tag_test(5, 3);
|
|
|
|
/* test multi-order entry for indices 8-15 with no sibling pointers */
|
|
__multiorder_tag_test(8, 3);
|
|
__multiorder_tag_test(15, 3);
|
|
|
|
/*
|
|
* Our order 5 entry covers indices 0-31 in a tree with height=2.
|
|
* This is broken up as follows:
|
|
* 0-7: canonical entry
|
|
* 8-15: sibling 1
|
|
* 16-23: sibling 2
|
|
* 24-31: sibling 3
|
|
*/
|
|
__multiorder_tag_test(0, 5);
|
|
__multiorder_tag_test(29, 5);
|
|
|
|
/* same test, but with indices 32-63 */
|
|
__multiorder_tag_test(32, 5);
|
|
__multiorder_tag_test(44, 5);
|
|
|
|
/*
|
|
* Our order 8 entry covers indices 0-255 in a tree with height=3.
|
|
* This is broken up as follows:
|
|
* 0-63: canonical entry
|
|
* 64-127: sibling 1
|
|
* 128-191: sibling 2
|
|
* 192-255: sibling 3
|
|
*/
|
|
__multiorder_tag_test(0, 8);
|
|
__multiorder_tag_test(190, 8);
|
|
|
|
/* same test, but with indices 256-511 */
|
|
__multiorder_tag_test(256, 8);
|
|
__multiorder_tag_test(300, 8);
|
|
|
|
__multiorder_tag_test(0x12345678UL, 8);
|
|
|
|
for (i = 1; i < 10; i++)
|
|
for (j = 0; j < (10 << i); j++)
|
|
__multiorder_tag_test2(i, j);
|
|
}
|
|
|
|
static void multiorder_check(unsigned long index, int order)
|
|
{
|
|
unsigned long i;
|
|
unsigned long min = index & ~((1UL << order) - 1);
|
|
unsigned long max = min + (1UL << order);
|
|
void **slot;
|
|
struct item *item2 = item_create(min, order);
|
|
RADIX_TREE(tree, GFP_KERNEL);
|
|
|
|
printv(2, "Multiorder index %ld, order %d\n", index, order);
|
|
|
|
assert(item_insert_order(&tree, index, order) == 0);
|
|
|
|
for (i = min; i < max; i++) {
|
|
struct item *item = item_lookup(&tree, i);
|
|
assert(item != 0);
|
|
assert(item->index == index);
|
|
}
|
|
for (i = 0; i < min; i++)
|
|
item_check_absent(&tree, i);
|
|
for (i = max; i < 2*max; i++)
|
|
item_check_absent(&tree, i);
|
|
for (i = min; i < max; i++)
|
|
assert(radix_tree_insert(&tree, i, item2) == -EEXIST);
|
|
|
|
slot = radix_tree_lookup_slot(&tree, index);
|
|
free(*slot);
|
|
radix_tree_replace_slot(&tree, slot, item2);
|
|
for (i = min; i < max; i++) {
|
|
struct item *item = item_lookup(&tree, i);
|
|
assert(item != 0);
|
|
assert(item->index == min);
|
|
}
|
|
|
|
assert(item_delete(&tree, min) != 0);
|
|
|
|
for (i = 0; i < 2*max; i++)
|
|
item_check_absent(&tree, i);
|
|
}
|
|
|
|
static void multiorder_shrink(unsigned long index, int order)
|
|
{
|
|
unsigned long i;
|
|
unsigned long max = 1 << order;
|
|
RADIX_TREE(tree, GFP_KERNEL);
|
|
struct radix_tree_node *node;
|
|
|
|
printv(2, "Multiorder shrink index %ld, order %d\n", index, order);
|
|
|
|
assert(item_insert_order(&tree, 0, order) == 0);
|
|
|
|
node = tree.rnode;
|
|
|
|
assert(item_insert(&tree, index) == 0);
|
|
assert(node != tree.rnode);
|
|
|
|
assert(item_delete(&tree, index) != 0);
|
|
assert(node == tree.rnode);
|
|
|
|
for (i = 0; i < max; i++) {
|
|
struct item *item = item_lookup(&tree, i);
|
|
assert(item != 0);
|
|
assert(item->index == 0);
|
|
}
|
|
for (i = max; i < 2*max; i++)
|
|
item_check_absent(&tree, i);
|
|
|
|
if (!item_delete(&tree, 0)) {
|
|
printv(2, "failed to delete index %ld (order %d)\n", index, order);
|
|
abort();
|
|
}
|
|
|
|
for (i = 0; i < 2*max; i++)
|
|
item_check_absent(&tree, i);
|
|
}
|
|
|
|
static void multiorder_insert_bug(void)
|
|
{
|
|
RADIX_TREE(tree, GFP_KERNEL);
|
|
|
|
item_insert(&tree, 0);
|
|
radix_tree_tag_set(&tree, 0, 0);
|
|
item_insert_order(&tree, 3 << 6, 6);
|
|
|
|
item_kill_tree(&tree);
|
|
}
|
|
|
|
void multiorder_iteration(void)
|
|
{
|
|
RADIX_TREE(tree, GFP_KERNEL);
|
|
struct radix_tree_iter iter;
|
|
void **slot;
|
|
int i, j, err;
|
|
|
|
printv(1, "Multiorder iteration test\n");
|
|
|
|
#define NUM_ENTRIES 11
|
|
int index[NUM_ENTRIES] = {0, 2, 4, 8, 16, 32, 34, 36, 64, 72, 128};
|
|
int order[NUM_ENTRIES] = {1, 1, 2, 3, 4, 1, 0, 1, 3, 0, 7};
|
|
|
|
for (i = 0; i < NUM_ENTRIES; i++) {
|
|
err = item_insert_order(&tree, index[i], order[i]);
|
|
assert(!err);
|
|
}
|
|
|
|
for (j = 0; j < 256; j++) {
|
|
for (i = 0; i < NUM_ENTRIES; i++)
|
|
if (j <= (index[i] | ((1 << order[i]) - 1)))
|
|
break;
|
|
|
|
radix_tree_for_each_slot(slot, &tree, &iter, j) {
|
|
int height = order[i] / RADIX_TREE_MAP_SHIFT;
|
|
int shift = height * RADIX_TREE_MAP_SHIFT;
|
|
unsigned long mask = (1UL << order[i]) - 1;
|
|
struct item *item = *slot;
|
|
|
|
assert((iter.index | mask) == (index[i] | mask));
|
|
assert(iter.shift == shift);
|
|
assert(!radix_tree_is_internal_node(item));
|
|
assert((item->index | mask) == (index[i] | mask));
|
|
assert(item->order == order[i]);
|
|
i++;
|
|
}
|
|
}
|
|
|
|
item_kill_tree(&tree);
|
|
}
|
|
|
|
void multiorder_tagged_iteration(void)
|
|
{
|
|
RADIX_TREE(tree, GFP_KERNEL);
|
|
struct radix_tree_iter iter;
|
|
void **slot;
|
|
int i, j;
|
|
|
|
printv(1, "Multiorder tagged iteration test\n");
|
|
|
|
#define MT_NUM_ENTRIES 9
|
|
int index[MT_NUM_ENTRIES] = {0, 2, 4, 16, 32, 40, 64, 72, 128};
|
|
int order[MT_NUM_ENTRIES] = {1, 0, 2, 4, 3, 1, 3, 0, 7};
|
|
|
|
#define TAG_ENTRIES 7
|
|
int tag_index[TAG_ENTRIES] = {0, 4, 16, 40, 64, 72, 128};
|
|
|
|
for (i = 0; i < MT_NUM_ENTRIES; i++)
|
|
assert(!item_insert_order(&tree, index[i], order[i]));
|
|
|
|
assert(!radix_tree_tagged(&tree, 1));
|
|
|
|
for (i = 0; i < TAG_ENTRIES; i++)
|
|
assert(radix_tree_tag_set(&tree, tag_index[i], 1));
|
|
|
|
for (j = 0; j < 256; j++) {
|
|
int k;
|
|
|
|
for (i = 0; i < TAG_ENTRIES; i++) {
|
|
for (k = i; index[k] < tag_index[i]; k++)
|
|
;
|
|
if (j <= (index[k] | ((1 << order[k]) - 1)))
|
|
break;
|
|
}
|
|
|
|
radix_tree_for_each_tagged(slot, &tree, &iter, j, 1) {
|
|
unsigned long mask;
|
|
struct item *item = *slot;
|
|
for (k = i; index[k] < tag_index[i]; k++)
|
|
;
|
|
mask = (1UL << order[k]) - 1;
|
|
|
|
assert((iter.index | mask) == (tag_index[i] | mask));
|
|
assert(!radix_tree_is_internal_node(item));
|
|
assert((item->index | mask) == (tag_index[i] | mask));
|
|
assert(item->order == order[k]);
|
|
i++;
|
|
}
|
|
}
|
|
|
|
assert(tag_tagged_items(&tree, NULL, 0, ~0UL, TAG_ENTRIES, 1, 2) ==
|
|
TAG_ENTRIES);
|
|
|
|
for (j = 0; j < 256; j++) {
|
|
int mask, k;
|
|
|
|
for (i = 0; i < TAG_ENTRIES; i++) {
|
|
for (k = i; index[k] < tag_index[i]; k++)
|
|
;
|
|
if (j <= (index[k] | ((1 << order[k]) - 1)))
|
|
break;
|
|
}
|
|
|
|
radix_tree_for_each_tagged(slot, &tree, &iter, j, 2) {
|
|
struct item *item = *slot;
|
|
for (k = i; index[k] < tag_index[i]; k++)
|
|
;
|
|
mask = (1 << order[k]) - 1;
|
|
|
|
assert((iter.index | mask) == (tag_index[i] | mask));
|
|
assert(!radix_tree_is_internal_node(item));
|
|
assert((item->index | mask) == (tag_index[i] | mask));
|
|
assert(item->order == order[k]);
|
|
i++;
|
|
}
|
|
}
|
|
|
|
assert(tag_tagged_items(&tree, NULL, 1, ~0UL, MT_NUM_ENTRIES * 2, 1, 0)
|
|
== TAG_ENTRIES);
|
|
i = 0;
|
|
radix_tree_for_each_tagged(slot, &tree, &iter, 0, 0) {
|
|
assert(iter.index == tag_index[i]);
|
|
i++;
|
|
}
|
|
|
|
item_kill_tree(&tree);
|
|
}
|
|
|
|
/*
|
|
* Basic join checks: make sure we can't find an entry in the tree after
|
|
* a larger entry has replaced it
|
|
*/
|
|
static void multiorder_join1(unsigned long index,
|
|
unsigned order1, unsigned order2)
|
|
{
|
|
unsigned long loc;
|
|
void *item, *item2 = item_create(index + 1, order1);
|
|
RADIX_TREE(tree, GFP_KERNEL);
|
|
|
|
item_insert_order(&tree, index, order2);
|
|
item = radix_tree_lookup(&tree, index);
|
|
radix_tree_join(&tree, index + 1, order1, item2);
|
|
loc = find_item(&tree, item);
|
|
if (loc == -1)
|
|
free(item);
|
|
item = radix_tree_lookup(&tree, index + 1);
|
|
assert(item == item2);
|
|
item_kill_tree(&tree);
|
|
}
|
|
|
|
/*
|
|
* Check that the accounting of exceptional entries is handled correctly
|
|
* by joining an exceptional entry to a normal pointer.
|
|
*/
|
|
static void multiorder_join2(unsigned order1, unsigned order2)
|
|
{
|
|
RADIX_TREE(tree, GFP_KERNEL);
|
|
struct radix_tree_node *node;
|
|
void *item1 = item_create(0, order1);
|
|
void *item2;
|
|
|
|
item_insert_order(&tree, 0, order2);
|
|
radix_tree_insert(&tree, 1 << order2, (void *)0x12UL);
|
|
item2 = __radix_tree_lookup(&tree, 1 << order2, &node, NULL);
|
|
assert(item2 == (void *)0x12UL);
|
|
assert(node->exceptional == 1);
|
|
|
|
item2 = radix_tree_lookup(&tree, 0);
|
|
free(item2);
|
|
|
|
radix_tree_join(&tree, 0, order1, item1);
|
|
item2 = __radix_tree_lookup(&tree, 1 << order2, &node, NULL);
|
|
assert(item2 == item1);
|
|
assert(node->exceptional == 0);
|
|
item_kill_tree(&tree);
|
|
}
|
|
|
|
/*
|
|
* This test revealed an accounting bug for exceptional entries at one point.
|
|
* Nodes were being freed back into the pool with an elevated exception count
|
|
* by radix_tree_join() and then radix_tree_split() was failing to zero the
|
|
* count of exceptional entries.
|
|
*/
|
|
static void multiorder_join3(unsigned int order)
|
|
{
|
|
RADIX_TREE(tree, GFP_KERNEL);
|
|
struct radix_tree_node *node;
|
|
void **slot;
|
|
struct radix_tree_iter iter;
|
|
unsigned long i;
|
|
|
|
for (i = 0; i < (1 << order); i++) {
|
|
radix_tree_insert(&tree, i, (void *)0x12UL);
|
|
}
|
|
|
|
radix_tree_join(&tree, 0, order, (void *)0x16UL);
|
|
rcu_barrier();
|
|
|
|
radix_tree_split(&tree, 0, 0);
|
|
|
|
radix_tree_for_each_slot(slot, &tree, &iter, 0) {
|
|
radix_tree_iter_replace(&tree, &iter, slot, (void *)0x12UL);
|
|
}
|
|
|
|
__radix_tree_lookup(&tree, 0, &node, NULL);
|
|
assert(node->exceptional == node->count);
|
|
|
|
item_kill_tree(&tree);
|
|
}
|
|
|
|
static void multiorder_join(void)
|
|
{
|
|
int i, j, idx;
|
|
|
|
for (idx = 0; idx < 1024; idx = idx * 2 + 3) {
|
|
for (i = 1; i < 15; i++) {
|
|
for (j = 0; j < i; j++) {
|
|
multiorder_join1(idx, i, j);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i = 1; i < 15; i++) {
|
|
for (j = 0; j < i; j++) {
|
|
multiorder_join2(i, j);
|
|
}
|
|
}
|
|
|
|
for (i = 3; i < 10; i++) {
|
|
multiorder_join3(i);
|
|
}
|
|
}
|
|
|
|
static void check_mem(unsigned old_order, unsigned new_order, unsigned alloc)
|
|
{
|
|
struct radix_tree_preload *rtp = &radix_tree_preloads;
|
|
if (rtp->nr != 0)
|
|
printv(2, "split(%u %u) remaining %u\n", old_order, new_order,
|
|
rtp->nr);
|
|
/*
|
|
* Can't check for equality here as some nodes may have been
|
|
* RCU-freed while we ran. But we should never finish with more
|
|
* nodes allocated since they should have all been preloaded.
|
|
*/
|
|
if (nr_allocated > alloc)
|
|
printv(2, "split(%u %u) allocated %u %u\n", old_order, new_order,
|
|
alloc, nr_allocated);
|
|
}
|
|
|
|
static void __multiorder_split(int old_order, int new_order)
|
|
{
|
|
RADIX_TREE(tree, GFP_ATOMIC);
|
|
void **slot;
|
|
struct radix_tree_iter iter;
|
|
unsigned alloc;
|
|
struct item *item;
|
|
|
|
radix_tree_preload(GFP_KERNEL);
|
|
assert(item_insert_order(&tree, 0, old_order) == 0);
|
|
radix_tree_preload_end();
|
|
|
|
/* Wipe out the preloaded cache or it'll confuse check_mem() */
|
|
radix_tree_cpu_dead(0);
|
|
|
|
item = radix_tree_tag_set(&tree, 0, 2);
|
|
|
|
radix_tree_split_preload(old_order, new_order, GFP_KERNEL);
|
|
alloc = nr_allocated;
|
|
radix_tree_split(&tree, 0, new_order);
|
|
check_mem(old_order, new_order, alloc);
|
|
radix_tree_for_each_slot(slot, &tree, &iter, 0) {
|
|
radix_tree_iter_replace(&tree, &iter, slot,
|
|
item_create(iter.index, new_order));
|
|
}
|
|
radix_tree_preload_end();
|
|
|
|
item_kill_tree(&tree);
|
|
free(item);
|
|
}
|
|
|
|
static void __multiorder_split2(int old_order, int new_order)
|
|
{
|
|
RADIX_TREE(tree, GFP_KERNEL);
|
|
void **slot;
|
|
struct radix_tree_iter iter;
|
|
struct radix_tree_node *node;
|
|
void *item;
|
|
|
|
__radix_tree_insert(&tree, 0, old_order, (void *)0x12);
|
|
|
|
item = __radix_tree_lookup(&tree, 0, &node, NULL);
|
|
assert(item == (void *)0x12);
|
|
assert(node->exceptional > 0);
|
|
|
|
radix_tree_split(&tree, 0, new_order);
|
|
radix_tree_for_each_slot(slot, &tree, &iter, 0) {
|
|
radix_tree_iter_replace(&tree, &iter, slot,
|
|
item_create(iter.index, new_order));
|
|
}
|
|
|
|
item = __radix_tree_lookup(&tree, 0, &node, NULL);
|
|
assert(item != (void *)0x12);
|
|
assert(node->exceptional == 0);
|
|
|
|
item_kill_tree(&tree);
|
|
}
|
|
|
|
static void __multiorder_split3(int old_order, int new_order)
|
|
{
|
|
RADIX_TREE(tree, GFP_KERNEL);
|
|
void **slot;
|
|
struct radix_tree_iter iter;
|
|
struct radix_tree_node *node;
|
|
void *item;
|
|
|
|
__radix_tree_insert(&tree, 0, old_order, (void *)0x12);
|
|
|
|
item = __radix_tree_lookup(&tree, 0, &node, NULL);
|
|
assert(item == (void *)0x12);
|
|
assert(node->exceptional > 0);
|
|
|
|
radix_tree_split(&tree, 0, new_order);
|
|
radix_tree_for_each_slot(slot, &tree, &iter, 0) {
|
|
radix_tree_iter_replace(&tree, &iter, slot, (void *)0x16);
|
|
}
|
|
|
|
item = __radix_tree_lookup(&tree, 0, &node, NULL);
|
|
assert(item == (void *)0x16);
|
|
assert(node->exceptional > 0);
|
|
|
|
item_kill_tree(&tree);
|
|
|
|
__radix_tree_insert(&tree, 0, old_order, (void *)0x12);
|
|
|
|
item = __radix_tree_lookup(&tree, 0, &node, NULL);
|
|
assert(item == (void *)0x12);
|
|
assert(node->exceptional > 0);
|
|
|
|
radix_tree_split(&tree, 0, new_order);
|
|
radix_tree_for_each_slot(slot, &tree, &iter, 0) {
|
|
if (iter.index == (1 << new_order))
|
|
radix_tree_iter_replace(&tree, &iter, slot,
|
|
(void *)0x16);
|
|
else
|
|
radix_tree_iter_replace(&tree, &iter, slot, NULL);
|
|
}
|
|
|
|
item = __radix_tree_lookup(&tree, 1 << new_order, &node, NULL);
|
|
assert(item == (void *)0x16);
|
|
assert(node->count == node->exceptional);
|
|
do {
|
|
node = node->parent;
|
|
if (!node)
|
|
break;
|
|
assert(node->count == 1);
|
|
assert(node->exceptional == 0);
|
|
} while (1);
|
|
|
|
item_kill_tree(&tree);
|
|
}
|
|
|
|
static void multiorder_split(void)
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 3; i < 11; i++)
|
|
for (j = 0; j < i; j++) {
|
|
__multiorder_split(i, j);
|
|
__multiorder_split2(i, j);
|
|
__multiorder_split3(i, j);
|
|
}
|
|
}
|
|
|
|
static void multiorder_account(void)
|
|
{
|
|
RADIX_TREE(tree, GFP_KERNEL);
|
|
struct radix_tree_node *node;
|
|
void **slot;
|
|
|
|
item_insert_order(&tree, 0, 5);
|
|
|
|
__radix_tree_insert(&tree, 1 << 5, 5, (void *)0x12);
|
|
__radix_tree_lookup(&tree, 0, &node, NULL);
|
|
assert(node->count == node->exceptional * 2);
|
|
radix_tree_delete(&tree, 1 << 5);
|
|
assert(node->exceptional == 0);
|
|
|
|
__radix_tree_insert(&tree, 1 << 5, 5, (void *)0x12);
|
|
__radix_tree_lookup(&tree, 1 << 5, &node, &slot);
|
|
assert(node->count == node->exceptional * 2);
|
|
__radix_tree_replace(&tree, node, slot, NULL, NULL);
|
|
assert(node->exceptional == 0);
|
|
|
|
item_kill_tree(&tree);
|
|
}
|
|
|
|
bool stop_iteration = false;
|
|
|
|
static void *creator_func(void *ptr)
|
|
{
|
|
/* 'order' is set up to ensure we have sibling entries */
|
|
unsigned int order = RADIX_TREE_MAP_SHIFT - 1;
|
|
struct radix_tree_root *tree = ptr;
|
|
int i;
|
|
|
|
for (i = 0; i < 10000; i++) {
|
|
item_insert_order(tree, 0, order);
|
|
item_delete_rcu(tree, 0);
|
|
}
|
|
|
|
stop_iteration = true;
|
|
return NULL;
|
|
}
|
|
|
|
static void *iterator_func(void *ptr)
|
|
{
|
|
struct radix_tree_root *tree = ptr;
|
|
struct radix_tree_iter iter;
|
|
struct item *item;
|
|
void **slot;
|
|
|
|
while (!stop_iteration) {
|
|
rcu_read_lock();
|
|
radix_tree_for_each_slot(slot, tree, &iter, 0) {
|
|
item = radix_tree_deref_slot(slot);
|
|
|
|
if (!item)
|
|
continue;
|
|
if (radix_tree_deref_retry(item)) {
|
|
slot = radix_tree_iter_retry(&iter);
|
|
continue;
|
|
}
|
|
|
|
item_sanity(item, iter.index);
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void multiorder_iteration_race(void)
|
|
{
|
|
const int num_threads = sysconf(_SC_NPROCESSORS_ONLN);
|
|
pthread_t worker_thread[num_threads];
|
|
RADIX_TREE(tree, GFP_KERNEL);
|
|
int i;
|
|
|
|
pthread_create(&worker_thread[0], NULL, &creator_func, &tree);
|
|
for (i = 1; i < num_threads; i++)
|
|
pthread_create(&worker_thread[i], NULL, &iterator_func, &tree);
|
|
|
|
for (i = 0; i < num_threads; i++)
|
|
pthread_join(worker_thread[i], NULL);
|
|
|
|
item_kill_tree(&tree);
|
|
}
|
|
|
|
void multiorder_checks(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 20; i++) {
|
|
multiorder_check(200, i);
|
|
multiorder_check(0, i);
|
|
multiorder_check((1UL << i) + 1, i);
|
|
}
|
|
|
|
for (i = 0; i < 15; i++)
|
|
multiorder_shrink((1UL << (i + RADIX_TREE_MAP_SHIFT)), i);
|
|
|
|
multiorder_insert_bug();
|
|
multiorder_tag_tests();
|
|
multiorder_iteration();
|
|
multiorder_tagged_iteration();
|
|
multiorder_join();
|
|
multiorder_split();
|
|
multiorder_account();
|
|
multiorder_iteration_race();
|
|
|
|
radix_tree_cpu_dead(0);
|
|
}
|
|
|
|
int __weak main(void)
|
|
{
|
|
radix_tree_init();
|
|
multiorder_checks();
|
|
return 0;
|
|
}
|