linux/arch/blackfin/kernel/traps.c
Robin Getz 81f7f45606 Blackfin: export the last exception cause via debugfs
We have some test code that runs in userspace that exercises the exception
handling of the Blackfin pretty thoroughly.  Part of the validation process
is checking the exact exception triggered, so export the last one seen to
userspace via debugfs when debugging is enabled for the test code to check.

Signed-off-by: Robin Getz <robin.getz@analog.com>
Signed-off-by: Mike Frysinger <vapier@gentoo.org>
2009-06-12 06:15:28 -04:00

1298 lines
37 KiB
C

/*
* File: arch/blackfin/kernel/traps.c
* Based on:
* Author: Hamish Macdonald
*
* Created:
* Description: uses S/W interrupt 15 for the system calls
*
* Modified:
* Copyright 2004-2006 Analog Devices Inc.
*
* Bugs: Enter bugs at http://blackfin.uclinux.org/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see the file COPYING, or write
* to the Free Software Foundation, Inc.,
* 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <linux/uaccess.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/kallsyms.h>
#include <linux/fs.h>
#include <linux/rbtree.h>
#include <asm/traps.h>
#include <asm/cacheflush.h>
#include <asm/cplb.h>
#include <asm/blackfin.h>
#include <asm/irq_handler.h>
#include <linux/irq.h>
#include <asm/trace.h>
#include <asm/fixed_code.h>
#ifdef CONFIG_KGDB
# include <linux/kgdb.h>
# define CHK_DEBUGGER_TRAP() \
do { \
kgdb_handle_exception(trapnr, sig, info.si_code, fp); \
} while (0)
# define CHK_DEBUGGER_TRAP_MAYBE() \
do { \
if (kgdb_connected) \
CHK_DEBUGGER_TRAP(); \
} while (0)
#else
# define CHK_DEBUGGER_TRAP() do { } while (0)
# define CHK_DEBUGGER_TRAP_MAYBE() do { } while (0)
#endif
#ifdef CONFIG_DEBUG_VERBOSE
#define verbose_printk(fmt, arg...) \
printk(fmt, ##arg)
#else
#define verbose_printk(fmt, arg...) \
({ if (0) printk(fmt, ##arg); 0; })
#endif
#if defined(CONFIG_DEBUG_MMRS) || defined(CONFIG_DEBUG_MMRS_MODULE)
u32 last_seqstat;
#ifdef CONFIG_DEBUG_MMRS_MODULE
EXPORT_SYMBOL(last_seqstat);
#endif
#endif
/* Initiate the event table handler */
void __init trap_init(void)
{
CSYNC();
bfin_write_EVT3(trap);
CSYNC();
}
static void decode_address(char *buf, unsigned long address)
{
#ifdef CONFIG_DEBUG_VERBOSE
struct vm_list_struct *vml;
struct task_struct *p;
struct mm_struct *mm;
unsigned long flags, offset;
unsigned char in_atomic = (bfin_read_IPEND() & 0x10) || in_atomic();
struct rb_node *n;
#ifdef CONFIG_KALLSYMS
unsigned long symsize;
const char *symname;
char *modname;
char *delim = ":";
char namebuf[128];
/* look up the address and see if we are in kernel space */
symname = kallsyms_lookup(address, &symsize, &offset, &modname, namebuf);
if (symname) {
/* yeah! kernel space! */
if (!modname)
modname = delim = "";
sprintf(buf, "<0x%p> { %s%s%s%s + 0x%lx }",
(void *)address, delim, modname, delim, symname,
(unsigned long)offset);
return;
}
#endif
/* Problem in fixed code section? */
if (address >= FIXED_CODE_START && address < FIXED_CODE_END) {
sprintf(buf, "<0x%p> /* Maybe fixed code section */", (void *)address);
return;
}
/* Problem somewhere before the kernel start address */
if (address < CONFIG_BOOT_LOAD) {
sprintf(buf, "<0x%p> /* Maybe null pointer? */", (void *)address);
return;
}
/* looks like we're off in user-land, so let's walk all the
* mappings of all our processes and see if we can't be a whee
* bit more specific
*/
write_lock_irqsave(&tasklist_lock, flags);
for_each_process(p) {
mm = (in_atomic ? p->mm : get_task_mm(p));
if (!mm)
continue;
for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
struct vm_area_struct *vma;
vma = rb_entry(n, struct vm_area_struct, vm_rb);
if (address >= vma->vm_start && address < vma->vm_end) {
char _tmpbuf[256];
char *name = p->comm;
struct file *file = vma->vm_file;
if (file) {
char *d_name = d_path(&file->f_path, _tmpbuf,
sizeof(_tmpbuf));
if (!IS_ERR(d_name))
name = d_name;
}
/* FLAT does not have its text aligned to the start of
* the map while FDPIC ELF does ...
*/
/* before we can check flat/fdpic, we need to
* make sure current is valid
*/
if ((unsigned long)current >= FIXED_CODE_START &&
!((unsigned long)current & 0x3)) {
if (current->mm &&
(address > current->mm->start_code) &&
(address < current->mm->end_code))
offset = address - current->mm->start_code;
else
offset = (address - vma->vm_start) +
(vma->vm_pgoff << PAGE_SHIFT);
sprintf(buf, "<0x%p> [ %s + 0x%lx ]",
(void *)address, name, offset);
} else
sprintf(buf, "<0x%p> [ %s vma:0x%lx-0x%lx]",
(void *)address, name,
vma->vm_start, vma->vm_end);
if (!in_atomic)
mmput(mm);
if (!strlen(buf))
sprintf(buf, "<0x%p> [ %s ] dynamic memory", (void *)address, name);
goto done;
}
}
if (!in_atomic)
mmput(mm);
}
/* we were unable to find this address anywhere */
sprintf(buf, "<0x%p> /* kernel dynamic memory */", (void *)address);
done:
write_unlock_irqrestore(&tasklist_lock, flags);
#else
sprintf(buf, " ");
#endif
}
asmlinkage void double_fault_c(struct pt_regs *fp)
{
#ifdef CONFIG_DEBUG_BFIN_HWTRACE_ON
int j;
trace_buffer_save(j);
#endif
console_verbose();
oops_in_progress = 1;
#ifdef CONFIG_DEBUG_VERBOSE
printk(KERN_EMERG "\n" KERN_EMERG "Double Fault\n");
#ifdef CONFIG_DEBUG_DOUBLEFAULT_PRINT
if (((long)fp->seqstat & SEQSTAT_EXCAUSE) == VEC_UNCOV) {
unsigned int cpu = smp_processor_id();
char buf[150];
decode_address(buf, cpu_pda[cpu].retx);
printk(KERN_EMERG "While handling exception (EXCAUSE = 0x%x) at %s:\n",
(unsigned int)cpu_pda[cpu].seqstat & SEQSTAT_EXCAUSE, buf);
decode_address(buf, cpu_pda[cpu].dcplb_fault_addr);
printk(KERN_NOTICE " DCPLB_FAULT_ADDR: %s\n", buf);
decode_address(buf, cpu_pda[cpu].icplb_fault_addr);
printk(KERN_NOTICE " ICPLB_FAULT_ADDR: %s\n", buf);
decode_address(buf, fp->retx);
printk(KERN_NOTICE "The instruction at %s caused a double exception\n", buf);
} else
#endif
{
dump_bfin_process(fp);
dump_bfin_mem(fp);
show_regs(fp);
dump_bfin_trace_buffer();
}
#endif
panic("Double Fault - unrecoverable event");
}
asmlinkage void trap_c(struct pt_regs *fp)
{
#ifdef CONFIG_DEBUG_BFIN_HWTRACE_ON
int j;
#endif
#ifdef CONFIG_DEBUG_HUNT_FOR_ZERO
unsigned int cpu = smp_processor_id();
#endif
int sig = 0;
siginfo_t info;
unsigned long trapnr = fp->seqstat & SEQSTAT_EXCAUSE;
trace_buffer_save(j);
#if defined(CONFIG_DEBUG_MMRS) || defined(CONFIG_DEBUG_MMRS_MODULE)
last_seqstat = (u32)fp->seqstat;
#endif
/* Important - be very careful dereferncing pointers - will lead to
* double faults if the stack has become corrupt
*/
/* If the fault was caused by a kernel thread, or interrupt handler
* we will kernel panic, so the system reboots.
* If KGDB is enabled, don't set this for kernel breakpoints
*/
/* TODO: check to see if we are in some sort of deferred HWERR
* that we should be able to recover from, not kernel panic
*/
if ((bfin_read_IPEND() & 0xFFC0) && (trapnr != VEC_STEP)
#ifdef CONFIG_KGDB
&& (trapnr != VEC_EXCPT02)
#endif
){
console_verbose();
oops_in_progress = 1;
} else if (current) {
if (current->mm == NULL) {
console_verbose();
oops_in_progress = 1;
}
}
/* trap_c() will be called for exceptions. During exceptions
* processing, the pc value should be set with retx value.
* With this change we can cleanup some code in signal.c- TODO
*/
fp->orig_pc = fp->retx;
/* printk("exception: 0x%x, ipend=%x, reti=%x, retx=%x\n",
trapnr, fp->ipend, fp->pc, fp->retx); */
/* send the appropriate signal to the user program */
switch (trapnr) {
/* This table works in conjuction with the one in ./mach-common/entry.S
* Some exceptions are handled there (in assembly, in exception space)
* Some are handled here, (in C, in interrupt space)
* Some, like CPLB, are handled in both, where the normal path is
* handled in assembly/exception space, and the error path is handled
* here
*/
/* 0x00 - Linux Syscall, getting here is an error */
/* 0x01 - userspace gdb breakpoint, handled here */
case VEC_EXCPT01:
info.si_code = TRAP_ILLTRAP;
sig = SIGTRAP;
CHK_DEBUGGER_TRAP_MAYBE();
/* Check if this is a breakpoint in kernel space */
if (fp->ipend & 0xffc0)
return;
else
break;
/* 0x03 - User Defined, userspace stack overflow */
case VEC_EXCPT03:
info.si_code = SEGV_STACKFLOW;
sig = SIGSEGV;
verbose_printk(KERN_NOTICE EXC_0x03(KERN_NOTICE));
CHK_DEBUGGER_TRAP_MAYBE();
break;
/* 0x02 - KGDB initial connection and break signal trap */
case VEC_EXCPT02:
#ifdef CONFIG_KGDB
info.si_code = TRAP_ILLTRAP;
sig = SIGTRAP;
CHK_DEBUGGER_TRAP();
return;
#endif
/* 0x04 - User Defined */
/* 0x05 - User Defined */
/* 0x06 - User Defined */
/* 0x07 - User Defined */
/* 0x08 - User Defined */
/* 0x09 - User Defined */
/* 0x0A - User Defined */
/* 0x0B - User Defined */
/* 0x0C - User Defined */
/* 0x0D - User Defined */
/* 0x0E - User Defined */
/* 0x0F - User Defined */
/* If we got here, it is most likely that someone was trying to use a
* custom exception handler, and it is not actually installed properly
*/
case VEC_EXCPT04 ... VEC_EXCPT15:
info.si_code = ILL_ILLPARAOP;
sig = SIGILL;
verbose_printk(KERN_NOTICE EXC_0x04(KERN_NOTICE));
CHK_DEBUGGER_TRAP_MAYBE();
break;
/* 0x10 HW Single step, handled here */
case VEC_STEP:
info.si_code = TRAP_STEP;
sig = SIGTRAP;
CHK_DEBUGGER_TRAP_MAYBE();
/* Check if this is a single step in kernel space */
if (fp->ipend & 0xffc0)
return;
else
break;
/* 0x11 - Trace Buffer Full, handled here */
case VEC_OVFLOW:
info.si_code = TRAP_TRACEFLOW;
sig = SIGTRAP;
verbose_printk(KERN_NOTICE EXC_0x11(KERN_NOTICE));
CHK_DEBUGGER_TRAP_MAYBE();
break;
/* 0x12 - Reserved, Caught by default */
/* 0x13 - Reserved, Caught by default */
/* 0x14 - Reserved, Caught by default */
/* 0x15 - Reserved, Caught by default */
/* 0x16 - Reserved, Caught by default */
/* 0x17 - Reserved, Caught by default */
/* 0x18 - Reserved, Caught by default */
/* 0x19 - Reserved, Caught by default */
/* 0x1A - Reserved, Caught by default */
/* 0x1B - Reserved, Caught by default */
/* 0x1C - Reserved, Caught by default */
/* 0x1D - Reserved, Caught by default */
/* 0x1E - Reserved, Caught by default */
/* 0x1F - Reserved, Caught by default */
/* 0x20 - Reserved, Caught by default */
/* 0x21 - Undefined Instruction, handled here */
case VEC_UNDEF_I:
info.si_code = ILL_ILLOPC;
sig = SIGILL;
verbose_printk(KERN_NOTICE EXC_0x21(KERN_NOTICE));
CHK_DEBUGGER_TRAP_MAYBE();
break;
/* 0x22 - Illegal Instruction Combination, handled here */
case VEC_ILGAL_I:
info.si_code = ILL_ILLPARAOP;
sig = SIGILL;
verbose_printk(KERN_NOTICE EXC_0x22(KERN_NOTICE));
CHK_DEBUGGER_TRAP_MAYBE();
break;
/* 0x23 - Data CPLB protection violation, handled here */
case VEC_CPLB_VL:
info.si_code = ILL_CPLB_VI;
sig = SIGBUS;
verbose_printk(KERN_NOTICE EXC_0x23(KERN_NOTICE));
CHK_DEBUGGER_TRAP_MAYBE();
break;
/* 0x24 - Data access misaligned, handled here */
case VEC_MISALI_D:
info.si_code = BUS_ADRALN;
sig = SIGBUS;
verbose_printk(KERN_NOTICE EXC_0x24(KERN_NOTICE));
CHK_DEBUGGER_TRAP_MAYBE();
break;
/* 0x25 - Unrecoverable Event, handled here */
case VEC_UNCOV:
info.si_code = ILL_ILLEXCPT;
sig = SIGILL;
verbose_printk(KERN_NOTICE EXC_0x25(KERN_NOTICE));
CHK_DEBUGGER_TRAP_MAYBE();
break;
/* 0x26 - Data CPLB Miss, normal case is handled in _cplb_hdr,
error case is handled here */
case VEC_CPLB_M:
info.si_code = BUS_ADRALN;
sig = SIGBUS;
verbose_printk(KERN_NOTICE EXC_0x26(KERN_NOTICE));
break;
/* 0x27 - Data CPLB Multiple Hits - Linux Trap Zero, handled here */
case VEC_CPLB_MHIT:
info.si_code = ILL_CPLB_MULHIT;
sig = SIGSEGV;
#ifdef CONFIG_DEBUG_HUNT_FOR_ZERO
if (cpu_pda[cpu].dcplb_fault_addr < FIXED_CODE_START)
verbose_printk(KERN_NOTICE "NULL pointer access\n");
else
#endif
verbose_printk(KERN_NOTICE EXC_0x27(KERN_NOTICE));
CHK_DEBUGGER_TRAP_MAYBE();
break;
/* 0x28 - Emulation Watchpoint, handled here */
case VEC_WATCH:
info.si_code = TRAP_WATCHPT;
sig = SIGTRAP;
pr_debug(EXC_0x28(KERN_DEBUG));
CHK_DEBUGGER_TRAP_MAYBE();
/* Check if this is a watchpoint in kernel space */
if (fp->ipend & 0xffc0)
return;
else
break;
#ifdef CONFIG_BF535
/* 0x29 - Instruction fetch access error (535 only) */
case VEC_ISTRU_VL: /* ADSP-BF535 only (MH) */
info.si_code = BUS_OPFETCH;
sig = SIGBUS;
verbose_printk(KERN_NOTICE "BF535: VEC_ISTRU_VL\n");
CHK_DEBUGGER_TRAP_MAYBE();
break;
#else
/* 0x29 - Reserved, Caught by default */
#endif
/* 0x2A - Instruction fetch misaligned, handled here */
case VEC_MISALI_I:
info.si_code = BUS_ADRALN;
sig = SIGBUS;
verbose_printk(KERN_NOTICE EXC_0x2A(KERN_NOTICE));
CHK_DEBUGGER_TRAP_MAYBE();
break;
/* 0x2B - Instruction CPLB protection violation, handled here */
case VEC_CPLB_I_VL:
info.si_code = ILL_CPLB_VI;
sig = SIGBUS;
verbose_printk(KERN_NOTICE EXC_0x2B(KERN_NOTICE));
CHK_DEBUGGER_TRAP_MAYBE();
break;
/* 0x2C - Instruction CPLB miss, handled in _cplb_hdr */
case VEC_CPLB_I_M:
info.si_code = ILL_CPLB_MISS;
sig = SIGBUS;
verbose_printk(KERN_NOTICE EXC_0x2C(KERN_NOTICE));
break;
/* 0x2D - Instruction CPLB Multiple Hits, handled here */
case VEC_CPLB_I_MHIT:
info.si_code = ILL_CPLB_MULHIT;
sig = SIGSEGV;
#ifdef CONFIG_DEBUG_HUNT_FOR_ZERO
if (cpu_pda[cpu].icplb_fault_addr < FIXED_CODE_START)
verbose_printk(KERN_NOTICE "Jump to NULL address\n");
else
#endif
verbose_printk(KERN_NOTICE EXC_0x2D(KERN_NOTICE));
CHK_DEBUGGER_TRAP_MAYBE();
break;
/* 0x2E - Illegal use of Supervisor Resource, handled here */
case VEC_ILL_RES:
info.si_code = ILL_PRVOPC;
sig = SIGILL;
verbose_printk(KERN_NOTICE EXC_0x2E(KERN_NOTICE));
CHK_DEBUGGER_TRAP_MAYBE();
break;
/* 0x2F - Reserved, Caught by default */
/* 0x30 - Reserved, Caught by default */
/* 0x31 - Reserved, Caught by default */
/* 0x32 - Reserved, Caught by default */
/* 0x33 - Reserved, Caught by default */
/* 0x34 - Reserved, Caught by default */
/* 0x35 - Reserved, Caught by default */
/* 0x36 - Reserved, Caught by default */
/* 0x37 - Reserved, Caught by default */
/* 0x38 - Reserved, Caught by default */
/* 0x39 - Reserved, Caught by default */
/* 0x3A - Reserved, Caught by default */
/* 0x3B - Reserved, Caught by default */
/* 0x3C - Reserved, Caught by default */
/* 0x3D - Reserved, Caught by default */
/* 0x3E - Reserved, Caught by default */
/* 0x3F - Reserved, Caught by default */
case VEC_HWERR:
info.si_code = BUS_ADRALN;
sig = SIGBUS;
switch (fp->seqstat & SEQSTAT_HWERRCAUSE) {
/* System MMR Error */
case (SEQSTAT_HWERRCAUSE_SYSTEM_MMR):
info.si_code = BUS_ADRALN;
sig = SIGBUS;
verbose_printk(KERN_NOTICE HWC_x2(KERN_NOTICE));
break;
/* External Memory Addressing Error */
case (SEQSTAT_HWERRCAUSE_EXTERN_ADDR):
info.si_code = BUS_ADRERR;
sig = SIGBUS;
verbose_printk(KERN_NOTICE HWC_x3(KERN_NOTICE));
break;
/* Performance Monitor Overflow */
case (SEQSTAT_HWERRCAUSE_PERF_FLOW):
verbose_printk(KERN_NOTICE HWC_x12(KERN_NOTICE));
break;
/* RAISE 5 instruction */
case (SEQSTAT_HWERRCAUSE_RAISE_5):
printk(KERN_NOTICE HWC_x18(KERN_NOTICE));
break;
default: /* Reserved */
printk(KERN_NOTICE HWC_default(KERN_NOTICE));
break;
}
CHK_DEBUGGER_TRAP_MAYBE();
break;
/*
* We should be handling all known exception types above,
* if we get here we hit a reserved one, so panic
*/
default:
oops_in_progress = 1;
info.si_code = ILL_ILLPARAOP;
sig = SIGILL;
verbose_printk(KERN_EMERG "Caught Unhandled Exception, code = %08lx\n",
(fp->seqstat & SEQSTAT_EXCAUSE));
CHK_DEBUGGER_TRAP_MAYBE();
break;
}
BUG_ON(sig == 0);
if (sig != SIGTRAP) {
dump_bfin_process(fp);
dump_bfin_mem(fp);
show_regs(fp);
/* Print out the trace buffer if it makes sense */
#ifndef CONFIG_DEBUG_BFIN_NO_KERN_HWTRACE
if (trapnr == VEC_CPLB_I_M || trapnr == VEC_CPLB_M)
verbose_printk(KERN_NOTICE "No trace since you do not have "
"CONFIG_DEBUG_BFIN_NO_KERN_HWTRACE enabled\n"
KERN_NOTICE "\n");
else
#endif
dump_bfin_trace_buffer();
if (oops_in_progress) {
/* Dump the current kernel stack */
verbose_printk(KERN_NOTICE "\n" KERN_NOTICE "Kernel Stack\n");
show_stack(current, NULL);
print_modules();
#ifndef CONFIG_ACCESS_CHECK
verbose_printk(KERN_EMERG "Please turn on "
"CONFIG_ACCESS_CHECK\n");
#endif
panic("Kernel exception");
} else {
#ifdef CONFIG_DEBUG_VERBOSE
unsigned long *stack;
/* Dump the user space stack */
stack = (unsigned long *)rdusp();
verbose_printk(KERN_NOTICE "Userspace Stack\n");
show_stack(NULL, stack);
#endif
}
}
#ifdef CONFIG_IPIPE
if (!ipipe_trap_notify(fp->seqstat & 0x3f, fp))
#endif
{
info.si_signo = sig;
info.si_errno = 0;
info.si_addr = (void __user *)fp->pc;
force_sig_info(sig, &info, current);
}
if (ANOMALY_05000461 && trapnr == VEC_HWERR && !access_ok(VERIFY_READ, fp->pc, 8))
fp->pc = SAFE_USER_INSTRUCTION;
trace_buffer_restore(j);
return;
}
/* Typical exception handling routines */
#define EXPAND_LEN ((1 << CONFIG_DEBUG_BFIN_HWTRACE_EXPAND_LEN) * 256 - 1)
/*
* Similar to get_user, do some address checking, then dereference
* Return true on sucess, false on bad address
*/
static bool get_instruction(unsigned short *val, unsigned short *address)
{
unsigned long addr;
addr = (unsigned long)address;
/* Check for odd addresses */
if (addr & 0x1)
return false;
/* Check that things do not wrap around */
if (addr > (addr + 2))
return false;
/*
* Since we are in exception context, we need to do a little address checking
* We need to make sure we are only accessing valid memory, and
* we don't read something in the async space that can hang forever
*/
if ((addr >= FIXED_CODE_START && (addr + 2) <= physical_mem_end) ||
#if L2_LENGTH != 0
(addr >= L2_START && (addr + 2) <= (L2_START + L2_LENGTH)) ||
#endif
(addr >= BOOT_ROM_START && (addr + 2) <= (BOOT_ROM_START + BOOT_ROM_LENGTH)) ||
#if L1_DATA_A_LENGTH != 0
(addr >= L1_DATA_A_START && (addr + 2) <= (L1_DATA_A_START + L1_DATA_A_LENGTH)) ||
#endif
#if L1_DATA_B_LENGTH != 0
(addr >= L1_DATA_B_START && (addr + 2) <= (L1_DATA_B_START + L1_DATA_B_LENGTH)) ||
#endif
(addr >= L1_SCRATCH_START && (addr + 2) <= (L1_SCRATCH_START + L1_SCRATCH_LENGTH)) ||
(!(bfin_read_EBIU_AMBCTL0() & B0RDYEN) &&
addr >= ASYNC_BANK0_BASE && (addr + 2) <= (ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE)) ||
(!(bfin_read_EBIU_AMBCTL0() & B1RDYEN) &&
addr >= ASYNC_BANK1_BASE && (addr + 2) <= (ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE)) ||
(!(bfin_read_EBIU_AMBCTL1() & B2RDYEN) &&
addr >= ASYNC_BANK2_BASE && (addr + 2) <= (ASYNC_BANK2_BASE + ASYNC_BANK1_SIZE)) ||
(!(bfin_read_EBIU_AMBCTL1() & B3RDYEN) &&
addr >= ASYNC_BANK3_BASE && (addr + 2) <= (ASYNC_BANK3_BASE + ASYNC_BANK1_SIZE))) {
*val = *address;
return true;
}
#if L1_CODE_LENGTH != 0
if (addr >= L1_CODE_START && (addr + 2) <= (L1_CODE_START + L1_CODE_LENGTH)) {
isram_memcpy(val, address, 2);
return true;
}
#endif
return false;
}
/*
* decode the instruction if we are printing out the trace, as it
* makes things easier to follow, without running it through objdump
* These are the normal instructions which cause change of flow, which
* would be at the source of the trace buffer
*/
#if defined(CONFIG_DEBUG_VERBOSE) && defined(CONFIG_DEBUG_BFIN_HWTRACE_ON)
static void decode_instruction(unsigned short *address)
{
unsigned short opcode;
if (get_instruction(&opcode, address)) {
if (opcode == 0x0010)
verbose_printk("RTS");
else if (opcode == 0x0011)
verbose_printk("RTI");
else if (opcode == 0x0012)
verbose_printk("RTX");
else if (opcode == 0x0013)
verbose_printk("RTN");
else if (opcode == 0x0014)
verbose_printk("RTE");
else if (opcode == 0x0025)
verbose_printk("EMUEXCPT");
else if (opcode == 0x0040 && opcode <= 0x0047)
verbose_printk("STI R%i", opcode & 7);
else if (opcode >= 0x0050 && opcode <= 0x0057)
verbose_printk("JUMP (P%i)", opcode & 7);
else if (opcode >= 0x0060 && opcode <= 0x0067)
verbose_printk("CALL (P%i)", opcode & 7);
else if (opcode >= 0x0070 && opcode <= 0x0077)
verbose_printk("CALL (PC+P%i)", opcode & 7);
else if (opcode >= 0x0080 && opcode <= 0x0087)
verbose_printk("JUMP (PC+P%i)", opcode & 7);
else if (opcode >= 0x0090 && opcode <= 0x009F)
verbose_printk("RAISE 0x%x", opcode & 0xF);
else if (opcode >= 0x00A0 && opcode <= 0x00AF)
verbose_printk("EXCPT 0x%x", opcode & 0xF);
else if ((opcode >= 0x1000 && opcode <= 0x13FF) || (opcode >= 0x1800 && opcode <= 0x1BFF))
verbose_printk("IF !CC JUMP");
else if ((opcode >= 0x1400 && opcode <= 0x17ff) || (opcode >= 0x1c00 && opcode <= 0x1fff))
verbose_printk("IF CC JUMP");
else if (opcode >= 0x2000 && opcode <= 0x2fff)
verbose_printk("JUMP.S");
else if (opcode >= 0xe080 && opcode <= 0xe0ff)
verbose_printk("LSETUP");
else if (opcode >= 0xe200 && opcode <= 0xe2ff)
verbose_printk("JUMP.L");
else if (opcode >= 0xe300 && opcode <= 0xe3ff)
verbose_printk("CALL pcrel");
else
verbose_printk("0x%04x", opcode);
}
}
#endif
void dump_bfin_trace_buffer(void)
{
#ifdef CONFIG_DEBUG_VERBOSE
#ifdef CONFIG_DEBUG_BFIN_HWTRACE_ON
int tflags, i = 0;
char buf[150];
unsigned short *addr;
#ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND
int j, index;
#endif
trace_buffer_save(tflags);
printk(KERN_NOTICE "Hardware Trace:\n");
#ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND
printk(KERN_NOTICE "WARNING: Expanded trace turned on - can not trace exceptions\n");
#endif
if (likely(bfin_read_TBUFSTAT() & TBUFCNT)) {
for (; bfin_read_TBUFSTAT() & TBUFCNT; i++) {
decode_address(buf, (unsigned long)bfin_read_TBUF());
printk(KERN_NOTICE "%4i Target : %s\n", i, buf);
addr = (unsigned short *)bfin_read_TBUF();
decode_address(buf, (unsigned long)addr);
printk(KERN_NOTICE " Source : %s ", buf);
decode_instruction(addr);
printk("\n");
}
}
#ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND
if (trace_buff_offset)
index = trace_buff_offset / 4;
else
index = EXPAND_LEN;
j = (1 << CONFIG_DEBUG_BFIN_HWTRACE_EXPAND_LEN) * 128;
while (j) {
decode_address(buf, software_trace_buff[index]);
printk(KERN_NOTICE "%4i Target : %s\n", i, buf);
index -= 1;
if (index < 0 )
index = EXPAND_LEN;
decode_address(buf, software_trace_buff[index]);
printk(KERN_NOTICE " Source : %s ", buf);
decode_instruction((unsigned short *)software_trace_buff[index]);
printk("\n");
index -= 1;
if (index < 0)
index = EXPAND_LEN;
j--;
i++;
}
#endif
trace_buffer_restore(tflags);
#endif
#endif
}
EXPORT_SYMBOL(dump_bfin_trace_buffer);
/*
* Checks to see if the address pointed to is either a
* 16-bit CALL instruction, or a 32-bit CALL instruction
*/
static bool is_bfin_call(unsigned short *addr)
{
unsigned short opcode = 0, *ins_addr;
ins_addr = (unsigned short *)addr;
if (!get_instruction(&opcode, ins_addr))
return false;
if ((opcode >= 0x0060 && opcode <= 0x0067) ||
(opcode >= 0x0070 && opcode <= 0x0077))
return true;
ins_addr--;
if (!get_instruction(&opcode, ins_addr))
return false;
if (opcode >= 0xE300 && opcode <= 0xE3FF)
return true;
return false;
}
void show_stack(struct task_struct *task, unsigned long *stack)
{
#ifdef CONFIG_PRINTK
unsigned int *addr, *endstack, *fp = 0, *frame;
unsigned short *ins_addr;
char buf[150];
unsigned int i, j, ret_addr, frame_no = 0;
/*
* If we have been passed a specific stack, use that one otherwise
* if we have been passed a task structure, use that, otherwise
* use the stack of where the variable "stack" exists
*/
if (stack == NULL) {
if (task) {
/* We know this is a kernel stack, so this is the start/end */
stack = (unsigned long *)task->thread.ksp;
endstack = (unsigned int *)(((unsigned int)(stack) & ~(THREAD_SIZE - 1)) + THREAD_SIZE);
} else {
/* print out the existing stack info */
stack = (unsigned long *)&stack;
endstack = (unsigned int *)PAGE_ALIGN((unsigned int)stack);
}
} else
endstack = (unsigned int *)PAGE_ALIGN((unsigned int)stack);
printk(KERN_NOTICE "Stack info:\n");
decode_address(buf, (unsigned int)stack);
printk(KERN_NOTICE " SP: [0x%p] %s\n", stack, buf);
if (!access_ok(VERIFY_READ, stack, (unsigned int)endstack - (unsigned int)stack)) {
printk(KERN_NOTICE "Invalid stack pointer\n");
return;
}
/* First thing is to look for a frame pointer */
for (addr = (unsigned int *)((unsigned int)stack & ~0xF); addr < endstack; addr++) {
if (*addr & 0x1)
continue;
ins_addr = (unsigned short *)*addr;
ins_addr--;
if (is_bfin_call(ins_addr))
fp = addr - 1;
if (fp) {
/* Let's check to see if it is a frame pointer */
while (fp >= (addr - 1) && fp < endstack
&& fp && ((unsigned int) fp & 0x3) == 0)
fp = (unsigned int *)*fp;
if (fp == 0 || fp == endstack) {
fp = addr - 1;
break;
}
fp = 0;
}
}
if (fp) {
frame = fp;
printk(KERN_NOTICE " FP: (0x%p)\n", fp);
} else
frame = 0;
/*
* Now that we think we know where things are, we
* walk the stack again, this time printing things out
* incase there is no frame pointer, we still look for
* valid return addresses
*/
/* First time print out data, next time, print out symbols */
for (j = 0; j <= 1; j++) {
if (j)
printk(KERN_NOTICE "Return addresses in stack:\n");
else
printk(KERN_NOTICE " Memory from 0x%08lx to %p", ((long unsigned int)stack & ~0xF), endstack);
fp = frame;
frame_no = 0;
for (addr = (unsigned int *)((unsigned int)stack & ~0xF), i = 0;
addr <= endstack; addr++, i++) {
ret_addr = 0;
if (!j && i % 8 == 0)
printk("\n" KERN_NOTICE "%p:",addr);
/* if it is an odd address, or zero, just skip it */
if (*addr & 0x1 || !*addr)
goto print;
ins_addr = (unsigned short *)*addr;
/* Go back one instruction, and see if it is a CALL */
ins_addr--;
ret_addr = is_bfin_call(ins_addr);
print:
if (!j && stack == (unsigned long *)addr)
printk("[%08x]", *addr);
else if (ret_addr)
if (j) {
decode_address(buf, (unsigned int)*addr);
if (frame == addr) {
printk(KERN_NOTICE " frame %2i : %s\n", frame_no, buf);
continue;
}
printk(KERN_NOTICE " address : %s\n", buf);
} else
printk("<%08x>", *addr);
else if (fp == addr) {
if (j)
frame = addr+1;
else
printk("(%08x)", *addr);
fp = (unsigned int *)*addr;
frame_no++;
} else if (!j)
printk(" %08x ", *addr);
}
if (!j)
printk("\n");
}
#endif
}
void dump_stack(void)
{
unsigned long stack;
#ifdef CONFIG_DEBUG_BFIN_HWTRACE_ON
int tflags;
#endif
trace_buffer_save(tflags);
dump_bfin_trace_buffer();
show_stack(current, &stack);
trace_buffer_restore(tflags);
}
EXPORT_SYMBOL(dump_stack);
void dump_bfin_process(struct pt_regs *fp)
{
#ifdef CONFIG_DEBUG_VERBOSE
/* We should be able to look at fp->ipend, but we don't push it on the
* stack all the time, so do this until we fix that */
unsigned int context = bfin_read_IPEND();
if (oops_in_progress)
verbose_printk(KERN_EMERG "Kernel OOPS in progress\n");
if (context & 0x0020 && (fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR)
verbose_printk(KERN_NOTICE "HW Error context\n");
else if (context & 0x0020)
verbose_printk(KERN_NOTICE "Deferred Exception context\n");
else if (context & 0x3FC0)
verbose_printk(KERN_NOTICE "Interrupt context\n");
else if (context & 0x4000)
verbose_printk(KERN_NOTICE "Deferred Interrupt context\n");
else if (context & 0x8000)
verbose_printk(KERN_NOTICE "Kernel process context\n");
/* Because we are crashing, and pointers could be bad, we check things
* pretty closely before we use them
*/
if ((unsigned long)current >= FIXED_CODE_START &&
!((unsigned long)current & 0x3) && current->pid) {
verbose_printk(KERN_NOTICE "CURRENT PROCESS:\n");
if (current->comm >= (char *)FIXED_CODE_START)
verbose_printk(KERN_NOTICE "COMM=%s PID=%d\n",
current->comm, current->pid);
else
verbose_printk(KERN_NOTICE "COMM= invalid\n");
printk(KERN_NOTICE "CPU = %d\n", current_thread_info()->cpu);
if (!((unsigned long)current->mm & 0x3) && (unsigned long)current->mm >= FIXED_CODE_START)
verbose_printk(KERN_NOTICE "TEXT = 0x%p-0x%p DATA = 0x%p-0x%p\n"
KERN_NOTICE " BSS = 0x%p-0x%p USER-STACK = 0x%p\n"
KERN_NOTICE "\n",
(void *)current->mm->start_code,
(void *)current->mm->end_code,
(void *)current->mm->start_data,
(void *)current->mm->end_data,
(void *)current->mm->end_data,
(void *)current->mm->brk,
(void *)current->mm->start_stack);
else
verbose_printk(KERN_NOTICE "invalid mm\n");
} else
verbose_printk(KERN_NOTICE "\n" KERN_NOTICE
"No Valid process in current context\n");
#endif
}
void dump_bfin_mem(struct pt_regs *fp)
{
#ifdef CONFIG_DEBUG_VERBOSE
unsigned short *addr, *erraddr, val = 0, err = 0;
char sti = 0, buf[6];
erraddr = (void *)fp->pc;
verbose_printk(KERN_NOTICE "return address: [0x%p]; contents of:", erraddr);
for (addr = (unsigned short *)((unsigned long)erraddr & ~0xF) - 0x10;
addr < (unsigned short *)((unsigned long)erraddr & ~0xF) + 0x10;
addr++) {
if (!((unsigned long)addr & 0xF))
verbose_printk("\n" KERN_NOTICE "0x%p: ", addr);
if (!get_instruction(&val, addr)) {
val = 0;
sprintf(buf, "????");
} else
sprintf(buf, "%04x", val);
if (addr == erraddr) {
verbose_printk("[%s]", buf);
err = val;
} else
verbose_printk(" %s ", buf);
/* Do any previous instructions turn on interrupts? */
if (addr <= erraddr && /* in the past */
((val >= 0x0040 && val <= 0x0047) || /* STI instruction */
val == 0x017b)) /* [SP++] = RETI */
sti = 1;
}
verbose_printk("\n");
/* Hardware error interrupts can be deferred */
if (unlikely(sti && (fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR &&
oops_in_progress)){
verbose_printk(KERN_NOTICE "Looks like this was a deferred error - sorry\n");
#ifndef CONFIG_DEBUG_HWERR
verbose_printk(KERN_NOTICE "The remaining message may be meaningless\n"
KERN_NOTICE "You should enable CONFIG_DEBUG_HWERR to get a"
" better idea where it came from\n");
#else
/* If we are handling only one peripheral interrupt
* and current mm and pid are valid, and the last error
* was in that user space process's text area
* print it out - because that is where the problem exists
*/
if ((!(((fp)->ipend & ~0x30) & (((fp)->ipend & ~0x30) - 1))) &&
(current->pid && current->mm)) {
/* And the last RETI points to the current userspace context */
if ((fp + 1)->pc >= current->mm->start_code &&
(fp + 1)->pc <= current->mm->end_code) {
verbose_printk(KERN_NOTICE "It might be better to look around here : \n");
verbose_printk(KERN_NOTICE "-------------------------------------------\n");
show_regs(fp + 1);
verbose_printk(KERN_NOTICE "-------------------------------------------\n");
}
}
#endif
}
#endif
}
void show_regs(struct pt_regs *fp)
{
#ifdef CONFIG_DEBUG_VERBOSE
char buf [150];
struct irqaction *action;
unsigned int i;
unsigned long flags = 0;
unsigned int cpu = smp_processor_id();
unsigned char in_atomic = (bfin_read_IPEND() & 0x10) || in_atomic();
verbose_printk(KERN_NOTICE "\n");
if (CPUID != bfin_cpuid())
verbose_printk(KERN_NOTICE "Compiled for cpu family 0x%04x (Rev %d), "
"but running on:0x%04x (Rev %d)\n",
CPUID, bfin_compiled_revid(), bfin_cpuid(), bfin_revid());
verbose_printk(KERN_NOTICE "ADSP-%s-0.%d",
CPU, bfin_compiled_revid());
if (bfin_compiled_revid() != bfin_revid())
verbose_printk("(Detected 0.%d)", bfin_revid());
verbose_printk(" %lu(MHz CCLK) %lu(MHz SCLK) (%s)\n",
get_cclk()/1000000, get_sclk()/1000000,
#ifdef CONFIG_MPU
"mpu on"
#else
"mpu off"
#endif
);
verbose_printk(KERN_NOTICE "%s", linux_banner);
verbose_printk(KERN_NOTICE "\n" KERN_NOTICE "SEQUENCER STATUS:\t\t%s\n", print_tainted());
verbose_printk(KERN_NOTICE " SEQSTAT: %08lx IPEND: %04lx SYSCFG: %04lx\n",
(long)fp->seqstat, fp->ipend, fp->syscfg);
if ((fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR) {
verbose_printk(KERN_NOTICE " HWERRCAUSE: 0x%lx\n",
(fp->seqstat & SEQSTAT_HWERRCAUSE) >> 14);
#ifdef EBIU_ERRMST
/* If the error was from the EBIU, print it out */
if (bfin_read_EBIU_ERRMST() & CORE_ERROR) {
verbose_printk(KERN_NOTICE " EBIU Error Reason : 0x%04x\n",
bfin_read_EBIU_ERRMST());
verbose_printk(KERN_NOTICE " EBIU Error Address : 0x%08x\n",
bfin_read_EBIU_ERRADD());
}
#endif
}
verbose_printk(KERN_NOTICE " EXCAUSE : 0x%lx\n",
fp->seqstat & SEQSTAT_EXCAUSE);
for (i = 2; i <= 15 ; i++) {
if (fp->ipend & (1 << i)) {
if (i != 4) {
decode_address(buf, bfin_read32(EVT0 + 4*i));
verbose_printk(KERN_NOTICE " physical IVG%i asserted : %s\n", i, buf);
} else
verbose_printk(KERN_NOTICE " interrupts disabled\n");
}
}
/* if no interrupts are going off, don't print this out */
if (fp->ipend & ~0x3F) {
for (i = 0; i < (NR_IRQS - 1); i++) {
if (!in_atomic)
spin_lock_irqsave(&irq_desc[i].lock, flags);
action = irq_desc[i].action;
if (!action)
goto unlock;
decode_address(buf, (unsigned int)action->handler);
verbose_printk(KERN_NOTICE " logical irq %3d mapped : %s", i, buf);
for (action = action->next; action; action = action->next) {
decode_address(buf, (unsigned int)action->handler);
verbose_printk(", %s", buf);
}
verbose_printk("\n");
unlock:
if (!in_atomic)
spin_unlock_irqrestore(&irq_desc[i].lock, flags);
}
}
decode_address(buf, fp->rete);
verbose_printk(KERN_NOTICE " RETE: %s\n", buf);
decode_address(buf, fp->retn);
verbose_printk(KERN_NOTICE " RETN: %s\n", buf);
decode_address(buf, fp->retx);
verbose_printk(KERN_NOTICE " RETX: %s\n", buf);
decode_address(buf, fp->rets);
verbose_printk(KERN_NOTICE " RETS: %s\n", buf);
decode_address(buf, fp->pc);
verbose_printk(KERN_NOTICE " PC : %s\n", buf);
if (((long)fp->seqstat & SEQSTAT_EXCAUSE) &&
(((long)fp->seqstat & SEQSTAT_EXCAUSE) != VEC_HWERR)) {
decode_address(buf, cpu_pda[cpu].dcplb_fault_addr);
verbose_printk(KERN_NOTICE "DCPLB_FAULT_ADDR: %s\n", buf);
decode_address(buf, cpu_pda[cpu].icplb_fault_addr);
verbose_printk(KERN_NOTICE "ICPLB_FAULT_ADDR: %s\n", buf);
}
verbose_printk(KERN_NOTICE "\n" KERN_NOTICE "PROCESSOR STATE:\n");
verbose_printk(KERN_NOTICE " R0 : %08lx R1 : %08lx R2 : %08lx R3 : %08lx\n",
fp->r0, fp->r1, fp->r2, fp->r3);
verbose_printk(KERN_NOTICE " R4 : %08lx R5 : %08lx R6 : %08lx R7 : %08lx\n",
fp->r4, fp->r5, fp->r6, fp->r7);
verbose_printk(KERN_NOTICE " P0 : %08lx P1 : %08lx P2 : %08lx P3 : %08lx\n",
fp->p0, fp->p1, fp->p2, fp->p3);
verbose_printk(KERN_NOTICE " P4 : %08lx P5 : %08lx FP : %08lx SP : %08lx\n",
fp->p4, fp->p5, fp->fp, (long)fp);
verbose_printk(KERN_NOTICE " LB0: %08lx LT0: %08lx LC0: %08lx\n",
fp->lb0, fp->lt0, fp->lc0);
verbose_printk(KERN_NOTICE " LB1: %08lx LT1: %08lx LC1: %08lx\n",
fp->lb1, fp->lt1, fp->lc1);
verbose_printk(KERN_NOTICE " B0 : %08lx L0 : %08lx M0 : %08lx I0 : %08lx\n",
fp->b0, fp->l0, fp->m0, fp->i0);
verbose_printk(KERN_NOTICE " B1 : %08lx L1 : %08lx M1 : %08lx I1 : %08lx\n",
fp->b1, fp->l1, fp->m1, fp->i1);
verbose_printk(KERN_NOTICE " B2 : %08lx L2 : %08lx M2 : %08lx I2 : %08lx\n",
fp->b2, fp->l2, fp->m2, fp->i2);
verbose_printk(KERN_NOTICE " B3 : %08lx L3 : %08lx M3 : %08lx I3 : %08lx\n",
fp->b3, fp->l3, fp->m3, fp->i3);
verbose_printk(KERN_NOTICE "A0.w: %08lx A0.x: %08lx A1.w: %08lx A1.x: %08lx\n",
fp->a0w, fp->a0x, fp->a1w, fp->a1x);
verbose_printk(KERN_NOTICE "USP : %08lx ASTAT: %08lx\n",
rdusp(), fp->astat);
verbose_printk(KERN_NOTICE "\n");
#endif
}
#ifdef CONFIG_SYS_BFIN_SPINLOCK_L1
asmlinkage int sys_bfin_spinlock(int *spinlock)__attribute__((l1_text));
#endif
static DEFINE_SPINLOCK(bfin_spinlock_lock);
asmlinkage int sys_bfin_spinlock(int *p)
{
int ret, tmp = 0;
spin_lock(&bfin_spinlock_lock); /* This would also hold kernel preemption. */
ret = get_user(tmp, p);
if (likely(ret == 0)) {
if (unlikely(tmp))
ret = 1;
else
put_user(1, p);
}
spin_unlock(&bfin_spinlock_lock);
return ret;
}
int bfin_request_exception(unsigned int exception, void (*handler)(void))
{
void (*curr_handler)(void);
if (exception > 0x3F)
return -EINVAL;
curr_handler = ex_table[exception];
if (curr_handler != ex_replaceable)
return -EBUSY;
ex_table[exception] = handler;
return 0;
}
EXPORT_SYMBOL(bfin_request_exception);
int bfin_free_exception(unsigned int exception, void (*handler)(void))
{
void (*curr_handler)(void);
if (exception > 0x3F)
return -EINVAL;
curr_handler = ex_table[exception];
if (curr_handler != handler)
return -EBUSY;
ex_table[exception] = ex_replaceable;
return 0;
}
EXPORT_SYMBOL(bfin_free_exception);
void panic_cplb_error(int cplb_panic, struct pt_regs *fp)
{
switch (cplb_panic) {
case CPLB_NO_UNLOCKED:
printk(KERN_EMERG "All CPLBs are locked\n");
break;
case CPLB_PROT_VIOL:
return;
case CPLB_NO_ADDR_MATCH:
return;
case CPLB_UNKNOWN_ERR:
printk(KERN_EMERG "Unknown CPLB Exception\n");
break;
}
oops_in_progress = 1;
dump_bfin_process(fp);
dump_bfin_mem(fp);
show_regs(fp);
dump_stack();
panic("Unrecoverable event");
}