mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-17 01:04:19 +08:00
38f2323244
Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Alex Elder <aelder@sgi.com>
1566 lines
42 KiB
C
1566 lines
42 KiB
C
/*
|
|
* Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
|
|
* All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it would be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_types.h"
|
|
#include "xfs_bit.h"
|
|
#include "xfs_log.h"
|
|
#include "xfs_inum.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_sb.h"
|
|
#include "xfs_ag.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_bmap_btree.h"
|
|
#include "xfs_alloc_btree.h"
|
|
#include "xfs_ialloc_btree.h"
|
|
#include "xfs_dinode.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_btree.h"
|
|
#include "xfs_ialloc.h"
|
|
#include "xfs_alloc.h"
|
|
#include "xfs_rtalloc.h"
|
|
#include "xfs_error.h"
|
|
#include "xfs_bmap.h"
|
|
|
|
|
|
/*
|
|
* Allocation group level functions.
|
|
*/
|
|
static inline int
|
|
xfs_ialloc_cluster_alignment(
|
|
xfs_alloc_arg_t *args)
|
|
{
|
|
if (xfs_sb_version_hasalign(&args->mp->m_sb) &&
|
|
args->mp->m_sb.sb_inoalignmt >=
|
|
XFS_B_TO_FSBT(args->mp, XFS_INODE_CLUSTER_SIZE(args->mp)))
|
|
return args->mp->m_sb.sb_inoalignmt;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Lookup a record by ino in the btree given by cur.
|
|
*/
|
|
int /* error */
|
|
xfs_inobt_lookup(
|
|
struct xfs_btree_cur *cur, /* btree cursor */
|
|
xfs_agino_t ino, /* starting inode of chunk */
|
|
xfs_lookup_t dir, /* <=, >=, == */
|
|
int *stat) /* success/failure */
|
|
{
|
|
cur->bc_rec.i.ir_startino = ino;
|
|
cur->bc_rec.i.ir_freecount = 0;
|
|
cur->bc_rec.i.ir_free = 0;
|
|
return xfs_btree_lookup(cur, dir, stat);
|
|
}
|
|
|
|
/*
|
|
* Update the record referred to by cur to the value given.
|
|
* This either works (return 0) or gets an EFSCORRUPTED error.
|
|
*/
|
|
STATIC int /* error */
|
|
xfs_inobt_update(
|
|
struct xfs_btree_cur *cur, /* btree cursor */
|
|
xfs_inobt_rec_incore_t *irec) /* btree record */
|
|
{
|
|
union xfs_btree_rec rec;
|
|
|
|
rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
|
|
rec.inobt.ir_freecount = cpu_to_be32(irec->ir_freecount);
|
|
rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
|
|
return xfs_btree_update(cur, &rec);
|
|
}
|
|
|
|
/*
|
|
* Get the data from the pointed-to record.
|
|
*/
|
|
int /* error */
|
|
xfs_inobt_get_rec(
|
|
struct xfs_btree_cur *cur, /* btree cursor */
|
|
xfs_inobt_rec_incore_t *irec, /* btree record */
|
|
int *stat) /* output: success/failure */
|
|
{
|
|
union xfs_btree_rec *rec;
|
|
int error;
|
|
|
|
error = xfs_btree_get_rec(cur, &rec, stat);
|
|
if (!error && *stat == 1) {
|
|
irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
|
|
irec->ir_freecount = be32_to_cpu(rec->inobt.ir_freecount);
|
|
irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Verify that the number of free inodes in the AGI is correct.
|
|
*/
|
|
#ifdef DEBUG
|
|
STATIC int
|
|
xfs_check_agi_freecount(
|
|
struct xfs_btree_cur *cur,
|
|
struct xfs_agi *agi)
|
|
{
|
|
if (cur->bc_nlevels == 1) {
|
|
xfs_inobt_rec_incore_t rec;
|
|
int freecount = 0;
|
|
int error;
|
|
int i;
|
|
|
|
error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
|
|
if (error)
|
|
return error;
|
|
|
|
do {
|
|
error = xfs_inobt_get_rec(cur, &rec, &i);
|
|
if (error)
|
|
return error;
|
|
|
|
if (i) {
|
|
freecount += rec.ir_freecount;
|
|
error = xfs_btree_increment(cur, 0, &i);
|
|
if (error)
|
|
return error;
|
|
}
|
|
} while (i == 1);
|
|
|
|
if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
|
|
ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
|
|
}
|
|
return 0;
|
|
}
|
|
#else
|
|
#define xfs_check_agi_freecount(cur, agi) 0
|
|
#endif
|
|
|
|
/*
|
|
* Initialise a new set of inodes.
|
|
*/
|
|
STATIC int
|
|
xfs_ialloc_inode_init(
|
|
struct xfs_mount *mp,
|
|
struct xfs_trans *tp,
|
|
xfs_agnumber_t agno,
|
|
xfs_agblock_t agbno,
|
|
xfs_agblock_t length,
|
|
unsigned int gen)
|
|
{
|
|
struct xfs_buf *fbuf;
|
|
struct xfs_dinode *free;
|
|
int blks_per_cluster, nbufs, ninodes;
|
|
int version;
|
|
int i, j;
|
|
xfs_daddr_t d;
|
|
|
|
/*
|
|
* Loop over the new block(s), filling in the inodes.
|
|
* For small block sizes, manipulate the inodes in buffers
|
|
* which are multiples of the blocks size.
|
|
*/
|
|
if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
|
|
blks_per_cluster = 1;
|
|
nbufs = length;
|
|
ninodes = mp->m_sb.sb_inopblock;
|
|
} else {
|
|
blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
|
|
mp->m_sb.sb_blocksize;
|
|
nbufs = length / blks_per_cluster;
|
|
ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
|
|
}
|
|
|
|
/*
|
|
* Figure out what version number to use in the inodes we create.
|
|
* If the superblock version has caught up to the one that supports
|
|
* the new inode format, then use the new inode version. Otherwise
|
|
* use the old version so that old kernels will continue to be
|
|
* able to use the file system.
|
|
*/
|
|
if (xfs_sb_version_hasnlink(&mp->m_sb))
|
|
version = 2;
|
|
else
|
|
version = 1;
|
|
|
|
for (j = 0; j < nbufs; j++) {
|
|
/*
|
|
* Get the block.
|
|
*/
|
|
d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster));
|
|
fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
|
|
mp->m_bsize * blks_per_cluster,
|
|
XBF_LOCK);
|
|
if (!fbuf)
|
|
return ENOMEM;
|
|
/*
|
|
* Initialize all inodes in this buffer and then log them.
|
|
*
|
|
* XXX: It would be much better if we had just one transaction
|
|
* to log a whole cluster of inodes instead of all the
|
|
* individual transactions causing a lot of log traffic.
|
|
*/
|
|
xfs_buf_zero(fbuf, 0, ninodes << mp->m_sb.sb_inodelog);
|
|
for (i = 0; i < ninodes; i++) {
|
|
int ioffset = i << mp->m_sb.sb_inodelog;
|
|
uint isize = sizeof(struct xfs_dinode);
|
|
|
|
free = xfs_make_iptr(mp, fbuf, i);
|
|
free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
|
|
free->di_version = version;
|
|
free->di_gen = cpu_to_be32(gen);
|
|
free->di_next_unlinked = cpu_to_be32(NULLAGINO);
|
|
xfs_trans_log_buf(tp, fbuf, ioffset, ioffset + isize - 1);
|
|
}
|
|
xfs_trans_inode_alloc_buf(tp, fbuf);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Allocate new inodes in the allocation group specified by agbp.
|
|
* Return 0 for success, else error code.
|
|
*/
|
|
STATIC int /* error code or 0 */
|
|
xfs_ialloc_ag_alloc(
|
|
xfs_trans_t *tp, /* transaction pointer */
|
|
xfs_buf_t *agbp, /* alloc group buffer */
|
|
int *alloc)
|
|
{
|
|
xfs_agi_t *agi; /* allocation group header */
|
|
xfs_alloc_arg_t args; /* allocation argument structure */
|
|
xfs_btree_cur_t *cur; /* inode btree cursor */
|
|
xfs_agnumber_t agno;
|
|
int error;
|
|
int i;
|
|
xfs_agino_t newino; /* new first inode's number */
|
|
xfs_agino_t newlen; /* new number of inodes */
|
|
xfs_agino_t thisino; /* current inode number, for loop */
|
|
int isaligned = 0; /* inode allocation at stripe unit */
|
|
/* boundary */
|
|
struct xfs_perag *pag;
|
|
|
|
args.tp = tp;
|
|
args.mp = tp->t_mountp;
|
|
|
|
/*
|
|
* Locking will ensure that we don't have two callers in here
|
|
* at one time.
|
|
*/
|
|
newlen = XFS_IALLOC_INODES(args.mp);
|
|
if (args.mp->m_maxicount &&
|
|
args.mp->m_sb.sb_icount + newlen > args.mp->m_maxicount)
|
|
return XFS_ERROR(ENOSPC);
|
|
args.minlen = args.maxlen = XFS_IALLOC_BLOCKS(args.mp);
|
|
/*
|
|
* First try to allocate inodes contiguous with the last-allocated
|
|
* chunk of inodes. If the filesystem is striped, this will fill
|
|
* an entire stripe unit with inodes.
|
|
*/
|
|
agi = XFS_BUF_TO_AGI(agbp);
|
|
newino = be32_to_cpu(agi->agi_newino);
|
|
agno = be32_to_cpu(agi->agi_seqno);
|
|
args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
|
|
XFS_IALLOC_BLOCKS(args.mp);
|
|
if (likely(newino != NULLAGINO &&
|
|
(args.agbno < be32_to_cpu(agi->agi_length)))) {
|
|
args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
|
|
args.type = XFS_ALLOCTYPE_THIS_BNO;
|
|
args.mod = args.total = args.wasdel = args.isfl =
|
|
args.userdata = args.minalignslop = 0;
|
|
args.prod = 1;
|
|
|
|
/*
|
|
* We need to take into account alignment here to ensure that
|
|
* we don't modify the free list if we fail to have an exact
|
|
* block. If we don't have an exact match, and every oher
|
|
* attempt allocation attempt fails, we'll end up cancelling
|
|
* a dirty transaction and shutting down.
|
|
*
|
|
* For an exact allocation, alignment must be 1,
|
|
* however we need to take cluster alignment into account when
|
|
* fixing up the freelist. Use the minalignslop field to
|
|
* indicate that extra blocks might be required for alignment,
|
|
* but not to use them in the actual exact allocation.
|
|
*/
|
|
args.alignment = 1;
|
|
args.minalignslop = xfs_ialloc_cluster_alignment(&args) - 1;
|
|
|
|
/* Allow space for the inode btree to split. */
|
|
args.minleft = args.mp->m_in_maxlevels - 1;
|
|
if ((error = xfs_alloc_vextent(&args)))
|
|
return error;
|
|
} else
|
|
args.fsbno = NULLFSBLOCK;
|
|
|
|
if (unlikely(args.fsbno == NULLFSBLOCK)) {
|
|
/*
|
|
* Set the alignment for the allocation.
|
|
* If stripe alignment is turned on then align at stripe unit
|
|
* boundary.
|
|
* If the cluster size is smaller than a filesystem block
|
|
* then we're doing I/O for inodes in filesystem block size
|
|
* pieces, so don't need alignment anyway.
|
|
*/
|
|
isaligned = 0;
|
|
if (args.mp->m_sinoalign) {
|
|
ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
|
|
args.alignment = args.mp->m_dalign;
|
|
isaligned = 1;
|
|
} else
|
|
args.alignment = xfs_ialloc_cluster_alignment(&args);
|
|
/*
|
|
* Need to figure out where to allocate the inode blocks.
|
|
* Ideally they should be spaced out through the a.g.
|
|
* For now, just allocate blocks up front.
|
|
*/
|
|
args.agbno = be32_to_cpu(agi->agi_root);
|
|
args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
|
|
/*
|
|
* Allocate a fixed-size extent of inodes.
|
|
*/
|
|
args.type = XFS_ALLOCTYPE_NEAR_BNO;
|
|
args.mod = args.total = args.wasdel = args.isfl =
|
|
args.userdata = args.minalignslop = 0;
|
|
args.prod = 1;
|
|
/*
|
|
* Allow space for the inode btree to split.
|
|
*/
|
|
args.minleft = args.mp->m_in_maxlevels - 1;
|
|
if ((error = xfs_alloc_vextent(&args)))
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* If stripe alignment is turned on, then try again with cluster
|
|
* alignment.
|
|
*/
|
|
if (isaligned && args.fsbno == NULLFSBLOCK) {
|
|
args.type = XFS_ALLOCTYPE_NEAR_BNO;
|
|
args.agbno = be32_to_cpu(agi->agi_root);
|
|
args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
|
|
args.alignment = xfs_ialloc_cluster_alignment(&args);
|
|
if ((error = xfs_alloc_vextent(&args)))
|
|
return error;
|
|
}
|
|
|
|
if (args.fsbno == NULLFSBLOCK) {
|
|
*alloc = 0;
|
|
return 0;
|
|
}
|
|
ASSERT(args.len == args.minlen);
|
|
|
|
/*
|
|
* Stamp and write the inode buffers.
|
|
*
|
|
* Seed the new inode cluster with a random generation number. This
|
|
* prevents short-term reuse of generation numbers if a chunk is
|
|
* freed and then immediately reallocated. We use random numbers
|
|
* rather than a linear progression to prevent the next generation
|
|
* number from being easily guessable.
|
|
*/
|
|
error = xfs_ialloc_inode_init(args.mp, tp, agno, args.agbno,
|
|
args.len, random32());
|
|
|
|
if (error)
|
|
return error;
|
|
/*
|
|
* Convert the results.
|
|
*/
|
|
newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0);
|
|
be32_add_cpu(&agi->agi_count, newlen);
|
|
be32_add_cpu(&agi->agi_freecount, newlen);
|
|
pag = xfs_perag_get(args.mp, agno);
|
|
pag->pagi_freecount += newlen;
|
|
xfs_perag_put(pag);
|
|
agi->agi_newino = cpu_to_be32(newino);
|
|
|
|
/*
|
|
* Insert records describing the new inode chunk into the btree.
|
|
*/
|
|
cur = xfs_inobt_init_cursor(args.mp, tp, agbp, agno);
|
|
for (thisino = newino;
|
|
thisino < newino + newlen;
|
|
thisino += XFS_INODES_PER_CHUNK) {
|
|
cur->bc_rec.i.ir_startino = thisino;
|
|
cur->bc_rec.i.ir_freecount = XFS_INODES_PER_CHUNK;
|
|
cur->bc_rec.i.ir_free = XFS_INOBT_ALL_FREE;
|
|
error = xfs_btree_lookup(cur, XFS_LOOKUP_EQ, &i);
|
|
if (error) {
|
|
xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
|
|
return error;
|
|
}
|
|
ASSERT(i == 0);
|
|
error = xfs_btree_insert(cur, &i);
|
|
if (error) {
|
|
xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
|
|
return error;
|
|
}
|
|
ASSERT(i == 1);
|
|
}
|
|
xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
|
|
/*
|
|
* Log allocation group header fields
|
|
*/
|
|
xfs_ialloc_log_agi(tp, agbp,
|
|
XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
|
|
/*
|
|
* Modify/log superblock values for inode count and inode free count.
|
|
*/
|
|
xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
|
|
xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
|
|
*alloc = 1;
|
|
return 0;
|
|
}
|
|
|
|
STATIC xfs_agnumber_t
|
|
xfs_ialloc_next_ag(
|
|
xfs_mount_t *mp)
|
|
{
|
|
xfs_agnumber_t agno;
|
|
|
|
spin_lock(&mp->m_agirotor_lock);
|
|
agno = mp->m_agirotor;
|
|
if (++mp->m_agirotor == mp->m_maxagi)
|
|
mp->m_agirotor = 0;
|
|
spin_unlock(&mp->m_agirotor_lock);
|
|
|
|
return agno;
|
|
}
|
|
|
|
/*
|
|
* Select an allocation group to look for a free inode in, based on the parent
|
|
* inode and then mode. Return the allocation group buffer.
|
|
*/
|
|
STATIC xfs_buf_t * /* allocation group buffer */
|
|
xfs_ialloc_ag_select(
|
|
xfs_trans_t *tp, /* transaction pointer */
|
|
xfs_ino_t parent, /* parent directory inode number */
|
|
mode_t mode, /* bits set to indicate file type */
|
|
int okalloc) /* ok to allocate more space */
|
|
{
|
|
xfs_buf_t *agbp; /* allocation group header buffer */
|
|
xfs_agnumber_t agcount; /* number of ag's in the filesystem */
|
|
xfs_agnumber_t agno; /* current ag number */
|
|
int flags; /* alloc buffer locking flags */
|
|
xfs_extlen_t ineed; /* blocks needed for inode allocation */
|
|
xfs_extlen_t longest = 0; /* longest extent available */
|
|
xfs_mount_t *mp; /* mount point structure */
|
|
int needspace; /* file mode implies space allocated */
|
|
xfs_perag_t *pag; /* per allocation group data */
|
|
xfs_agnumber_t pagno; /* parent (starting) ag number */
|
|
|
|
/*
|
|
* Files of these types need at least one block if length > 0
|
|
* (and they won't fit in the inode, but that's hard to figure out).
|
|
*/
|
|
needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
|
|
mp = tp->t_mountp;
|
|
agcount = mp->m_maxagi;
|
|
if (S_ISDIR(mode))
|
|
pagno = xfs_ialloc_next_ag(mp);
|
|
else {
|
|
pagno = XFS_INO_TO_AGNO(mp, parent);
|
|
if (pagno >= agcount)
|
|
pagno = 0;
|
|
}
|
|
ASSERT(pagno < agcount);
|
|
/*
|
|
* Loop through allocation groups, looking for one with a little
|
|
* free space in it. Note we don't look for free inodes, exactly.
|
|
* Instead, we include whether there is a need to allocate inodes
|
|
* to mean that blocks must be allocated for them,
|
|
* if none are currently free.
|
|
*/
|
|
agno = pagno;
|
|
flags = XFS_ALLOC_FLAG_TRYLOCK;
|
|
for (;;) {
|
|
pag = xfs_perag_get(mp, agno);
|
|
if (!pag->pagi_init) {
|
|
if (xfs_ialloc_read_agi(mp, tp, agno, &agbp)) {
|
|
agbp = NULL;
|
|
goto nextag;
|
|
}
|
|
} else
|
|
agbp = NULL;
|
|
|
|
if (!pag->pagi_inodeok) {
|
|
xfs_ialloc_next_ag(mp);
|
|
goto unlock_nextag;
|
|
}
|
|
|
|
/*
|
|
* Is there enough free space for the file plus a block
|
|
* of inodes (if we need to allocate some)?
|
|
*/
|
|
ineed = pag->pagi_freecount ? 0 : XFS_IALLOC_BLOCKS(mp);
|
|
if (ineed && !pag->pagf_init) {
|
|
if (agbp == NULL &&
|
|
xfs_ialloc_read_agi(mp, tp, agno, &agbp)) {
|
|
agbp = NULL;
|
|
goto nextag;
|
|
}
|
|
(void)xfs_alloc_pagf_init(mp, tp, agno, flags);
|
|
}
|
|
if (!ineed || pag->pagf_init) {
|
|
if (ineed && !(longest = pag->pagf_longest))
|
|
longest = pag->pagf_flcount > 0;
|
|
if (!ineed ||
|
|
(pag->pagf_freeblks >= needspace + ineed &&
|
|
longest >= ineed &&
|
|
okalloc)) {
|
|
if (agbp == NULL &&
|
|
xfs_ialloc_read_agi(mp, tp, agno, &agbp)) {
|
|
agbp = NULL;
|
|
goto nextag;
|
|
}
|
|
xfs_perag_put(pag);
|
|
return agbp;
|
|
}
|
|
}
|
|
unlock_nextag:
|
|
if (agbp)
|
|
xfs_trans_brelse(tp, agbp);
|
|
nextag:
|
|
xfs_perag_put(pag);
|
|
/*
|
|
* No point in iterating over the rest, if we're shutting
|
|
* down.
|
|
*/
|
|
if (XFS_FORCED_SHUTDOWN(mp))
|
|
return NULL;
|
|
agno++;
|
|
if (agno >= agcount)
|
|
agno = 0;
|
|
if (agno == pagno) {
|
|
if (flags == 0)
|
|
return NULL;
|
|
flags = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Try to retrieve the next record to the left/right from the current one.
|
|
*/
|
|
STATIC int
|
|
xfs_ialloc_next_rec(
|
|
struct xfs_btree_cur *cur,
|
|
xfs_inobt_rec_incore_t *rec,
|
|
int *done,
|
|
int left)
|
|
{
|
|
int error;
|
|
int i;
|
|
|
|
if (left)
|
|
error = xfs_btree_decrement(cur, 0, &i);
|
|
else
|
|
error = xfs_btree_increment(cur, 0, &i);
|
|
|
|
if (error)
|
|
return error;
|
|
*done = !i;
|
|
if (i) {
|
|
error = xfs_inobt_get_rec(cur, rec, &i);
|
|
if (error)
|
|
return error;
|
|
XFS_WANT_CORRUPTED_RETURN(i == 1);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
STATIC int
|
|
xfs_ialloc_get_rec(
|
|
struct xfs_btree_cur *cur,
|
|
xfs_agino_t agino,
|
|
xfs_inobt_rec_incore_t *rec,
|
|
int *done,
|
|
int left)
|
|
{
|
|
int error;
|
|
int i;
|
|
|
|
error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
|
|
if (error)
|
|
return error;
|
|
*done = !i;
|
|
if (i) {
|
|
error = xfs_inobt_get_rec(cur, rec, &i);
|
|
if (error)
|
|
return error;
|
|
XFS_WANT_CORRUPTED_RETURN(i == 1);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Visible inode allocation functions.
|
|
*/
|
|
|
|
/*
|
|
* Allocate an inode on disk.
|
|
* Mode is used to tell whether the new inode will need space, and whether
|
|
* it is a directory.
|
|
*
|
|
* The arguments IO_agbp and alloc_done are defined to work within
|
|
* the constraint of one allocation per transaction.
|
|
* xfs_dialloc() is designed to be called twice if it has to do an
|
|
* allocation to make more free inodes. On the first call,
|
|
* IO_agbp should be set to NULL. If an inode is available,
|
|
* i.e., xfs_dialloc() did not need to do an allocation, an inode
|
|
* number is returned. In this case, IO_agbp would be set to the
|
|
* current ag_buf and alloc_done set to false.
|
|
* If an allocation needed to be done, xfs_dialloc would return
|
|
* the current ag_buf in IO_agbp and set alloc_done to true.
|
|
* The caller should then commit the current transaction, allocate a new
|
|
* transaction, and call xfs_dialloc() again, passing in the previous
|
|
* value of IO_agbp. IO_agbp should be held across the transactions.
|
|
* Since the agbp is locked across the two calls, the second call is
|
|
* guaranteed to have a free inode available.
|
|
*
|
|
* Once we successfully pick an inode its number is returned and the
|
|
* on-disk data structures are updated. The inode itself is not read
|
|
* in, since doing so would break ordering constraints with xfs_reclaim.
|
|
*/
|
|
int
|
|
xfs_dialloc(
|
|
xfs_trans_t *tp, /* transaction pointer */
|
|
xfs_ino_t parent, /* parent inode (directory) */
|
|
mode_t mode, /* mode bits for new inode */
|
|
int okalloc, /* ok to allocate more space */
|
|
xfs_buf_t **IO_agbp, /* in/out ag header's buffer */
|
|
boolean_t *alloc_done, /* true if we needed to replenish
|
|
inode freelist */
|
|
xfs_ino_t *inop) /* inode number allocated */
|
|
{
|
|
xfs_agnumber_t agcount; /* number of allocation groups */
|
|
xfs_buf_t *agbp; /* allocation group header's buffer */
|
|
xfs_agnumber_t agno; /* allocation group number */
|
|
xfs_agi_t *agi; /* allocation group header structure */
|
|
xfs_btree_cur_t *cur; /* inode allocation btree cursor */
|
|
int error; /* error return value */
|
|
int i; /* result code */
|
|
int ialloced; /* inode allocation status */
|
|
int noroom = 0; /* no space for inode blk allocation */
|
|
xfs_ino_t ino; /* fs-relative inode to be returned */
|
|
/* REFERENCED */
|
|
int j; /* result code */
|
|
xfs_mount_t *mp; /* file system mount structure */
|
|
int offset; /* index of inode in chunk */
|
|
xfs_agino_t pagino; /* parent's AG relative inode # */
|
|
xfs_agnumber_t pagno; /* parent's AG number */
|
|
xfs_inobt_rec_incore_t rec; /* inode allocation record */
|
|
xfs_agnumber_t tagno; /* testing allocation group number */
|
|
xfs_btree_cur_t *tcur; /* temp cursor */
|
|
xfs_inobt_rec_incore_t trec; /* temp inode allocation record */
|
|
struct xfs_perag *pag;
|
|
|
|
|
|
if (*IO_agbp == NULL) {
|
|
/*
|
|
* We do not have an agbp, so select an initial allocation
|
|
* group for inode allocation.
|
|
*/
|
|
agbp = xfs_ialloc_ag_select(tp, parent, mode, okalloc);
|
|
/*
|
|
* Couldn't find an allocation group satisfying the
|
|
* criteria, give up.
|
|
*/
|
|
if (!agbp) {
|
|
*inop = NULLFSINO;
|
|
return 0;
|
|
}
|
|
agi = XFS_BUF_TO_AGI(agbp);
|
|
ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
|
|
} else {
|
|
/*
|
|
* Continue where we left off before. In this case, we
|
|
* know that the allocation group has free inodes.
|
|
*/
|
|
agbp = *IO_agbp;
|
|
agi = XFS_BUF_TO_AGI(agbp);
|
|
ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
|
|
ASSERT(be32_to_cpu(agi->agi_freecount) > 0);
|
|
}
|
|
mp = tp->t_mountp;
|
|
agcount = mp->m_sb.sb_agcount;
|
|
agno = be32_to_cpu(agi->agi_seqno);
|
|
tagno = agno;
|
|
pagno = XFS_INO_TO_AGNO(mp, parent);
|
|
pagino = XFS_INO_TO_AGINO(mp, parent);
|
|
|
|
/*
|
|
* If we have already hit the ceiling of inode blocks then clear
|
|
* okalloc so we scan all available agi structures for a free
|
|
* inode.
|
|
*/
|
|
|
|
if (mp->m_maxicount &&
|
|
mp->m_sb.sb_icount + XFS_IALLOC_INODES(mp) > mp->m_maxicount) {
|
|
noroom = 1;
|
|
okalloc = 0;
|
|
}
|
|
|
|
/*
|
|
* Loop until we find an allocation group that either has free inodes
|
|
* or in which we can allocate some inodes. Iterate through the
|
|
* allocation groups upward, wrapping at the end.
|
|
*/
|
|
*alloc_done = B_FALSE;
|
|
while (!agi->agi_freecount) {
|
|
/*
|
|
* Don't do anything if we're not supposed to allocate
|
|
* any blocks, just go on to the next ag.
|
|
*/
|
|
if (okalloc) {
|
|
/*
|
|
* Try to allocate some new inodes in the allocation
|
|
* group.
|
|
*/
|
|
if ((error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced))) {
|
|
xfs_trans_brelse(tp, agbp);
|
|
if (error == ENOSPC) {
|
|
*inop = NULLFSINO;
|
|
return 0;
|
|
} else
|
|
return error;
|
|
}
|
|
if (ialloced) {
|
|
/*
|
|
* We successfully allocated some inodes, return
|
|
* the current context to the caller so that it
|
|
* can commit the current transaction and call
|
|
* us again where we left off.
|
|
*/
|
|
ASSERT(be32_to_cpu(agi->agi_freecount) > 0);
|
|
*alloc_done = B_TRUE;
|
|
*IO_agbp = agbp;
|
|
*inop = NULLFSINO;
|
|
return 0;
|
|
}
|
|
}
|
|
/*
|
|
* If it failed, give up on this ag.
|
|
*/
|
|
xfs_trans_brelse(tp, agbp);
|
|
/*
|
|
* Go on to the next ag: get its ag header.
|
|
*/
|
|
nextag:
|
|
if (++tagno == agcount)
|
|
tagno = 0;
|
|
if (tagno == agno) {
|
|
*inop = NULLFSINO;
|
|
return noroom ? ENOSPC : 0;
|
|
}
|
|
pag = xfs_perag_get(mp, tagno);
|
|
if (pag->pagi_inodeok == 0) {
|
|
xfs_perag_put(pag);
|
|
goto nextag;
|
|
}
|
|
error = xfs_ialloc_read_agi(mp, tp, tagno, &agbp);
|
|
xfs_perag_put(pag);
|
|
if (error)
|
|
goto nextag;
|
|
agi = XFS_BUF_TO_AGI(agbp);
|
|
ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
|
|
}
|
|
/*
|
|
* Here with an allocation group that has a free inode.
|
|
* Reset agno since we may have chosen a new ag in the
|
|
* loop above.
|
|
*/
|
|
agno = tagno;
|
|
*IO_agbp = NULL;
|
|
pag = xfs_perag_get(mp, agno);
|
|
|
|
restart_pagno:
|
|
cur = xfs_inobt_init_cursor(mp, tp, agbp, be32_to_cpu(agi->agi_seqno));
|
|
/*
|
|
* If pagino is 0 (this is the root inode allocation) use newino.
|
|
* This must work because we've just allocated some.
|
|
*/
|
|
if (!pagino)
|
|
pagino = be32_to_cpu(agi->agi_newino);
|
|
|
|
error = xfs_check_agi_freecount(cur, agi);
|
|
if (error)
|
|
goto error0;
|
|
|
|
/*
|
|
* If in the same AG as the parent, try to get near the parent.
|
|
*/
|
|
if (pagno == agno) {
|
|
int doneleft; /* done, to the left */
|
|
int doneright; /* done, to the right */
|
|
int searchdistance = 10;
|
|
|
|
error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
|
|
if (error)
|
|
goto error0;
|
|
XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
|
|
|
|
error = xfs_inobt_get_rec(cur, &rec, &j);
|
|
if (error)
|
|
goto error0;
|
|
XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
|
|
|
|
if (rec.ir_freecount > 0) {
|
|
/*
|
|
* Found a free inode in the same chunk
|
|
* as the parent, done.
|
|
*/
|
|
goto alloc_inode;
|
|
}
|
|
|
|
|
|
/*
|
|
* In the same AG as parent, but parent's chunk is full.
|
|
*/
|
|
|
|
/* duplicate the cursor, search left & right simultaneously */
|
|
error = xfs_btree_dup_cursor(cur, &tcur);
|
|
if (error)
|
|
goto error0;
|
|
|
|
/*
|
|
* Skip to last blocks looked up if same parent inode.
|
|
*/
|
|
if (pagino != NULLAGINO &&
|
|
pag->pagl_pagino == pagino &&
|
|
pag->pagl_leftrec != NULLAGINO &&
|
|
pag->pagl_rightrec != NULLAGINO) {
|
|
error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
|
|
&trec, &doneleft, 1);
|
|
if (error)
|
|
goto error1;
|
|
|
|
error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
|
|
&rec, &doneright, 0);
|
|
if (error)
|
|
goto error1;
|
|
} else {
|
|
/* search left with tcur, back up 1 record */
|
|
error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
|
|
if (error)
|
|
goto error1;
|
|
|
|
/* search right with cur, go forward 1 record. */
|
|
error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
|
|
if (error)
|
|
goto error1;
|
|
}
|
|
|
|
/*
|
|
* Loop until we find an inode chunk with a free inode.
|
|
*/
|
|
while (!doneleft || !doneright) {
|
|
int useleft; /* using left inode chunk this time */
|
|
|
|
if (!--searchdistance) {
|
|
/*
|
|
* Not in range - save last search
|
|
* location and allocate a new inode
|
|
*/
|
|
xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
|
|
pag->pagl_leftrec = trec.ir_startino;
|
|
pag->pagl_rightrec = rec.ir_startino;
|
|
pag->pagl_pagino = pagino;
|
|
goto newino;
|
|
}
|
|
|
|
/* figure out the closer block if both are valid. */
|
|
if (!doneleft && !doneright) {
|
|
useleft = pagino -
|
|
(trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
|
|
rec.ir_startino - pagino;
|
|
} else {
|
|
useleft = !doneleft;
|
|
}
|
|
|
|
/* free inodes to the left? */
|
|
if (useleft && trec.ir_freecount) {
|
|
rec = trec;
|
|
xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
|
|
cur = tcur;
|
|
|
|
pag->pagl_leftrec = trec.ir_startino;
|
|
pag->pagl_rightrec = rec.ir_startino;
|
|
pag->pagl_pagino = pagino;
|
|
goto alloc_inode;
|
|
}
|
|
|
|
/* free inodes to the right? */
|
|
if (!useleft && rec.ir_freecount) {
|
|
xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
|
|
|
|
pag->pagl_leftrec = trec.ir_startino;
|
|
pag->pagl_rightrec = rec.ir_startino;
|
|
pag->pagl_pagino = pagino;
|
|
goto alloc_inode;
|
|
}
|
|
|
|
/* get next record to check */
|
|
if (useleft) {
|
|
error = xfs_ialloc_next_rec(tcur, &trec,
|
|
&doneleft, 1);
|
|
} else {
|
|
error = xfs_ialloc_next_rec(cur, &rec,
|
|
&doneright, 0);
|
|
}
|
|
if (error)
|
|
goto error1;
|
|
}
|
|
|
|
/*
|
|
* We've reached the end of the btree. because
|
|
* we are only searching a small chunk of the
|
|
* btree each search, there is obviously free
|
|
* inodes closer to the parent inode than we
|
|
* are now. restart the search again.
|
|
*/
|
|
pag->pagl_pagino = NULLAGINO;
|
|
pag->pagl_leftrec = NULLAGINO;
|
|
pag->pagl_rightrec = NULLAGINO;
|
|
xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
|
|
xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
|
|
goto restart_pagno;
|
|
}
|
|
|
|
/*
|
|
* In a different AG from the parent.
|
|
* See if the most recently allocated block has any free.
|
|
*/
|
|
newino:
|
|
if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
|
|
error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
|
|
XFS_LOOKUP_EQ, &i);
|
|
if (error)
|
|
goto error0;
|
|
|
|
if (i == 1) {
|
|
error = xfs_inobt_get_rec(cur, &rec, &j);
|
|
if (error)
|
|
goto error0;
|
|
|
|
if (j == 1 && rec.ir_freecount > 0) {
|
|
/*
|
|
* The last chunk allocated in the group
|
|
* still has a free inode.
|
|
*/
|
|
goto alloc_inode;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* None left in the last group, search the whole AG
|
|
*/
|
|
error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
|
|
if (error)
|
|
goto error0;
|
|
XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
|
|
|
|
for (;;) {
|
|
error = xfs_inobt_get_rec(cur, &rec, &i);
|
|
if (error)
|
|
goto error0;
|
|
XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
|
|
if (rec.ir_freecount > 0)
|
|
break;
|
|
error = xfs_btree_increment(cur, 0, &i);
|
|
if (error)
|
|
goto error0;
|
|
XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
|
|
}
|
|
|
|
alloc_inode:
|
|
offset = xfs_ialloc_find_free(&rec.ir_free);
|
|
ASSERT(offset >= 0);
|
|
ASSERT(offset < XFS_INODES_PER_CHUNK);
|
|
ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
|
|
XFS_INODES_PER_CHUNK) == 0);
|
|
ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
|
|
rec.ir_free &= ~XFS_INOBT_MASK(offset);
|
|
rec.ir_freecount--;
|
|
error = xfs_inobt_update(cur, &rec);
|
|
if (error)
|
|
goto error0;
|
|
be32_add_cpu(&agi->agi_freecount, -1);
|
|
xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
|
|
pag->pagi_freecount--;
|
|
|
|
error = xfs_check_agi_freecount(cur, agi);
|
|
if (error)
|
|
goto error0;
|
|
|
|
xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
|
|
xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
|
|
xfs_perag_put(pag);
|
|
*inop = ino;
|
|
return 0;
|
|
error1:
|
|
xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
|
|
error0:
|
|
xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
|
|
xfs_perag_put(pag);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Free disk inode. Carefully avoids touching the incore inode, all
|
|
* manipulations incore are the caller's responsibility.
|
|
* The on-disk inode is not changed by this operation, only the
|
|
* btree (free inode mask) is changed.
|
|
*/
|
|
int
|
|
xfs_difree(
|
|
xfs_trans_t *tp, /* transaction pointer */
|
|
xfs_ino_t inode, /* inode to be freed */
|
|
xfs_bmap_free_t *flist, /* extents to free */
|
|
int *delete, /* set if inode cluster was deleted */
|
|
xfs_ino_t *first_ino) /* first inode in deleted cluster */
|
|
{
|
|
/* REFERENCED */
|
|
xfs_agblock_t agbno; /* block number containing inode */
|
|
xfs_buf_t *agbp; /* buffer containing allocation group header */
|
|
xfs_agino_t agino; /* inode number relative to allocation group */
|
|
xfs_agnumber_t agno; /* allocation group number */
|
|
xfs_agi_t *agi; /* allocation group header */
|
|
xfs_btree_cur_t *cur; /* inode btree cursor */
|
|
int error; /* error return value */
|
|
int i; /* result code */
|
|
int ilen; /* inodes in an inode cluster */
|
|
xfs_mount_t *mp; /* mount structure for filesystem */
|
|
int off; /* offset of inode in inode chunk */
|
|
xfs_inobt_rec_incore_t rec; /* btree record */
|
|
struct xfs_perag *pag;
|
|
|
|
mp = tp->t_mountp;
|
|
|
|
/*
|
|
* Break up inode number into its components.
|
|
*/
|
|
agno = XFS_INO_TO_AGNO(mp, inode);
|
|
if (agno >= mp->m_sb.sb_agcount) {
|
|
xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
|
|
__func__, agno, mp->m_sb.sb_agcount);
|
|
ASSERT(0);
|
|
return XFS_ERROR(EINVAL);
|
|
}
|
|
agino = XFS_INO_TO_AGINO(mp, inode);
|
|
if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) {
|
|
xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
|
|
__func__, (unsigned long long)inode,
|
|
(unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
|
|
ASSERT(0);
|
|
return XFS_ERROR(EINVAL);
|
|
}
|
|
agbno = XFS_AGINO_TO_AGBNO(mp, agino);
|
|
if (agbno >= mp->m_sb.sb_agblocks) {
|
|
xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
|
|
__func__, agbno, mp->m_sb.sb_agblocks);
|
|
ASSERT(0);
|
|
return XFS_ERROR(EINVAL);
|
|
}
|
|
/*
|
|
* Get the allocation group header.
|
|
*/
|
|
error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
|
|
if (error) {
|
|
xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
|
|
__func__, error);
|
|
return error;
|
|
}
|
|
agi = XFS_BUF_TO_AGI(agbp);
|
|
ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
|
|
ASSERT(agbno < be32_to_cpu(agi->agi_length));
|
|
/*
|
|
* Initialize the cursor.
|
|
*/
|
|
cur = xfs_inobt_init_cursor(mp, tp, agbp, agno);
|
|
|
|
error = xfs_check_agi_freecount(cur, agi);
|
|
if (error)
|
|
goto error0;
|
|
|
|
/*
|
|
* Look for the entry describing this inode.
|
|
*/
|
|
if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
|
|
xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
|
|
__func__, error);
|
|
goto error0;
|
|
}
|
|
XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
|
|
error = xfs_inobt_get_rec(cur, &rec, &i);
|
|
if (error) {
|
|
xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
|
|
__func__, error);
|
|
goto error0;
|
|
}
|
|
XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
|
|
/*
|
|
* Get the offset in the inode chunk.
|
|
*/
|
|
off = agino - rec.ir_startino;
|
|
ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
|
|
ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
|
|
/*
|
|
* Mark the inode free & increment the count.
|
|
*/
|
|
rec.ir_free |= XFS_INOBT_MASK(off);
|
|
rec.ir_freecount++;
|
|
|
|
/*
|
|
* When an inode cluster is free, it becomes eligible for removal
|
|
*/
|
|
if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
|
|
(rec.ir_freecount == XFS_IALLOC_INODES(mp))) {
|
|
|
|
*delete = 1;
|
|
*first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
|
|
|
|
/*
|
|
* Remove the inode cluster from the AGI B+Tree, adjust the
|
|
* AGI and Superblock inode counts, and mark the disk space
|
|
* to be freed when the transaction is committed.
|
|
*/
|
|
ilen = XFS_IALLOC_INODES(mp);
|
|
be32_add_cpu(&agi->agi_count, -ilen);
|
|
be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
|
|
xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
|
|
pag = xfs_perag_get(mp, agno);
|
|
pag->pagi_freecount -= ilen - 1;
|
|
xfs_perag_put(pag);
|
|
xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
|
|
xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
|
|
|
|
if ((error = xfs_btree_delete(cur, &i))) {
|
|
xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
|
|
__func__, error);
|
|
goto error0;
|
|
}
|
|
|
|
xfs_bmap_add_free(XFS_AGB_TO_FSB(mp,
|
|
agno, XFS_INO_TO_AGBNO(mp,rec.ir_startino)),
|
|
XFS_IALLOC_BLOCKS(mp), flist, mp);
|
|
} else {
|
|
*delete = 0;
|
|
|
|
error = xfs_inobt_update(cur, &rec);
|
|
if (error) {
|
|
xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
|
|
__func__, error);
|
|
goto error0;
|
|
}
|
|
|
|
/*
|
|
* Change the inode free counts and log the ag/sb changes.
|
|
*/
|
|
be32_add_cpu(&agi->agi_freecount, 1);
|
|
xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
|
|
pag = xfs_perag_get(mp, agno);
|
|
pag->pagi_freecount++;
|
|
xfs_perag_put(pag);
|
|
xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
|
|
}
|
|
|
|
error = xfs_check_agi_freecount(cur, agi);
|
|
if (error)
|
|
goto error0;
|
|
|
|
xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
|
|
return 0;
|
|
|
|
error0:
|
|
xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
|
|
return error;
|
|
}
|
|
|
|
STATIC int
|
|
xfs_imap_lookup(
|
|
struct xfs_mount *mp,
|
|
struct xfs_trans *tp,
|
|
xfs_agnumber_t agno,
|
|
xfs_agino_t agino,
|
|
xfs_agblock_t agbno,
|
|
xfs_agblock_t *chunk_agbno,
|
|
xfs_agblock_t *offset_agbno,
|
|
int flags)
|
|
{
|
|
struct xfs_inobt_rec_incore rec;
|
|
struct xfs_btree_cur *cur;
|
|
struct xfs_buf *agbp;
|
|
int error;
|
|
int i;
|
|
|
|
error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
|
|
if (error) {
|
|
xfs_alert(mp,
|
|
"%s: xfs_ialloc_read_agi() returned error %d, agno %d",
|
|
__func__, error, agno);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Lookup the inode record for the given agino. If the record cannot be
|
|
* found, then it's an invalid inode number and we should abort. Once
|
|
* we have a record, we need to ensure it contains the inode number
|
|
* we are looking up.
|
|
*/
|
|
cur = xfs_inobt_init_cursor(mp, tp, agbp, agno);
|
|
error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
|
|
if (!error) {
|
|
if (i)
|
|
error = xfs_inobt_get_rec(cur, &rec, &i);
|
|
if (!error && i == 0)
|
|
error = EINVAL;
|
|
}
|
|
|
|
xfs_trans_brelse(tp, agbp);
|
|
xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
|
|
if (error)
|
|
return error;
|
|
|
|
/* check that the returned record contains the required inode */
|
|
if (rec.ir_startino > agino ||
|
|
rec.ir_startino + XFS_IALLOC_INODES(mp) <= agino)
|
|
return EINVAL;
|
|
|
|
/* for untrusted inodes check it is allocated first */
|
|
if ((flags & XFS_IGET_UNTRUSTED) &&
|
|
(rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
|
|
return EINVAL;
|
|
|
|
*chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
|
|
*offset_agbno = agbno - *chunk_agbno;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Return the location of the inode in imap, for mapping it into a buffer.
|
|
*/
|
|
int
|
|
xfs_imap(
|
|
xfs_mount_t *mp, /* file system mount structure */
|
|
xfs_trans_t *tp, /* transaction pointer */
|
|
xfs_ino_t ino, /* inode to locate */
|
|
struct xfs_imap *imap, /* location map structure */
|
|
uint flags) /* flags for inode btree lookup */
|
|
{
|
|
xfs_agblock_t agbno; /* block number of inode in the alloc group */
|
|
xfs_agino_t agino; /* inode number within alloc group */
|
|
xfs_agnumber_t agno; /* allocation group number */
|
|
int blks_per_cluster; /* num blocks per inode cluster */
|
|
xfs_agblock_t chunk_agbno; /* first block in inode chunk */
|
|
xfs_agblock_t cluster_agbno; /* first block in inode cluster */
|
|
int error; /* error code */
|
|
int offset; /* index of inode in its buffer */
|
|
int offset_agbno; /* blks from chunk start to inode */
|
|
|
|
ASSERT(ino != NULLFSINO);
|
|
|
|
/*
|
|
* Split up the inode number into its parts.
|
|
*/
|
|
agno = XFS_INO_TO_AGNO(mp, ino);
|
|
agino = XFS_INO_TO_AGINO(mp, ino);
|
|
agbno = XFS_AGINO_TO_AGBNO(mp, agino);
|
|
if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
|
|
ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
|
|
#ifdef DEBUG
|
|
/*
|
|
* Don't output diagnostic information for untrusted inodes
|
|
* as they can be invalid without implying corruption.
|
|
*/
|
|
if (flags & XFS_IGET_UNTRUSTED)
|
|
return XFS_ERROR(EINVAL);
|
|
if (agno >= mp->m_sb.sb_agcount) {
|
|
xfs_alert(mp,
|
|
"%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
|
|
__func__, agno, mp->m_sb.sb_agcount);
|
|
}
|
|
if (agbno >= mp->m_sb.sb_agblocks) {
|
|
xfs_alert(mp,
|
|
"%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
|
|
__func__, (unsigned long long)agbno,
|
|
(unsigned long)mp->m_sb.sb_agblocks);
|
|
}
|
|
if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
|
|
xfs_alert(mp,
|
|
"%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
|
|
__func__, ino,
|
|
XFS_AGINO_TO_INO(mp, agno, agino));
|
|
}
|
|
xfs_stack_trace();
|
|
#endif /* DEBUG */
|
|
return XFS_ERROR(EINVAL);
|
|
}
|
|
|
|
blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_blocklog;
|
|
|
|
/*
|
|
* For bulkstat and handle lookups, we have an untrusted inode number
|
|
* that we have to verify is valid. We cannot do this just by reading
|
|
* the inode buffer as it may have been unlinked and removed leaving
|
|
* inodes in stale state on disk. Hence we have to do a btree lookup
|
|
* in all cases where an untrusted inode number is passed.
|
|
*/
|
|
if (flags & XFS_IGET_UNTRUSTED) {
|
|
error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
|
|
&chunk_agbno, &offset_agbno, flags);
|
|
if (error)
|
|
return error;
|
|
goto out_map;
|
|
}
|
|
|
|
/*
|
|
* If the inode cluster size is the same as the blocksize or
|
|
* smaller we get to the buffer by simple arithmetics.
|
|
*/
|
|
if (XFS_INODE_CLUSTER_SIZE(mp) <= mp->m_sb.sb_blocksize) {
|
|
offset = XFS_INO_TO_OFFSET(mp, ino);
|
|
ASSERT(offset < mp->m_sb.sb_inopblock);
|
|
|
|
imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
|
|
imap->im_len = XFS_FSB_TO_BB(mp, 1);
|
|
imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If the inode chunks are aligned then use simple maths to
|
|
* find the location. Otherwise we have to do a btree
|
|
* lookup to find the location.
|
|
*/
|
|
if (mp->m_inoalign_mask) {
|
|
offset_agbno = agbno & mp->m_inoalign_mask;
|
|
chunk_agbno = agbno - offset_agbno;
|
|
} else {
|
|
error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
|
|
&chunk_agbno, &offset_agbno, flags);
|
|
if (error)
|
|
return error;
|
|
}
|
|
|
|
out_map:
|
|
ASSERT(agbno >= chunk_agbno);
|
|
cluster_agbno = chunk_agbno +
|
|
((offset_agbno / blks_per_cluster) * blks_per_cluster);
|
|
offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
|
|
XFS_INO_TO_OFFSET(mp, ino);
|
|
|
|
imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
|
|
imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster);
|
|
imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog);
|
|
|
|
/*
|
|
* If the inode number maps to a block outside the bounds
|
|
* of the file system then return NULL rather than calling
|
|
* read_buf and panicing when we get an error from the
|
|
* driver.
|
|
*/
|
|
if ((imap->im_blkno + imap->im_len) >
|
|
XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
|
|
xfs_alert(mp,
|
|
"%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
|
|
__func__, (unsigned long long) imap->im_blkno,
|
|
(unsigned long long) imap->im_len,
|
|
XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
|
|
return XFS_ERROR(EINVAL);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Compute and fill in value of m_in_maxlevels.
|
|
*/
|
|
void
|
|
xfs_ialloc_compute_maxlevels(
|
|
xfs_mount_t *mp) /* file system mount structure */
|
|
{
|
|
int level;
|
|
uint maxblocks;
|
|
uint maxleafents;
|
|
int minleafrecs;
|
|
int minnoderecs;
|
|
|
|
maxleafents = (1LL << XFS_INO_AGINO_BITS(mp)) >>
|
|
XFS_INODES_PER_CHUNK_LOG;
|
|
minleafrecs = mp->m_alloc_mnr[0];
|
|
minnoderecs = mp->m_alloc_mnr[1];
|
|
maxblocks = (maxleafents + minleafrecs - 1) / minleafrecs;
|
|
for (level = 1; maxblocks > 1; level++)
|
|
maxblocks = (maxblocks + minnoderecs - 1) / minnoderecs;
|
|
mp->m_in_maxlevels = level;
|
|
}
|
|
|
|
/*
|
|
* Log specified fields for the ag hdr (inode section)
|
|
*/
|
|
void
|
|
xfs_ialloc_log_agi(
|
|
xfs_trans_t *tp, /* transaction pointer */
|
|
xfs_buf_t *bp, /* allocation group header buffer */
|
|
int fields) /* bitmask of fields to log */
|
|
{
|
|
int first; /* first byte number */
|
|
int last; /* last byte number */
|
|
static const short offsets[] = { /* field starting offsets */
|
|
/* keep in sync with bit definitions */
|
|
offsetof(xfs_agi_t, agi_magicnum),
|
|
offsetof(xfs_agi_t, agi_versionnum),
|
|
offsetof(xfs_agi_t, agi_seqno),
|
|
offsetof(xfs_agi_t, agi_length),
|
|
offsetof(xfs_agi_t, agi_count),
|
|
offsetof(xfs_agi_t, agi_root),
|
|
offsetof(xfs_agi_t, agi_level),
|
|
offsetof(xfs_agi_t, agi_freecount),
|
|
offsetof(xfs_agi_t, agi_newino),
|
|
offsetof(xfs_agi_t, agi_dirino),
|
|
offsetof(xfs_agi_t, agi_unlinked),
|
|
sizeof(xfs_agi_t)
|
|
};
|
|
#ifdef DEBUG
|
|
xfs_agi_t *agi; /* allocation group header */
|
|
|
|
agi = XFS_BUF_TO_AGI(bp);
|
|
ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
|
|
#endif
|
|
/*
|
|
* Compute byte offsets for the first and last fields.
|
|
*/
|
|
xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS, &first, &last);
|
|
/*
|
|
* Log the allocation group inode header buffer.
|
|
*/
|
|
xfs_trans_log_buf(tp, bp, first, last);
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
STATIC void
|
|
xfs_check_agi_unlinked(
|
|
struct xfs_agi *agi)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++)
|
|
ASSERT(agi->agi_unlinked[i]);
|
|
}
|
|
#else
|
|
#define xfs_check_agi_unlinked(agi)
|
|
#endif
|
|
|
|
/*
|
|
* Read in the allocation group header (inode allocation section)
|
|
*/
|
|
int
|
|
xfs_read_agi(
|
|
struct xfs_mount *mp, /* file system mount structure */
|
|
struct xfs_trans *tp, /* transaction pointer */
|
|
xfs_agnumber_t agno, /* allocation group number */
|
|
struct xfs_buf **bpp) /* allocation group hdr buf */
|
|
{
|
|
struct xfs_agi *agi; /* allocation group header */
|
|
int agi_ok; /* agi is consistent */
|
|
int error;
|
|
|
|
ASSERT(agno != NULLAGNUMBER);
|
|
|
|
error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
|
|
XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
|
|
XFS_FSS_TO_BB(mp, 1), 0, bpp);
|
|
if (error)
|
|
return error;
|
|
|
|
ASSERT(!xfs_buf_geterror(*bpp));
|
|
agi = XFS_BUF_TO_AGI(*bpp);
|
|
|
|
/*
|
|
* Validate the magic number of the agi block.
|
|
*/
|
|
agi_ok = agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC) &&
|
|
XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)) &&
|
|
be32_to_cpu(agi->agi_seqno) == agno;
|
|
if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IALLOC_READ_AGI,
|
|
XFS_RANDOM_IALLOC_READ_AGI))) {
|
|
XFS_CORRUPTION_ERROR("xfs_read_agi", XFS_ERRLEVEL_LOW,
|
|
mp, agi);
|
|
xfs_trans_brelse(tp, *bpp);
|
|
return XFS_ERROR(EFSCORRUPTED);
|
|
}
|
|
|
|
xfs_buf_set_ref(*bpp, XFS_AGI_REF);
|
|
|
|
xfs_check_agi_unlinked(agi);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
xfs_ialloc_read_agi(
|
|
struct xfs_mount *mp, /* file system mount structure */
|
|
struct xfs_trans *tp, /* transaction pointer */
|
|
xfs_agnumber_t agno, /* allocation group number */
|
|
struct xfs_buf **bpp) /* allocation group hdr buf */
|
|
{
|
|
struct xfs_agi *agi; /* allocation group header */
|
|
struct xfs_perag *pag; /* per allocation group data */
|
|
int error;
|
|
|
|
error = xfs_read_agi(mp, tp, agno, bpp);
|
|
if (error)
|
|
return error;
|
|
|
|
agi = XFS_BUF_TO_AGI(*bpp);
|
|
pag = xfs_perag_get(mp, agno);
|
|
if (!pag->pagi_init) {
|
|
pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
|
|
pag->pagi_count = be32_to_cpu(agi->agi_count);
|
|
pag->pagi_init = 1;
|
|
}
|
|
|
|
/*
|
|
* It's possible for these to be out of sync if
|
|
* we are in the middle of a forced shutdown.
|
|
*/
|
|
ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
|
|
XFS_FORCED_SHUTDOWN(mp));
|
|
xfs_perag_put(pag);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Read in the agi to initialise the per-ag data in the mount structure
|
|
*/
|
|
int
|
|
xfs_ialloc_pagi_init(
|
|
xfs_mount_t *mp, /* file system mount structure */
|
|
xfs_trans_t *tp, /* transaction pointer */
|
|
xfs_agnumber_t agno) /* allocation group number */
|
|
{
|
|
xfs_buf_t *bp = NULL;
|
|
int error;
|
|
|
|
error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
|
|
if (error)
|
|
return error;
|
|
if (bp)
|
|
xfs_trans_brelse(tp, bp);
|
|
return 0;
|
|
}
|