mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-12 08:45:11 +08:00
9baa3c34ac
We should prefer `struct pci_device_id` over `DEFINE_PCI_DEVICE_TABLE` to meet kernel coding style guidelines. This issue was reported by checkpatch. A simplified version of the semantic patch that makes this change is as follows (http://coccinelle.lip6.fr/): // <smpl> @@ identifier i; declarer name DEFINE_PCI_DEVICE_TABLE; initializer z; @@ - DEFINE_PCI_DEVICE_TABLE(i) + const struct pci_device_id i[] = z; // </smpl> [bhelgaas: add semantic patch] Signed-off-by: Benoit Taine <benoit.taine@lip6.fr> Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
2674 lines
70 KiB
C
2674 lines
70 KiB
C
/*
|
|
* FarSync WAN driver for Linux (2.6.x kernel version)
|
|
*
|
|
* Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards
|
|
*
|
|
* Copyright (C) 2001-2004 FarSite Communications Ltd.
|
|
* www.farsite.co.uk
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
* Author: R.J.Dunlop <bob.dunlop@farsite.co.uk>
|
|
* Maintainer: Kevin Curtis <kevin.curtis@farsite.co.uk>
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/version.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/init.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/if.h>
|
|
#include <linux/hdlc.h>
|
|
#include <asm/io.h>
|
|
#include <asm/uaccess.h>
|
|
|
|
#include "farsync.h"
|
|
|
|
/*
|
|
* Module info
|
|
*/
|
|
MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>");
|
|
MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd.");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
/* Driver configuration and global parameters
|
|
* ==========================================
|
|
*/
|
|
|
|
/* Number of ports (per card) and cards supported
|
|
*/
|
|
#define FST_MAX_PORTS 4
|
|
#define FST_MAX_CARDS 32
|
|
|
|
/* Default parameters for the link
|
|
*/
|
|
#define FST_TX_QUEUE_LEN 100 /* At 8Mbps a longer queue length is
|
|
* useful */
|
|
#define FST_TXQ_DEPTH 16 /* This one is for the buffering
|
|
* of frames on the way down to the card
|
|
* so that we can keep the card busy
|
|
* and maximise throughput
|
|
*/
|
|
#define FST_HIGH_WATER_MARK 12 /* Point at which we flow control
|
|
* network layer */
|
|
#define FST_LOW_WATER_MARK 8 /* Point at which we remove flow
|
|
* control from network layer */
|
|
#define FST_MAX_MTU 8000 /* Huge but possible */
|
|
#define FST_DEF_MTU 1500 /* Common sane value */
|
|
|
|
#define FST_TX_TIMEOUT (2*HZ)
|
|
|
|
#ifdef ARPHRD_RAWHDLC
|
|
#define ARPHRD_MYTYPE ARPHRD_RAWHDLC /* Raw frames */
|
|
#else
|
|
#define ARPHRD_MYTYPE ARPHRD_HDLC /* Cisco-HDLC (keepalives etc) */
|
|
#endif
|
|
|
|
/*
|
|
* Modules parameters and associated variables
|
|
*/
|
|
static int fst_txq_low = FST_LOW_WATER_MARK;
|
|
static int fst_txq_high = FST_HIGH_WATER_MARK;
|
|
static int fst_max_reads = 7;
|
|
static int fst_excluded_cards = 0;
|
|
static int fst_excluded_list[FST_MAX_CARDS];
|
|
|
|
module_param(fst_txq_low, int, 0);
|
|
module_param(fst_txq_high, int, 0);
|
|
module_param(fst_max_reads, int, 0);
|
|
module_param(fst_excluded_cards, int, 0);
|
|
module_param_array(fst_excluded_list, int, NULL, 0);
|
|
|
|
/* Card shared memory layout
|
|
* =========================
|
|
*/
|
|
#pragma pack(1)
|
|
|
|
/* This information is derived in part from the FarSite FarSync Smc.h
|
|
* file. Unfortunately various name clashes and the non-portability of the
|
|
* bit field declarations in that file have meant that I have chosen to
|
|
* recreate the information here.
|
|
*
|
|
* The SMC (Shared Memory Configuration) has a version number that is
|
|
* incremented every time there is a significant change. This number can
|
|
* be used to check that we have not got out of step with the firmware
|
|
* contained in the .CDE files.
|
|
*/
|
|
#define SMC_VERSION 24
|
|
|
|
#define FST_MEMSIZE 0x100000 /* Size of card memory (1Mb) */
|
|
|
|
#define SMC_BASE 0x00002000L /* Base offset of the shared memory window main
|
|
* configuration structure */
|
|
#define BFM_BASE 0x00010000L /* Base offset of the shared memory window DMA
|
|
* buffers */
|
|
|
|
#define LEN_TX_BUFFER 8192 /* Size of packet buffers */
|
|
#define LEN_RX_BUFFER 8192
|
|
|
|
#define LEN_SMALL_TX_BUFFER 256 /* Size of obsolete buffs used for DOS diags */
|
|
#define LEN_SMALL_RX_BUFFER 256
|
|
|
|
#define NUM_TX_BUFFER 2 /* Must be power of 2. Fixed by firmware */
|
|
#define NUM_RX_BUFFER 8
|
|
|
|
/* Interrupt retry time in milliseconds */
|
|
#define INT_RETRY_TIME 2
|
|
|
|
/* The Am186CH/CC processors support a SmartDMA mode using circular pools
|
|
* of buffer descriptors. The structure is almost identical to that used
|
|
* in the LANCE Ethernet controllers. Details available as PDF from the
|
|
* AMD web site: http://www.amd.com/products/epd/processors/\
|
|
* 2.16bitcont/3.am186cxfa/a21914/21914.pdf
|
|
*/
|
|
struct txdesc { /* Transmit descriptor */
|
|
volatile u16 ladr; /* Low order address of packet. This is a
|
|
* linear address in the Am186 memory space
|
|
*/
|
|
volatile u8 hadr; /* High order address. Low 4 bits only, high 4
|
|
* bits must be zero
|
|
*/
|
|
volatile u8 bits; /* Status and config */
|
|
volatile u16 bcnt; /* 2s complement of packet size in low 15 bits.
|
|
* Transmit terminal count interrupt enable in
|
|
* top bit.
|
|
*/
|
|
u16 unused; /* Not used in Tx */
|
|
};
|
|
|
|
struct rxdesc { /* Receive descriptor */
|
|
volatile u16 ladr; /* Low order address of packet */
|
|
volatile u8 hadr; /* High order address */
|
|
volatile u8 bits; /* Status and config */
|
|
volatile u16 bcnt; /* 2s complement of buffer size in low 15 bits.
|
|
* Receive terminal count interrupt enable in
|
|
* top bit.
|
|
*/
|
|
volatile u16 mcnt; /* Message byte count (15 bits) */
|
|
};
|
|
|
|
/* Convert a length into the 15 bit 2's complement */
|
|
/* #define cnv_bcnt(len) (( ~(len) + 1 ) & 0x7FFF ) */
|
|
/* Since we need to set the high bit to enable the completion interrupt this
|
|
* can be made a lot simpler
|
|
*/
|
|
#define cnv_bcnt(len) (-(len))
|
|
|
|
/* Status and config bits for the above */
|
|
#define DMA_OWN 0x80 /* SmartDMA owns the descriptor */
|
|
#define TX_STP 0x02 /* Tx: start of packet */
|
|
#define TX_ENP 0x01 /* Tx: end of packet */
|
|
#define RX_ERR 0x40 /* Rx: error (OR of next 4 bits) */
|
|
#define RX_FRAM 0x20 /* Rx: framing error */
|
|
#define RX_OFLO 0x10 /* Rx: overflow error */
|
|
#define RX_CRC 0x08 /* Rx: CRC error */
|
|
#define RX_HBUF 0x04 /* Rx: buffer error */
|
|
#define RX_STP 0x02 /* Rx: start of packet */
|
|
#define RX_ENP 0x01 /* Rx: end of packet */
|
|
|
|
/* Interrupts from the card are caused by various events which are presented
|
|
* in a circular buffer as several events may be processed on one physical int
|
|
*/
|
|
#define MAX_CIRBUFF 32
|
|
|
|
struct cirbuff {
|
|
u8 rdindex; /* read, then increment and wrap */
|
|
u8 wrindex; /* write, then increment and wrap */
|
|
u8 evntbuff[MAX_CIRBUFF];
|
|
};
|
|
|
|
/* Interrupt event codes.
|
|
* Where appropriate the two low order bits indicate the port number
|
|
*/
|
|
#define CTLA_CHG 0x18 /* Control signal changed */
|
|
#define CTLB_CHG 0x19
|
|
#define CTLC_CHG 0x1A
|
|
#define CTLD_CHG 0x1B
|
|
|
|
#define INIT_CPLT 0x20 /* Initialisation complete */
|
|
#define INIT_FAIL 0x21 /* Initialisation failed */
|
|
|
|
#define ABTA_SENT 0x24 /* Abort sent */
|
|
#define ABTB_SENT 0x25
|
|
#define ABTC_SENT 0x26
|
|
#define ABTD_SENT 0x27
|
|
|
|
#define TXA_UNDF 0x28 /* Transmission underflow */
|
|
#define TXB_UNDF 0x29
|
|
#define TXC_UNDF 0x2A
|
|
#define TXD_UNDF 0x2B
|
|
|
|
#define F56_INT 0x2C
|
|
#define M32_INT 0x2D
|
|
|
|
#define TE1_ALMA 0x30
|
|
|
|
/* Port physical configuration. See farsync.h for field values */
|
|
struct port_cfg {
|
|
u16 lineInterface; /* Physical interface type */
|
|
u8 x25op; /* Unused at present */
|
|
u8 internalClock; /* 1 => internal clock, 0 => external */
|
|
u8 transparentMode; /* 1 => on, 0 => off */
|
|
u8 invertClock; /* 0 => normal, 1 => inverted */
|
|
u8 padBytes[6]; /* Padding */
|
|
u32 lineSpeed; /* Speed in bps */
|
|
};
|
|
|
|
/* TE1 port physical configuration */
|
|
struct su_config {
|
|
u32 dataRate;
|
|
u8 clocking;
|
|
u8 framing;
|
|
u8 structure;
|
|
u8 interface;
|
|
u8 coding;
|
|
u8 lineBuildOut;
|
|
u8 equalizer;
|
|
u8 transparentMode;
|
|
u8 loopMode;
|
|
u8 range;
|
|
u8 txBufferMode;
|
|
u8 rxBufferMode;
|
|
u8 startingSlot;
|
|
u8 losThreshold;
|
|
u8 enableIdleCode;
|
|
u8 idleCode;
|
|
u8 spare[44];
|
|
};
|
|
|
|
/* TE1 Status */
|
|
struct su_status {
|
|
u32 receiveBufferDelay;
|
|
u32 framingErrorCount;
|
|
u32 codeViolationCount;
|
|
u32 crcErrorCount;
|
|
u32 lineAttenuation;
|
|
u8 portStarted;
|
|
u8 lossOfSignal;
|
|
u8 receiveRemoteAlarm;
|
|
u8 alarmIndicationSignal;
|
|
u8 spare[40];
|
|
};
|
|
|
|
/* Finally sling all the above together into the shared memory structure.
|
|
* Sorry it's a hodge podge of arrays, structures and unused bits, it's been
|
|
* evolving under NT for some time so I guess we're stuck with it.
|
|
* The structure starts at offset SMC_BASE.
|
|
* See farsync.h for some field values.
|
|
*/
|
|
struct fst_shared {
|
|
/* DMA descriptor rings */
|
|
struct rxdesc rxDescrRing[FST_MAX_PORTS][NUM_RX_BUFFER];
|
|
struct txdesc txDescrRing[FST_MAX_PORTS][NUM_TX_BUFFER];
|
|
|
|
/* Obsolete small buffers */
|
|
u8 smallRxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_SMALL_RX_BUFFER];
|
|
u8 smallTxBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_SMALL_TX_BUFFER];
|
|
|
|
u8 taskStatus; /* 0x00 => initialising, 0x01 => running,
|
|
* 0xFF => halted
|
|
*/
|
|
|
|
u8 interruptHandshake; /* Set to 0x01 by adapter to signal interrupt,
|
|
* set to 0xEE by host to acknowledge interrupt
|
|
*/
|
|
|
|
u16 smcVersion; /* Must match SMC_VERSION */
|
|
|
|
u32 smcFirmwareVersion; /* 0xIIVVRRBB where II = product ID, VV = major
|
|
* version, RR = revision and BB = build
|
|
*/
|
|
|
|
u16 txa_done; /* Obsolete completion flags */
|
|
u16 rxa_done;
|
|
u16 txb_done;
|
|
u16 rxb_done;
|
|
u16 txc_done;
|
|
u16 rxc_done;
|
|
u16 txd_done;
|
|
u16 rxd_done;
|
|
|
|
u16 mailbox[4]; /* Diagnostics mailbox. Not used */
|
|
|
|
struct cirbuff interruptEvent; /* interrupt causes */
|
|
|
|
u32 v24IpSts[FST_MAX_PORTS]; /* V.24 control input status */
|
|
u32 v24OpSts[FST_MAX_PORTS]; /* V.24 control output status */
|
|
|
|
struct port_cfg portConfig[FST_MAX_PORTS];
|
|
|
|
u16 clockStatus[FST_MAX_PORTS]; /* lsb: 0=> present, 1=> absent */
|
|
|
|
u16 cableStatus; /* lsb: 0=> present, 1=> absent */
|
|
|
|
u16 txDescrIndex[FST_MAX_PORTS]; /* transmit descriptor ring index */
|
|
u16 rxDescrIndex[FST_MAX_PORTS]; /* receive descriptor ring index */
|
|
|
|
u16 portMailbox[FST_MAX_PORTS][2]; /* command, modifier */
|
|
u16 cardMailbox[4]; /* Not used */
|
|
|
|
/* Number of times the card thinks the host has
|
|
* missed an interrupt by not acknowledging
|
|
* within 2mS (I guess NT has problems)
|
|
*/
|
|
u32 interruptRetryCount;
|
|
|
|
/* Driver private data used as an ID. We'll not
|
|
* use this as I'd rather keep such things
|
|
* in main memory rather than on the PCI bus
|
|
*/
|
|
u32 portHandle[FST_MAX_PORTS];
|
|
|
|
/* Count of Tx underflows for stats */
|
|
u32 transmitBufferUnderflow[FST_MAX_PORTS];
|
|
|
|
/* Debounced V.24 control input status */
|
|
u32 v24DebouncedSts[FST_MAX_PORTS];
|
|
|
|
/* Adapter debounce timers. Don't touch */
|
|
u32 ctsTimer[FST_MAX_PORTS];
|
|
u32 ctsTimerRun[FST_MAX_PORTS];
|
|
u32 dcdTimer[FST_MAX_PORTS];
|
|
u32 dcdTimerRun[FST_MAX_PORTS];
|
|
|
|
u32 numberOfPorts; /* Number of ports detected at startup */
|
|
|
|
u16 _reserved[64];
|
|
|
|
u16 cardMode; /* Bit-mask to enable features:
|
|
* Bit 0: 1 enables LED identify mode
|
|
*/
|
|
|
|
u16 portScheduleOffset;
|
|
|
|
struct su_config suConfig; /* TE1 Bits */
|
|
struct su_status suStatus;
|
|
|
|
u32 endOfSmcSignature; /* endOfSmcSignature MUST be the last member of
|
|
* the structure and marks the end of shared
|
|
* memory. Adapter code initializes it as
|
|
* END_SIG.
|
|
*/
|
|
};
|
|
|
|
/* endOfSmcSignature value */
|
|
#define END_SIG 0x12345678
|
|
|
|
/* Mailbox values. (portMailbox) */
|
|
#define NOP 0 /* No operation */
|
|
#define ACK 1 /* Positive acknowledgement to PC driver */
|
|
#define NAK 2 /* Negative acknowledgement to PC driver */
|
|
#define STARTPORT 3 /* Start an HDLC port */
|
|
#define STOPPORT 4 /* Stop an HDLC port */
|
|
#define ABORTTX 5 /* Abort the transmitter for a port */
|
|
#define SETV24O 6 /* Set V24 outputs */
|
|
|
|
/* PLX Chip Register Offsets */
|
|
#define CNTRL_9052 0x50 /* Control Register */
|
|
#define CNTRL_9054 0x6c /* Control Register */
|
|
|
|
#define INTCSR_9052 0x4c /* Interrupt control/status register */
|
|
#define INTCSR_9054 0x68 /* Interrupt control/status register */
|
|
|
|
/* 9054 DMA Registers */
|
|
/*
|
|
* Note that we will be using DMA Channel 0 for copying rx data
|
|
* and Channel 1 for copying tx data
|
|
*/
|
|
#define DMAMODE0 0x80
|
|
#define DMAPADR0 0x84
|
|
#define DMALADR0 0x88
|
|
#define DMASIZ0 0x8c
|
|
#define DMADPR0 0x90
|
|
#define DMAMODE1 0x94
|
|
#define DMAPADR1 0x98
|
|
#define DMALADR1 0x9c
|
|
#define DMASIZ1 0xa0
|
|
#define DMADPR1 0xa4
|
|
#define DMACSR0 0xa8
|
|
#define DMACSR1 0xa9
|
|
#define DMAARB 0xac
|
|
#define DMATHR 0xb0
|
|
#define DMADAC0 0xb4
|
|
#define DMADAC1 0xb8
|
|
#define DMAMARBR 0xac
|
|
|
|
#define FST_MIN_DMA_LEN 64
|
|
#define FST_RX_DMA_INT 0x01
|
|
#define FST_TX_DMA_INT 0x02
|
|
#define FST_CARD_INT 0x04
|
|
|
|
/* Larger buffers are positioned in memory at offset BFM_BASE */
|
|
struct buf_window {
|
|
u8 txBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_TX_BUFFER];
|
|
u8 rxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_RX_BUFFER];
|
|
};
|
|
|
|
/* Calculate offset of a buffer object within the shared memory window */
|
|
#define BUF_OFFSET(X) (BFM_BASE + offsetof(struct buf_window, X))
|
|
|
|
#pragma pack()
|
|
|
|
/* Device driver private information
|
|
* =================================
|
|
*/
|
|
/* Per port (line or channel) information
|
|
*/
|
|
struct fst_port_info {
|
|
struct net_device *dev; /* Device struct - must be first */
|
|
struct fst_card_info *card; /* Card we're associated with */
|
|
int index; /* Port index on the card */
|
|
int hwif; /* Line hardware (lineInterface copy) */
|
|
int run; /* Port is running */
|
|
int mode; /* Normal or FarSync raw */
|
|
int rxpos; /* Next Rx buffer to use */
|
|
int txpos; /* Next Tx buffer to use */
|
|
int txipos; /* Next Tx buffer to check for free */
|
|
int start; /* Indication of start/stop to network */
|
|
/*
|
|
* A sixteen entry transmit queue
|
|
*/
|
|
int txqs; /* index to get next buffer to tx */
|
|
int txqe; /* index to queue next packet */
|
|
struct sk_buff *txq[FST_TXQ_DEPTH]; /* The queue */
|
|
int rxqdepth;
|
|
};
|
|
|
|
/* Per card information
|
|
*/
|
|
struct fst_card_info {
|
|
char __iomem *mem; /* Card memory mapped to kernel space */
|
|
char __iomem *ctlmem; /* Control memory for PCI cards */
|
|
unsigned int phys_mem; /* Physical memory window address */
|
|
unsigned int phys_ctlmem; /* Physical control memory address */
|
|
unsigned int irq; /* Interrupt request line number */
|
|
unsigned int nports; /* Number of serial ports */
|
|
unsigned int type; /* Type index of card */
|
|
unsigned int state; /* State of card */
|
|
spinlock_t card_lock; /* Lock for SMP access */
|
|
unsigned short pci_conf; /* PCI card config in I/O space */
|
|
/* Per port info */
|
|
struct fst_port_info ports[FST_MAX_PORTS];
|
|
struct pci_dev *device; /* Information about the pci device */
|
|
int card_no; /* Inst of the card on the system */
|
|
int family; /* TxP or TxU */
|
|
int dmarx_in_progress;
|
|
int dmatx_in_progress;
|
|
unsigned long int_count;
|
|
unsigned long int_time_ave;
|
|
void *rx_dma_handle_host;
|
|
dma_addr_t rx_dma_handle_card;
|
|
void *tx_dma_handle_host;
|
|
dma_addr_t tx_dma_handle_card;
|
|
struct sk_buff *dma_skb_rx;
|
|
struct fst_port_info *dma_port_rx;
|
|
struct fst_port_info *dma_port_tx;
|
|
int dma_len_rx;
|
|
int dma_len_tx;
|
|
int dma_txpos;
|
|
int dma_rxpos;
|
|
};
|
|
|
|
/* Convert an HDLC device pointer into a port info pointer and similar */
|
|
#define dev_to_port(D) (dev_to_hdlc(D)->priv)
|
|
#define port_to_dev(P) ((P)->dev)
|
|
|
|
|
|
/*
|
|
* Shared memory window access macros
|
|
*
|
|
* We have a nice memory based structure above, which could be directly
|
|
* mapped on i386 but might not work on other architectures unless we use
|
|
* the readb,w,l and writeb,w,l macros. Unfortunately these macros take
|
|
* physical offsets so we have to convert. The only saving grace is that
|
|
* this should all collapse back to a simple indirection eventually.
|
|
*/
|
|
#define WIN_OFFSET(X) ((long)&(((struct fst_shared *)SMC_BASE)->X))
|
|
|
|
#define FST_RDB(C,E) readb ((C)->mem + WIN_OFFSET(E))
|
|
#define FST_RDW(C,E) readw ((C)->mem + WIN_OFFSET(E))
|
|
#define FST_RDL(C,E) readl ((C)->mem + WIN_OFFSET(E))
|
|
|
|
#define FST_WRB(C,E,B) writeb ((B), (C)->mem + WIN_OFFSET(E))
|
|
#define FST_WRW(C,E,W) writew ((W), (C)->mem + WIN_OFFSET(E))
|
|
#define FST_WRL(C,E,L) writel ((L), (C)->mem + WIN_OFFSET(E))
|
|
|
|
/*
|
|
* Debug support
|
|
*/
|
|
#if FST_DEBUG
|
|
|
|
static int fst_debug_mask = { FST_DEBUG };
|
|
|
|
/* Most common debug activity is to print something if the corresponding bit
|
|
* is set in the debug mask. Note: this uses a non-ANSI extension in GCC to
|
|
* support variable numbers of macro parameters. The inverted if prevents us
|
|
* eating someone else's else clause.
|
|
*/
|
|
#define dbg(F, fmt, args...) \
|
|
do { \
|
|
if (fst_debug_mask & (F)) \
|
|
printk(KERN_DEBUG pr_fmt(fmt), ##args); \
|
|
} while (0)
|
|
#else
|
|
#define dbg(F, fmt, args...) \
|
|
do { \
|
|
if (0) \
|
|
printk(KERN_DEBUG pr_fmt(fmt), ##args); \
|
|
} while (0)
|
|
#endif
|
|
|
|
/*
|
|
* PCI ID lookup table
|
|
*/
|
|
static const struct pci_device_id fst_pci_dev_id[] = {
|
|
{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2P, PCI_ANY_ID,
|
|
PCI_ANY_ID, 0, 0, FST_TYPE_T2P},
|
|
|
|
{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4P, PCI_ANY_ID,
|
|
PCI_ANY_ID, 0, 0, FST_TYPE_T4P},
|
|
|
|
{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T1U, PCI_ANY_ID,
|
|
PCI_ANY_ID, 0, 0, FST_TYPE_T1U},
|
|
|
|
{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2U, PCI_ANY_ID,
|
|
PCI_ANY_ID, 0, 0, FST_TYPE_T2U},
|
|
|
|
{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4U, PCI_ANY_ID,
|
|
PCI_ANY_ID, 0, 0, FST_TYPE_T4U},
|
|
|
|
{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1, PCI_ANY_ID,
|
|
PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
|
|
|
|
{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1C, PCI_ANY_ID,
|
|
PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
|
|
{0,} /* End */
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(pci, fst_pci_dev_id);
|
|
|
|
/*
|
|
* Device Driver Work Queues
|
|
*
|
|
* So that we don't spend too much time processing events in the
|
|
* Interrupt Service routine, we will declare a work queue per Card
|
|
* and make the ISR schedule a task in the queue for later execution.
|
|
* In the 2.4 Kernel we used to use the immediate queue for BH's
|
|
* Now that they are gone, tasklets seem to be much better than work
|
|
* queues.
|
|
*/
|
|
|
|
static void do_bottom_half_tx(struct fst_card_info *card);
|
|
static void do_bottom_half_rx(struct fst_card_info *card);
|
|
static void fst_process_tx_work_q(unsigned long work_q);
|
|
static void fst_process_int_work_q(unsigned long work_q);
|
|
|
|
static DECLARE_TASKLET(fst_tx_task, fst_process_tx_work_q, 0);
|
|
static DECLARE_TASKLET(fst_int_task, fst_process_int_work_q, 0);
|
|
|
|
static struct fst_card_info *fst_card_array[FST_MAX_CARDS];
|
|
static spinlock_t fst_work_q_lock;
|
|
static u64 fst_work_txq;
|
|
static u64 fst_work_intq;
|
|
|
|
static void
|
|
fst_q_work_item(u64 * queue, int card_index)
|
|
{
|
|
unsigned long flags;
|
|
u64 mask;
|
|
|
|
/*
|
|
* Grab the queue exclusively
|
|
*/
|
|
spin_lock_irqsave(&fst_work_q_lock, flags);
|
|
|
|
/*
|
|
* Making an entry in the queue is simply a matter of setting
|
|
* a bit for the card indicating that there is work to do in the
|
|
* bottom half for the card. Note the limitation of 64 cards.
|
|
* That ought to be enough
|
|
*/
|
|
mask = (u64)1 << card_index;
|
|
*queue |= mask;
|
|
spin_unlock_irqrestore(&fst_work_q_lock, flags);
|
|
}
|
|
|
|
static void
|
|
fst_process_tx_work_q(unsigned long /*void **/work_q)
|
|
{
|
|
unsigned long flags;
|
|
u64 work_txq;
|
|
int i;
|
|
|
|
/*
|
|
* Grab the queue exclusively
|
|
*/
|
|
dbg(DBG_TX, "fst_process_tx_work_q\n");
|
|
spin_lock_irqsave(&fst_work_q_lock, flags);
|
|
work_txq = fst_work_txq;
|
|
fst_work_txq = 0;
|
|
spin_unlock_irqrestore(&fst_work_q_lock, flags);
|
|
|
|
/*
|
|
* Call the bottom half for each card with work waiting
|
|
*/
|
|
for (i = 0; i < FST_MAX_CARDS; i++) {
|
|
if (work_txq & 0x01) {
|
|
if (fst_card_array[i] != NULL) {
|
|
dbg(DBG_TX, "Calling tx bh for card %d\n", i);
|
|
do_bottom_half_tx(fst_card_array[i]);
|
|
}
|
|
}
|
|
work_txq = work_txq >> 1;
|
|
}
|
|
}
|
|
|
|
static void
|
|
fst_process_int_work_q(unsigned long /*void **/work_q)
|
|
{
|
|
unsigned long flags;
|
|
u64 work_intq;
|
|
int i;
|
|
|
|
/*
|
|
* Grab the queue exclusively
|
|
*/
|
|
dbg(DBG_INTR, "fst_process_int_work_q\n");
|
|
spin_lock_irqsave(&fst_work_q_lock, flags);
|
|
work_intq = fst_work_intq;
|
|
fst_work_intq = 0;
|
|
spin_unlock_irqrestore(&fst_work_q_lock, flags);
|
|
|
|
/*
|
|
* Call the bottom half for each card with work waiting
|
|
*/
|
|
for (i = 0; i < FST_MAX_CARDS; i++) {
|
|
if (work_intq & 0x01) {
|
|
if (fst_card_array[i] != NULL) {
|
|
dbg(DBG_INTR,
|
|
"Calling rx & tx bh for card %d\n", i);
|
|
do_bottom_half_rx(fst_card_array[i]);
|
|
do_bottom_half_tx(fst_card_array[i]);
|
|
}
|
|
}
|
|
work_intq = work_intq >> 1;
|
|
}
|
|
}
|
|
|
|
/* Card control functions
|
|
* ======================
|
|
*/
|
|
/* Place the processor in reset state
|
|
*
|
|
* Used to be a simple write to card control space but a glitch in the latest
|
|
* AMD Am186CH processor means that we now have to do it by asserting and de-
|
|
* asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register
|
|
* at offset 9052_CNTRL. Note the updates for the TXU.
|
|
*/
|
|
static inline void
|
|
fst_cpureset(struct fst_card_info *card)
|
|
{
|
|
unsigned char interrupt_line_register;
|
|
unsigned int regval;
|
|
|
|
if (card->family == FST_FAMILY_TXU) {
|
|
if (pci_read_config_byte
|
|
(card->device, PCI_INTERRUPT_LINE, &interrupt_line_register)) {
|
|
dbg(DBG_ASS,
|
|
"Error in reading interrupt line register\n");
|
|
}
|
|
/*
|
|
* Assert PLX software reset and Am186 hardware reset
|
|
* and then deassert the PLX software reset but 186 still in reset
|
|
*/
|
|
outw(0x440f, card->pci_conf + CNTRL_9054 + 2);
|
|
outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
|
|
/*
|
|
* We are delaying here to allow the 9054 to reset itself
|
|
*/
|
|
usleep_range(10, 20);
|
|
outw(0x240f, card->pci_conf + CNTRL_9054 + 2);
|
|
/*
|
|
* We are delaying here to allow the 9054 to reload its eeprom
|
|
*/
|
|
usleep_range(10, 20);
|
|
outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
|
|
|
|
if (pci_write_config_byte
|
|
(card->device, PCI_INTERRUPT_LINE, interrupt_line_register)) {
|
|
dbg(DBG_ASS,
|
|
"Error in writing interrupt line register\n");
|
|
}
|
|
|
|
} else {
|
|
regval = inl(card->pci_conf + CNTRL_9052);
|
|
|
|
outl(regval | 0x40000000, card->pci_conf + CNTRL_9052);
|
|
outl(regval & ~0x40000000, card->pci_conf + CNTRL_9052);
|
|
}
|
|
}
|
|
|
|
/* Release the processor from reset
|
|
*/
|
|
static inline void
|
|
fst_cpurelease(struct fst_card_info *card)
|
|
{
|
|
if (card->family == FST_FAMILY_TXU) {
|
|
/*
|
|
* Force posted writes to complete
|
|
*/
|
|
(void) readb(card->mem);
|
|
|
|
/*
|
|
* Release LRESET DO = 1
|
|
* Then release Local Hold, DO = 1
|
|
*/
|
|
outw(0x040e, card->pci_conf + CNTRL_9054 + 2);
|
|
outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
|
|
} else {
|
|
(void) readb(card->ctlmem);
|
|
}
|
|
}
|
|
|
|
/* Clear the cards interrupt flag
|
|
*/
|
|
static inline void
|
|
fst_clear_intr(struct fst_card_info *card)
|
|
{
|
|
if (card->family == FST_FAMILY_TXU) {
|
|
(void) readb(card->ctlmem);
|
|
} else {
|
|
/* Poke the appropriate PLX chip register (same as enabling interrupts)
|
|
*/
|
|
outw(0x0543, card->pci_conf + INTCSR_9052);
|
|
}
|
|
}
|
|
|
|
/* Enable card interrupts
|
|
*/
|
|
static inline void
|
|
fst_enable_intr(struct fst_card_info *card)
|
|
{
|
|
if (card->family == FST_FAMILY_TXU) {
|
|
outl(0x0f0c0900, card->pci_conf + INTCSR_9054);
|
|
} else {
|
|
outw(0x0543, card->pci_conf + INTCSR_9052);
|
|
}
|
|
}
|
|
|
|
/* Disable card interrupts
|
|
*/
|
|
static inline void
|
|
fst_disable_intr(struct fst_card_info *card)
|
|
{
|
|
if (card->family == FST_FAMILY_TXU) {
|
|
outl(0x00000000, card->pci_conf + INTCSR_9054);
|
|
} else {
|
|
outw(0x0000, card->pci_conf + INTCSR_9052);
|
|
}
|
|
}
|
|
|
|
/* Process the result of trying to pass a received frame up the stack
|
|
*/
|
|
static void
|
|
fst_process_rx_status(int rx_status, char *name)
|
|
{
|
|
switch (rx_status) {
|
|
case NET_RX_SUCCESS:
|
|
{
|
|
/*
|
|
* Nothing to do here
|
|
*/
|
|
break;
|
|
}
|
|
case NET_RX_DROP:
|
|
{
|
|
dbg(DBG_ASS, "%s: Received packet dropped\n", name);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Initilaise DMA for PLX 9054
|
|
*/
|
|
static inline void
|
|
fst_init_dma(struct fst_card_info *card)
|
|
{
|
|
/*
|
|
* This is only required for the PLX 9054
|
|
*/
|
|
if (card->family == FST_FAMILY_TXU) {
|
|
pci_set_master(card->device);
|
|
outl(0x00020441, card->pci_conf + DMAMODE0);
|
|
outl(0x00020441, card->pci_conf + DMAMODE1);
|
|
outl(0x0, card->pci_conf + DMATHR);
|
|
}
|
|
}
|
|
|
|
/* Tx dma complete interrupt
|
|
*/
|
|
static void
|
|
fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
|
|
int len, int txpos)
|
|
{
|
|
struct net_device *dev = port_to_dev(port);
|
|
|
|
/*
|
|
* Everything is now set, just tell the card to go
|
|
*/
|
|
dbg(DBG_TX, "fst_tx_dma_complete\n");
|
|
FST_WRB(card, txDescrRing[port->index][txpos].bits,
|
|
DMA_OWN | TX_STP | TX_ENP);
|
|
dev->stats.tx_packets++;
|
|
dev->stats.tx_bytes += len;
|
|
dev->trans_start = jiffies;
|
|
}
|
|
|
|
/*
|
|
* Mark it for our own raw sockets interface
|
|
*/
|
|
static __be16 farsync_type_trans(struct sk_buff *skb, struct net_device *dev)
|
|
{
|
|
skb->dev = dev;
|
|
skb_reset_mac_header(skb);
|
|
skb->pkt_type = PACKET_HOST;
|
|
return htons(ETH_P_CUST);
|
|
}
|
|
|
|
/* Rx dma complete interrupt
|
|
*/
|
|
static void
|
|
fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
|
|
int len, struct sk_buff *skb, int rxp)
|
|
{
|
|
struct net_device *dev = port_to_dev(port);
|
|
int pi;
|
|
int rx_status;
|
|
|
|
dbg(DBG_TX, "fst_rx_dma_complete\n");
|
|
pi = port->index;
|
|
memcpy(skb_put(skb, len), card->rx_dma_handle_host, len);
|
|
|
|
/* Reset buffer descriptor */
|
|
FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
|
|
|
|
/* Update stats */
|
|
dev->stats.rx_packets++;
|
|
dev->stats.rx_bytes += len;
|
|
|
|
/* Push upstream */
|
|
dbg(DBG_RX, "Pushing the frame up the stack\n");
|
|
if (port->mode == FST_RAW)
|
|
skb->protocol = farsync_type_trans(skb, dev);
|
|
else
|
|
skb->protocol = hdlc_type_trans(skb, dev);
|
|
rx_status = netif_rx(skb);
|
|
fst_process_rx_status(rx_status, port_to_dev(port)->name);
|
|
if (rx_status == NET_RX_DROP)
|
|
dev->stats.rx_dropped++;
|
|
}
|
|
|
|
/*
|
|
* Receive a frame through the DMA
|
|
*/
|
|
static inline void
|
|
fst_rx_dma(struct fst_card_info *card, dma_addr_t dma, u32 mem, int len)
|
|
{
|
|
/*
|
|
* This routine will setup the DMA and start it
|
|
*/
|
|
|
|
dbg(DBG_RX, "In fst_rx_dma %x %x %d\n", (u32)dma, mem, len);
|
|
if (card->dmarx_in_progress) {
|
|
dbg(DBG_ASS, "In fst_rx_dma while dma in progress\n");
|
|
}
|
|
|
|
outl(dma, card->pci_conf + DMAPADR0); /* Copy to here */
|
|
outl(mem, card->pci_conf + DMALADR0); /* from here */
|
|
outl(len, card->pci_conf + DMASIZ0); /* for this length */
|
|
outl(0x00000000c, card->pci_conf + DMADPR0); /* In this direction */
|
|
|
|
/*
|
|
* We use the dmarx_in_progress flag to flag the channel as busy
|
|
*/
|
|
card->dmarx_in_progress = 1;
|
|
outb(0x03, card->pci_conf + DMACSR0); /* Start the transfer */
|
|
}
|
|
|
|
/*
|
|
* Send a frame through the DMA
|
|
*/
|
|
static inline void
|
|
fst_tx_dma(struct fst_card_info *card, dma_addr_t dma, u32 mem, int len)
|
|
{
|
|
/*
|
|
* This routine will setup the DMA and start it.
|
|
*/
|
|
|
|
dbg(DBG_TX, "In fst_tx_dma %x %x %d\n", (u32)dma, mem, len);
|
|
if (card->dmatx_in_progress) {
|
|
dbg(DBG_ASS, "In fst_tx_dma while dma in progress\n");
|
|
}
|
|
|
|
outl(dma, card->pci_conf + DMAPADR1); /* Copy from here */
|
|
outl(mem, card->pci_conf + DMALADR1); /* to here */
|
|
outl(len, card->pci_conf + DMASIZ1); /* for this length */
|
|
outl(0x000000004, card->pci_conf + DMADPR1); /* In this direction */
|
|
|
|
/*
|
|
* We use the dmatx_in_progress to flag the channel as busy
|
|
*/
|
|
card->dmatx_in_progress = 1;
|
|
outb(0x03, card->pci_conf + DMACSR1); /* Start the transfer */
|
|
}
|
|
|
|
/* Issue a Mailbox command for a port.
|
|
* Note we issue them on a fire and forget basis, not expecting to see an
|
|
* error and not waiting for completion.
|
|
*/
|
|
static void
|
|
fst_issue_cmd(struct fst_port_info *port, unsigned short cmd)
|
|
{
|
|
struct fst_card_info *card;
|
|
unsigned short mbval;
|
|
unsigned long flags;
|
|
int safety;
|
|
|
|
card = port->card;
|
|
spin_lock_irqsave(&card->card_lock, flags);
|
|
mbval = FST_RDW(card, portMailbox[port->index][0]);
|
|
|
|
safety = 0;
|
|
/* Wait for any previous command to complete */
|
|
while (mbval > NAK) {
|
|
spin_unlock_irqrestore(&card->card_lock, flags);
|
|
schedule_timeout_uninterruptible(1);
|
|
spin_lock_irqsave(&card->card_lock, flags);
|
|
|
|
if (++safety > 2000) {
|
|
pr_err("Mailbox safety timeout\n");
|
|
break;
|
|
}
|
|
|
|
mbval = FST_RDW(card, portMailbox[port->index][0]);
|
|
}
|
|
if (safety > 0) {
|
|
dbg(DBG_CMD, "Mailbox clear after %d jiffies\n", safety);
|
|
}
|
|
if (mbval == NAK) {
|
|
dbg(DBG_CMD, "issue_cmd: previous command was NAK'd\n");
|
|
}
|
|
|
|
FST_WRW(card, portMailbox[port->index][0], cmd);
|
|
|
|
if (cmd == ABORTTX || cmd == STARTPORT) {
|
|
port->txpos = 0;
|
|
port->txipos = 0;
|
|
port->start = 0;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&card->card_lock, flags);
|
|
}
|
|
|
|
/* Port output signals control
|
|
*/
|
|
static inline void
|
|
fst_op_raise(struct fst_port_info *port, unsigned int outputs)
|
|
{
|
|
outputs |= FST_RDL(port->card, v24OpSts[port->index]);
|
|
FST_WRL(port->card, v24OpSts[port->index], outputs);
|
|
|
|
if (port->run)
|
|
fst_issue_cmd(port, SETV24O);
|
|
}
|
|
|
|
static inline void
|
|
fst_op_lower(struct fst_port_info *port, unsigned int outputs)
|
|
{
|
|
outputs = ~outputs & FST_RDL(port->card, v24OpSts[port->index]);
|
|
FST_WRL(port->card, v24OpSts[port->index], outputs);
|
|
|
|
if (port->run)
|
|
fst_issue_cmd(port, SETV24O);
|
|
}
|
|
|
|
/*
|
|
* Setup port Rx buffers
|
|
*/
|
|
static void
|
|
fst_rx_config(struct fst_port_info *port)
|
|
{
|
|
int i;
|
|
int pi;
|
|
unsigned int offset;
|
|
unsigned long flags;
|
|
struct fst_card_info *card;
|
|
|
|
pi = port->index;
|
|
card = port->card;
|
|
spin_lock_irqsave(&card->card_lock, flags);
|
|
for (i = 0; i < NUM_RX_BUFFER; i++) {
|
|
offset = BUF_OFFSET(rxBuffer[pi][i][0]);
|
|
|
|
FST_WRW(card, rxDescrRing[pi][i].ladr, (u16) offset);
|
|
FST_WRB(card, rxDescrRing[pi][i].hadr, (u8) (offset >> 16));
|
|
FST_WRW(card, rxDescrRing[pi][i].bcnt, cnv_bcnt(LEN_RX_BUFFER));
|
|
FST_WRW(card, rxDescrRing[pi][i].mcnt, LEN_RX_BUFFER);
|
|
FST_WRB(card, rxDescrRing[pi][i].bits, DMA_OWN);
|
|
}
|
|
port->rxpos = 0;
|
|
spin_unlock_irqrestore(&card->card_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Setup port Tx buffers
|
|
*/
|
|
static void
|
|
fst_tx_config(struct fst_port_info *port)
|
|
{
|
|
int i;
|
|
int pi;
|
|
unsigned int offset;
|
|
unsigned long flags;
|
|
struct fst_card_info *card;
|
|
|
|
pi = port->index;
|
|
card = port->card;
|
|
spin_lock_irqsave(&card->card_lock, flags);
|
|
for (i = 0; i < NUM_TX_BUFFER; i++) {
|
|
offset = BUF_OFFSET(txBuffer[pi][i][0]);
|
|
|
|
FST_WRW(card, txDescrRing[pi][i].ladr, (u16) offset);
|
|
FST_WRB(card, txDescrRing[pi][i].hadr, (u8) (offset >> 16));
|
|
FST_WRW(card, txDescrRing[pi][i].bcnt, 0);
|
|
FST_WRB(card, txDescrRing[pi][i].bits, 0);
|
|
}
|
|
port->txpos = 0;
|
|
port->txipos = 0;
|
|
port->start = 0;
|
|
spin_unlock_irqrestore(&card->card_lock, flags);
|
|
}
|
|
|
|
/* TE1 Alarm change interrupt event
|
|
*/
|
|
static void
|
|
fst_intr_te1_alarm(struct fst_card_info *card, struct fst_port_info *port)
|
|
{
|
|
u8 los;
|
|
u8 rra;
|
|
u8 ais;
|
|
|
|
los = FST_RDB(card, suStatus.lossOfSignal);
|
|
rra = FST_RDB(card, suStatus.receiveRemoteAlarm);
|
|
ais = FST_RDB(card, suStatus.alarmIndicationSignal);
|
|
|
|
if (los) {
|
|
/*
|
|
* Lost the link
|
|
*/
|
|
if (netif_carrier_ok(port_to_dev(port))) {
|
|
dbg(DBG_INTR, "Net carrier off\n");
|
|
netif_carrier_off(port_to_dev(port));
|
|
}
|
|
} else {
|
|
/*
|
|
* Link available
|
|
*/
|
|
if (!netif_carrier_ok(port_to_dev(port))) {
|
|
dbg(DBG_INTR, "Net carrier on\n");
|
|
netif_carrier_on(port_to_dev(port));
|
|
}
|
|
}
|
|
|
|
if (los)
|
|
dbg(DBG_INTR, "Assert LOS Alarm\n");
|
|
else
|
|
dbg(DBG_INTR, "De-assert LOS Alarm\n");
|
|
if (rra)
|
|
dbg(DBG_INTR, "Assert RRA Alarm\n");
|
|
else
|
|
dbg(DBG_INTR, "De-assert RRA Alarm\n");
|
|
|
|
if (ais)
|
|
dbg(DBG_INTR, "Assert AIS Alarm\n");
|
|
else
|
|
dbg(DBG_INTR, "De-assert AIS Alarm\n");
|
|
}
|
|
|
|
/* Control signal change interrupt event
|
|
*/
|
|
static void
|
|
fst_intr_ctlchg(struct fst_card_info *card, struct fst_port_info *port)
|
|
{
|
|
int signals;
|
|
|
|
signals = FST_RDL(card, v24DebouncedSts[port->index]);
|
|
|
|
if (signals & (((port->hwif == X21) || (port->hwif == X21D))
|
|
? IPSTS_INDICATE : IPSTS_DCD)) {
|
|
if (!netif_carrier_ok(port_to_dev(port))) {
|
|
dbg(DBG_INTR, "DCD active\n");
|
|
netif_carrier_on(port_to_dev(port));
|
|
}
|
|
} else {
|
|
if (netif_carrier_ok(port_to_dev(port))) {
|
|
dbg(DBG_INTR, "DCD lost\n");
|
|
netif_carrier_off(port_to_dev(port));
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Log Rx Errors
|
|
*/
|
|
static void
|
|
fst_log_rx_error(struct fst_card_info *card, struct fst_port_info *port,
|
|
unsigned char dmabits, int rxp, unsigned short len)
|
|
{
|
|
struct net_device *dev = port_to_dev(port);
|
|
|
|
/*
|
|
* Increment the appropriate error counter
|
|
*/
|
|
dev->stats.rx_errors++;
|
|
if (dmabits & RX_OFLO) {
|
|
dev->stats.rx_fifo_errors++;
|
|
dbg(DBG_ASS, "Rx fifo error on card %d port %d buffer %d\n",
|
|
card->card_no, port->index, rxp);
|
|
}
|
|
if (dmabits & RX_CRC) {
|
|
dev->stats.rx_crc_errors++;
|
|
dbg(DBG_ASS, "Rx crc error on card %d port %d\n",
|
|
card->card_no, port->index);
|
|
}
|
|
if (dmabits & RX_FRAM) {
|
|
dev->stats.rx_frame_errors++;
|
|
dbg(DBG_ASS, "Rx frame error on card %d port %d\n",
|
|
card->card_no, port->index);
|
|
}
|
|
if (dmabits == (RX_STP | RX_ENP)) {
|
|
dev->stats.rx_length_errors++;
|
|
dbg(DBG_ASS, "Rx length error (%d) on card %d port %d\n",
|
|
len, card->card_no, port->index);
|
|
}
|
|
}
|
|
|
|
/* Rx Error Recovery
|
|
*/
|
|
static void
|
|
fst_recover_rx_error(struct fst_card_info *card, struct fst_port_info *port,
|
|
unsigned char dmabits, int rxp, unsigned short len)
|
|
{
|
|
int i;
|
|
int pi;
|
|
|
|
pi = port->index;
|
|
/*
|
|
* Discard buffer descriptors until we see the start of the
|
|
* next frame. Note that for long frames this could be in
|
|
* a subsequent interrupt.
|
|
*/
|
|
i = 0;
|
|
while ((dmabits & (DMA_OWN | RX_STP)) == 0) {
|
|
FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
|
|
rxp = (rxp+1) % NUM_RX_BUFFER;
|
|
if (++i > NUM_RX_BUFFER) {
|
|
dbg(DBG_ASS, "intr_rx: Discarding more bufs"
|
|
" than we have\n");
|
|
break;
|
|
}
|
|
dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
|
|
dbg(DBG_ASS, "DMA Bits of next buffer was %x\n", dmabits);
|
|
}
|
|
dbg(DBG_ASS, "There were %d subsequent buffers in error\n", i);
|
|
|
|
/* Discard the terminal buffer */
|
|
if (!(dmabits & DMA_OWN)) {
|
|
FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
|
|
rxp = (rxp+1) % NUM_RX_BUFFER;
|
|
}
|
|
port->rxpos = rxp;
|
|
return;
|
|
|
|
}
|
|
|
|
/* Rx complete interrupt
|
|
*/
|
|
static void
|
|
fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port)
|
|
{
|
|
unsigned char dmabits;
|
|
int pi;
|
|
int rxp;
|
|
int rx_status;
|
|
unsigned short len;
|
|
struct sk_buff *skb;
|
|
struct net_device *dev = port_to_dev(port);
|
|
|
|
/* Check we have a buffer to process */
|
|
pi = port->index;
|
|
rxp = port->rxpos;
|
|
dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
|
|
if (dmabits & DMA_OWN) {
|
|
dbg(DBG_RX | DBG_INTR, "intr_rx: No buffer port %d pos %d\n",
|
|
pi, rxp);
|
|
return;
|
|
}
|
|
if (card->dmarx_in_progress) {
|
|
return;
|
|
}
|
|
|
|
/* Get buffer length */
|
|
len = FST_RDW(card, rxDescrRing[pi][rxp].mcnt);
|
|
/* Discard the CRC */
|
|
len -= 2;
|
|
if (len == 0) {
|
|
/*
|
|
* This seems to happen on the TE1 interface sometimes
|
|
* so throw the frame away and log the event.
|
|
*/
|
|
pr_err("Frame received with 0 length. Card %d Port %d\n",
|
|
card->card_no, port->index);
|
|
/* Return descriptor to card */
|
|
FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
|
|
|
|
rxp = (rxp+1) % NUM_RX_BUFFER;
|
|
port->rxpos = rxp;
|
|
return;
|
|
}
|
|
|
|
/* Check buffer length and for other errors. We insist on one packet
|
|
* in one buffer. This simplifies things greatly and since we've
|
|
* allocated 8K it shouldn't be a real world limitation
|
|
*/
|
|
dbg(DBG_RX, "intr_rx: %d,%d: flags %x len %d\n", pi, rxp, dmabits, len);
|
|
if (dmabits != (RX_STP | RX_ENP) || len > LEN_RX_BUFFER - 2) {
|
|
fst_log_rx_error(card, port, dmabits, rxp, len);
|
|
fst_recover_rx_error(card, port, dmabits, rxp, len);
|
|
return;
|
|
}
|
|
|
|
/* Allocate SKB */
|
|
if ((skb = dev_alloc_skb(len)) == NULL) {
|
|
dbg(DBG_RX, "intr_rx: can't allocate buffer\n");
|
|
|
|
dev->stats.rx_dropped++;
|
|
|
|
/* Return descriptor to card */
|
|
FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
|
|
|
|
rxp = (rxp+1) % NUM_RX_BUFFER;
|
|
port->rxpos = rxp;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* We know the length we need to receive, len.
|
|
* It's not worth using the DMA for reads of less than
|
|
* FST_MIN_DMA_LEN
|
|
*/
|
|
|
|
if ((len < FST_MIN_DMA_LEN) || (card->family == FST_FAMILY_TXP)) {
|
|
memcpy_fromio(skb_put(skb, len),
|
|
card->mem + BUF_OFFSET(rxBuffer[pi][rxp][0]),
|
|
len);
|
|
|
|
/* Reset buffer descriptor */
|
|
FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
|
|
|
|
/* Update stats */
|
|
dev->stats.rx_packets++;
|
|
dev->stats.rx_bytes += len;
|
|
|
|
/* Push upstream */
|
|
dbg(DBG_RX, "Pushing frame up the stack\n");
|
|
if (port->mode == FST_RAW)
|
|
skb->protocol = farsync_type_trans(skb, dev);
|
|
else
|
|
skb->protocol = hdlc_type_trans(skb, dev);
|
|
rx_status = netif_rx(skb);
|
|
fst_process_rx_status(rx_status, port_to_dev(port)->name);
|
|
if (rx_status == NET_RX_DROP)
|
|
dev->stats.rx_dropped++;
|
|
} else {
|
|
card->dma_skb_rx = skb;
|
|
card->dma_port_rx = port;
|
|
card->dma_len_rx = len;
|
|
card->dma_rxpos = rxp;
|
|
fst_rx_dma(card, card->rx_dma_handle_card,
|
|
BUF_OFFSET(rxBuffer[pi][rxp][0]), len);
|
|
}
|
|
if (rxp != port->rxpos) {
|
|
dbg(DBG_ASS, "About to increment rxpos by more than 1\n");
|
|
dbg(DBG_ASS, "rxp = %d rxpos = %d\n", rxp, port->rxpos);
|
|
}
|
|
rxp = (rxp+1) % NUM_RX_BUFFER;
|
|
port->rxpos = rxp;
|
|
}
|
|
|
|
/*
|
|
* The bottom halfs to the ISR
|
|
*
|
|
*/
|
|
|
|
static void
|
|
do_bottom_half_tx(struct fst_card_info *card)
|
|
{
|
|
struct fst_port_info *port;
|
|
int pi;
|
|
int txq_length;
|
|
struct sk_buff *skb;
|
|
unsigned long flags;
|
|
struct net_device *dev;
|
|
|
|
/*
|
|
* Find a free buffer for the transmit
|
|
* Step through each port on this card
|
|
*/
|
|
|
|
dbg(DBG_TX, "do_bottom_half_tx\n");
|
|
for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
|
|
if (!port->run)
|
|
continue;
|
|
|
|
dev = port_to_dev(port);
|
|
while (!(FST_RDB(card, txDescrRing[pi][port->txpos].bits) &
|
|
DMA_OWN) &&
|
|
!(card->dmatx_in_progress)) {
|
|
/*
|
|
* There doesn't seem to be a txdone event per-se
|
|
* We seem to have to deduce it, by checking the DMA_OWN
|
|
* bit on the next buffer we think we can use
|
|
*/
|
|
spin_lock_irqsave(&card->card_lock, flags);
|
|
if ((txq_length = port->txqe - port->txqs) < 0) {
|
|
/*
|
|
* This is the case where one has wrapped and the
|
|
* maths gives us a negative number
|
|
*/
|
|
txq_length = txq_length + FST_TXQ_DEPTH;
|
|
}
|
|
spin_unlock_irqrestore(&card->card_lock, flags);
|
|
if (txq_length > 0) {
|
|
/*
|
|
* There is something to send
|
|
*/
|
|
spin_lock_irqsave(&card->card_lock, flags);
|
|
skb = port->txq[port->txqs];
|
|
port->txqs++;
|
|
if (port->txqs == FST_TXQ_DEPTH) {
|
|
port->txqs = 0;
|
|
}
|
|
spin_unlock_irqrestore(&card->card_lock, flags);
|
|
/*
|
|
* copy the data and set the required indicators on the
|
|
* card.
|
|
*/
|
|
FST_WRW(card, txDescrRing[pi][port->txpos].bcnt,
|
|
cnv_bcnt(skb->len));
|
|
if ((skb->len < FST_MIN_DMA_LEN) ||
|
|
(card->family == FST_FAMILY_TXP)) {
|
|
/* Enqueue the packet with normal io */
|
|
memcpy_toio(card->mem +
|
|
BUF_OFFSET(txBuffer[pi]
|
|
[port->
|
|
txpos][0]),
|
|
skb->data, skb->len);
|
|
FST_WRB(card,
|
|
txDescrRing[pi][port->txpos].
|
|
bits,
|
|
DMA_OWN | TX_STP | TX_ENP);
|
|
dev->stats.tx_packets++;
|
|
dev->stats.tx_bytes += skb->len;
|
|
dev->trans_start = jiffies;
|
|
} else {
|
|
/* Or do it through dma */
|
|
memcpy(card->tx_dma_handle_host,
|
|
skb->data, skb->len);
|
|
card->dma_port_tx = port;
|
|
card->dma_len_tx = skb->len;
|
|
card->dma_txpos = port->txpos;
|
|
fst_tx_dma(card,
|
|
card->tx_dma_handle_card,
|
|
BUF_OFFSET(txBuffer[pi]
|
|
[port->txpos][0]),
|
|
skb->len);
|
|
}
|
|
if (++port->txpos >= NUM_TX_BUFFER)
|
|
port->txpos = 0;
|
|
/*
|
|
* If we have flow control on, can we now release it?
|
|
*/
|
|
if (port->start) {
|
|
if (txq_length < fst_txq_low) {
|
|
netif_wake_queue(port_to_dev
|
|
(port));
|
|
port->start = 0;
|
|
}
|
|
}
|
|
dev_kfree_skb(skb);
|
|
} else {
|
|
/*
|
|
* Nothing to send so break out of the while loop
|
|
*/
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
do_bottom_half_rx(struct fst_card_info *card)
|
|
{
|
|
struct fst_port_info *port;
|
|
int pi;
|
|
int rx_count = 0;
|
|
|
|
/* Check for rx completions on all ports on this card */
|
|
dbg(DBG_RX, "do_bottom_half_rx\n");
|
|
for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
|
|
if (!port->run)
|
|
continue;
|
|
|
|
while (!(FST_RDB(card, rxDescrRing[pi][port->rxpos].bits)
|
|
& DMA_OWN) && !(card->dmarx_in_progress)) {
|
|
if (rx_count > fst_max_reads) {
|
|
/*
|
|
* Don't spend forever in receive processing
|
|
* Schedule another event
|
|
*/
|
|
fst_q_work_item(&fst_work_intq, card->card_no);
|
|
tasklet_schedule(&fst_int_task);
|
|
break; /* Leave the loop */
|
|
}
|
|
fst_intr_rx(card, port);
|
|
rx_count++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The interrupt service routine
|
|
* Dev_id is our fst_card_info pointer
|
|
*/
|
|
static irqreturn_t
|
|
fst_intr(int dummy, void *dev_id)
|
|
{
|
|
struct fst_card_info *card = dev_id;
|
|
struct fst_port_info *port;
|
|
int rdidx; /* Event buffer indices */
|
|
int wridx;
|
|
int event; /* Actual event for processing */
|
|
unsigned int dma_intcsr = 0;
|
|
unsigned int do_card_interrupt;
|
|
unsigned int int_retry_count;
|
|
|
|
/*
|
|
* Check to see if the interrupt was for this card
|
|
* return if not
|
|
* Note that the call to clear the interrupt is important
|
|
*/
|
|
dbg(DBG_INTR, "intr: %d %p\n", card->irq, card);
|
|
if (card->state != FST_RUNNING) {
|
|
pr_err("Interrupt received for card %d in a non running state (%d)\n",
|
|
card->card_no, card->state);
|
|
|
|
/*
|
|
* It is possible to really be running, i.e. we have re-loaded
|
|
* a running card
|
|
* Clear and reprime the interrupt source
|
|
*/
|
|
fst_clear_intr(card);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* Clear and reprime the interrupt source */
|
|
fst_clear_intr(card);
|
|
|
|
/*
|
|
* Is the interrupt for this card (handshake == 1)
|
|
*/
|
|
do_card_interrupt = 0;
|
|
if (FST_RDB(card, interruptHandshake) == 1) {
|
|
do_card_interrupt += FST_CARD_INT;
|
|
/* Set the software acknowledge */
|
|
FST_WRB(card, interruptHandshake, 0xEE);
|
|
}
|
|
if (card->family == FST_FAMILY_TXU) {
|
|
/*
|
|
* Is it a DMA Interrupt
|
|
*/
|
|
dma_intcsr = inl(card->pci_conf + INTCSR_9054);
|
|
if (dma_intcsr & 0x00200000) {
|
|
/*
|
|
* DMA Channel 0 (Rx transfer complete)
|
|
*/
|
|
dbg(DBG_RX, "DMA Rx xfer complete\n");
|
|
outb(0x8, card->pci_conf + DMACSR0);
|
|
fst_rx_dma_complete(card, card->dma_port_rx,
|
|
card->dma_len_rx, card->dma_skb_rx,
|
|
card->dma_rxpos);
|
|
card->dmarx_in_progress = 0;
|
|
do_card_interrupt += FST_RX_DMA_INT;
|
|
}
|
|
if (dma_intcsr & 0x00400000) {
|
|
/*
|
|
* DMA Channel 1 (Tx transfer complete)
|
|
*/
|
|
dbg(DBG_TX, "DMA Tx xfer complete\n");
|
|
outb(0x8, card->pci_conf + DMACSR1);
|
|
fst_tx_dma_complete(card, card->dma_port_tx,
|
|
card->dma_len_tx, card->dma_txpos);
|
|
card->dmatx_in_progress = 0;
|
|
do_card_interrupt += FST_TX_DMA_INT;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Have we been missing Interrupts
|
|
*/
|
|
int_retry_count = FST_RDL(card, interruptRetryCount);
|
|
if (int_retry_count) {
|
|
dbg(DBG_ASS, "Card %d int_retry_count is %d\n",
|
|
card->card_no, int_retry_count);
|
|
FST_WRL(card, interruptRetryCount, 0);
|
|
}
|
|
|
|
if (!do_card_interrupt) {
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* Scehdule the bottom half of the ISR */
|
|
fst_q_work_item(&fst_work_intq, card->card_no);
|
|
tasklet_schedule(&fst_int_task);
|
|
|
|
/* Drain the event queue */
|
|
rdidx = FST_RDB(card, interruptEvent.rdindex) & 0x1f;
|
|
wridx = FST_RDB(card, interruptEvent.wrindex) & 0x1f;
|
|
while (rdidx != wridx) {
|
|
event = FST_RDB(card, interruptEvent.evntbuff[rdidx]);
|
|
port = &card->ports[event & 0x03];
|
|
|
|
dbg(DBG_INTR, "Processing Interrupt event: %x\n", event);
|
|
|
|
switch (event) {
|
|
case TE1_ALMA:
|
|
dbg(DBG_INTR, "TE1 Alarm intr\n");
|
|
if (port->run)
|
|
fst_intr_te1_alarm(card, port);
|
|
break;
|
|
|
|
case CTLA_CHG:
|
|
case CTLB_CHG:
|
|
case CTLC_CHG:
|
|
case CTLD_CHG:
|
|
if (port->run)
|
|
fst_intr_ctlchg(card, port);
|
|
break;
|
|
|
|
case ABTA_SENT:
|
|
case ABTB_SENT:
|
|
case ABTC_SENT:
|
|
case ABTD_SENT:
|
|
dbg(DBG_TX, "Abort complete port %d\n", port->index);
|
|
break;
|
|
|
|
case TXA_UNDF:
|
|
case TXB_UNDF:
|
|
case TXC_UNDF:
|
|
case TXD_UNDF:
|
|
/* Difficult to see how we'd get this given that we
|
|
* always load up the entire packet for DMA.
|
|
*/
|
|
dbg(DBG_TX, "Tx underflow port %d\n", port->index);
|
|
port_to_dev(port)->stats.tx_errors++;
|
|
port_to_dev(port)->stats.tx_fifo_errors++;
|
|
dbg(DBG_ASS, "Tx underflow on card %d port %d\n",
|
|
card->card_no, port->index);
|
|
break;
|
|
|
|
case INIT_CPLT:
|
|
dbg(DBG_INIT, "Card init OK intr\n");
|
|
break;
|
|
|
|
case INIT_FAIL:
|
|
dbg(DBG_INIT, "Card init FAILED intr\n");
|
|
card->state = FST_IFAILED;
|
|
break;
|
|
|
|
default:
|
|
pr_err("intr: unknown card event %d. ignored\n", event);
|
|
break;
|
|
}
|
|
|
|
/* Bump and wrap the index */
|
|
if (++rdidx >= MAX_CIRBUFF)
|
|
rdidx = 0;
|
|
}
|
|
FST_WRB(card, interruptEvent.rdindex, rdidx);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* Check that the shared memory configuration is one that we can handle
|
|
* and that some basic parameters are correct
|
|
*/
|
|
static void
|
|
check_started_ok(struct fst_card_info *card)
|
|
{
|
|
int i;
|
|
|
|
/* Check structure version and end marker */
|
|
if (FST_RDW(card, smcVersion) != SMC_VERSION) {
|
|
pr_err("Bad shared memory version %d expected %d\n",
|
|
FST_RDW(card, smcVersion), SMC_VERSION);
|
|
card->state = FST_BADVERSION;
|
|
return;
|
|
}
|
|
if (FST_RDL(card, endOfSmcSignature) != END_SIG) {
|
|
pr_err("Missing shared memory signature\n");
|
|
card->state = FST_BADVERSION;
|
|
return;
|
|
}
|
|
/* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */
|
|
if ((i = FST_RDB(card, taskStatus)) == 0x01) {
|
|
card->state = FST_RUNNING;
|
|
} else if (i == 0xFF) {
|
|
pr_err("Firmware initialisation failed. Card halted\n");
|
|
card->state = FST_HALTED;
|
|
return;
|
|
} else if (i != 0x00) {
|
|
pr_err("Unknown firmware status 0x%x\n", i);
|
|
card->state = FST_HALTED;
|
|
return;
|
|
}
|
|
|
|
/* Finally check the number of ports reported by firmware against the
|
|
* number we assumed at card detection. Should never happen with
|
|
* existing firmware etc so we just report it for the moment.
|
|
*/
|
|
if (FST_RDL(card, numberOfPorts) != card->nports) {
|
|
pr_warn("Port count mismatch on card %d. Firmware thinks %d we say %d\n",
|
|
card->card_no,
|
|
FST_RDL(card, numberOfPorts), card->nports);
|
|
}
|
|
}
|
|
|
|
static int
|
|
set_conf_from_info(struct fst_card_info *card, struct fst_port_info *port,
|
|
struct fstioc_info *info)
|
|
{
|
|
int err;
|
|
unsigned char my_framing;
|
|
|
|
/* Set things according to the user set valid flags
|
|
* Several of the old options have been invalidated/replaced by the
|
|
* generic hdlc package.
|
|
*/
|
|
err = 0;
|
|
if (info->valid & FSTVAL_PROTO) {
|
|
if (info->proto == FST_RAW)
|
|
port->mode = FST_RAW;
|
|
else
|
|
port->mode = FST_GEN_HDLC;
|
|
}
|
|
|
|
if (info->valid & FSTVAL_CABLE)
|
|
err = -EINVAL;
|
|
|
|
if (info->valid & FSTVAL_SPEED)
|
|
err = -EINVAL;
|
|
|
|
if (info->valid & FSTVAL_PHASE)
|
|
FST_WRB(card, portConfig[port->index].invertClock,
|
|
info->invertClock);
|
|
if (info->valid & FSTVAL_MODE)
|
|
FST_WRW(card, cardMode, info->cardMode);
|
|
if (info->valid & FSTVAL_TE1) {
|
|
FST_WRL(card, suConfig.dataRate, info->lineSpeed);
|
|
FST_WRB(card, suConfig.clocking, info->clockSource);
|
|
my_framing = FRAMING_E1;
|
|
if (info->framing == E1)
|
|
my_framing = FRAMING_E1;
|
|
if (info->framing == T1)
|
|
my_framing = FRAMING_T1;
|
|
if (info->framing == J1)
|
|
my_framing = FRAMING_J1;
|
|
FST_WRB(card, suConfig.framing, my_framing);
|
|
FST_WRB(card, suConfig.structure, info->structure);
|
|
FST_WRB(card, suConfig.interface, info->interface);
|
|
FST_WRB(card, suConfig.coding, info->coding);
|
|
FST_WRB(card, suConfig.lineBuildOut, info->lineBuildOut);
|
|
FST_WRB(card, suConfig.equalizer, info->equalizer);
|
|
FST_WRB(card, suConfig.transparentMode, info->transparentMode);
|
|
FST_WRB(card, suConfig.loopMode, info->loopMode);
|
|
FST_WRB(card, suConfig.range, info->range);
|
|
FST_WRB(card, suConfig.txBufferMode, info->txBufferMode);
|
|
FST_WRB(card, suConfig.rxBufferMode, info->rxBufferMode);
|
|
FST_WRB(card, suConfig.startingSlot, info->startingSlot);
|
|
FST_WRB(card, suConfig.losThreshold, info->losThreshold);
|
|
if (info->idleCode)
|
|
FST_WRB(card, suConfig.enableIdleCode, 1);
|
|
else
|
|
FST_WRB(card, suConfig.enableIdleCode, 0);
|
|
FST_WRB(card, suConfig.idleCode, info->idleCode);
|
|
#if FST_DEBUG
|
|
if (info->valid & FSTVAL_TE1) {
|
|
printk("Setting TE1 data\n");
|
|
printk("Line Speed = %d\n", info->lineSpeed);
|
|
printk("Start slot = %d\n", info->startingSlot);
|
|
printk("Clock source = %d\n", info->clockSource);
|
|
printk("Framing = %d\n", my_framing);
|
|
printk("Structure = %d\n", info->structure);
|
|
printk("interface = %d\n", info->interface);
|
|
printk("Coding = %d\n", info->coding);
|
|
printk("Line build out = %d\n", info->lineBuildOut);
|
|
printk("Equaliser = %d\n", info->equalizer);
|
|
printk("Transparent mode = %d\n",
|
|
info->transparentMode);
|
|
printk("Loop mode = %d\n", info->loopMode);
|
|
printk("Range = %d\n", info->range);
|
|
printk("Tx Buffer mode = %d\n", info->txBufferMode);
|
|
printk("Rx Buffer mode = %d\n", info->rxBufferMode);
|
|
printk("LOS Threshold = %d\n", info->losThreshold);
|
|
printk("Idle Code = %d\n", info->idleCode);
|
|
}
|
|
#endif
|
|
}
|
|
#if FST_DEBUG
|
|
if (info->valid & FSTVAL_DEBUG) {
|
|
fst_debug_mask = info->debug;
|
|
}
|
|
#endif
|
|
|
|
return err;
|
|
}
|
|
|
|
static void
|
|
gather_conf_info(struct fst_card_info *card, struct fst_port_info *port,
|
|
struct fstioc_info *info)
|
|
{
|
|
int i;
|
|
|
|
memset(info, 0, sizeof (struct fstioc_info));
|
|
|
|
i = port->index;
|
|
info->kernelVersion = LINUX_VERSION_CODE;
|
|
info->nports = card->nports;
|
|
info->type = card->type;
|
|
info->state = card->state;
|
|
info->proto = FST_GEN_HDLC;
|
|
info->index = i;
|
|
#if FST_DEBUG
|
|
info->debug = fst_debug_mask;
|
|
#endif
|
|
|
|
/* Only mark information as valid if card is running.
|
|
* Copy the data anyway in case it is useful for diagnostics
|
|
*/
|
|
info->valid = ((card->state == FST_RUNNING) ? FSTVAL_ALL : FSTVAL_CARD)
|
|
#if FST_DEBUG
|
|
| FSTVAL_DEBUG
|
|
#endif
|
|
;
|
|
|
|
info->lineInterface = FST_RDW(card, portConfig[i].lineInterface);
|
|
info->internalClock = FST_RDB(card, portConfig[i].internalClock);
|
|
info->lineSpeed = FST_RDL(card, portConfig[i].lineSpeed);
|
|
info->invertClock = FST_RDB(card, portConfig[i].invertClock);
|
|
info->v24IpSts = FST_RDL(card, v24IpSts[i]);
|
|
info->v24OpSts = FST_RDL(card, v24OpSts[i]);
|
|
info->clockStatus = FST_RDW(card, clockStatus[i]);
|
|
info->cableStatus = FST_RDW(card, cableStatus);
|
|
info->cardMode = FST_RDW(card, cardMode);
|
|
info->smcFirmwareVersion = FST_RDL(card, smcFirmwareVersion);
|
|
|
|
/*
|
|
* The T2U can report cable presence for both A or B
|
|
* in bits 0 and 1 of cableStatus. See which port we are and
|
|
* do the mapping.
|
|
*/
|
|
if (card->family == FST_FAMILY_TXU) {
|
|
if (port->index == 0) {
|
|
/*
|
|
* Port A
|
|
*/
|
|
info->cableStatus = info->cableStatus & 1;
|
|
} else {
|
|
/*
|
|
* Port B
|
|
*/
|
|
info->cableStatus = info->cableStatus >> 1;
|
|
info->cableStatus = info->cableStatus & 1;
|
|
}
|
|
}
|
|
/*
|
|
* Some additional bits if we are TE1
|
|
*/
|
|
if (card->type == FST_TYPE_TE1) {
|
|
info->lineSpeed = FST_RDL(card, suConfig.dataRate);
|
|
info->clockSource = FST_RDB(card, suConfig.clocking);
|
|
info->framing = FST_RDB(card, suConfig.framing);
|
|
info->structure = FST_RDB(card, suConfig.structure);
|
|
info->interface = FST_RDB(card, suConfig.interface);
|
|
info->coding = FST_RDB(card, suConfig.coding);
|
|
info->lineBuildOut = FST_RDB(card, suConfig.lineBuildOut);
|
|
info->equalizer = FST_RDB(card, suConfig.equalizer);
|
|
info->loopMode = FST_RDB(card, suConfig.loopMode);
|
|
info->range = FST_RDB(card, suConfig.range);
|
|
info->txBufferMode = FST_RDB(card, suConfig.txBufferMode);
|
|
info->rxBufferMode = FST_RDB(card, suConfig.rxBufferMode);
|
|
info->startingSlot = FST_RDB(card, suConfig.startingSlot);
|
|
info->losThreshold = FST_RDB(card, suConfig.losThreshold);
|
|
if (FST_RDB(card, suConfig.enableIdleCode))
|
|
info->idleCode = FST_RDB(card, suConfig.idleCode);
|
|
else
|
|
info->idleCode = 0;
|
|
info->receiveBufferDelay =
|
|
FST_RDL(card, suStatus.receiveBufferDelay);
|
|
info->framingErrorCount =
|
|
FST_RDL(card, suStatus.framingErrorCount);
|
|
info->codeViolationCount =
|
|
FST_RDL(card, suStatus.codeViolationCount);
|
|
info->crcErrorCount = FST_RDL(card, suStatus.crcErrorCount);
|
|
info->lineAttenuation = FST_RDL(card, suStatus.lineAttenuation);
|
|
info->lossOfSignal = FST_RDB(card, suStatus.lossOfSignal);
|
|
info->receiveRemoteAlarm =
|
|
FST_RDB(card, suStatus.receiveRemoteAlarm);
|
|
info->alarmIndicationSignal =
|
|
FST_RDB(card, suStatus.alarmIndicationSignal);
|
|
}
|
|
}
|
|
|
|
static int
|
|
fst_set_iface(struct fst_card_info *card, struct fst_port_info *port,
|
|
struct ifreq *ifr)
|
|
{
|
|
sync_serial_settings sync;
|
|
int i;
|
|
|
|
if (ifr->ifr_settings.size != sizeof (sync)) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (copy_from_user
|
|
(&sync, ifr->ifr_settings.ifs_ifsu.sync, sizeof (sync))) {
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (sync.loopback)
|
|
return -EINVAL;
|
|
|
|
i = port->index;
|
|
|
|
switch (ifr->ifr_settings.type) {
|
|
case IF_IFACE_V35:
|
|
FST_WRW(card, portConfig[i].lineInterface, V35);
|
|
port->hwif = V35;
|
|
break;
|
|
|
|
case IF_IFACE_V24:
|
|
FST_WRW(card, portConfig[i].lineInterface, V24);
|
|
port->hwif = V24;
|
|
break;
|
|
|
|
case IF_IFACE_X21:
|
|
FST_WRW(card, portConfig[i].lineInterface, X21);
|
|
port->hwif = X21;
|
|
break;
|
|
|
|
case IF_IFACE_X21D:
|
|
FST_WRW(card, portConfig[i].lineInterface, X21D);
|
|
port->hwif = X21D;
|
|
break;
|
|
|
|
case IF_IFACE_T1:
|
|
FST_WRW(card, portConfig[i].lineInterface, T1);
|
|
port->hwif = T1;
|
|
break;
|
|
|
|
case IF_IFACE_E1:
|
|
FST_WRW(card, portConfig[i].lineInterface, E1);
|
|
port->hwif = E1;
|
|
break;
|
|
|
|
case IF_IFACE_SYNC_SERIAL:
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (sync.clock_type) {
|
|
case CLOCK_EXT:
|
|
FST_WRB(card, portConfig[i].internalClock, EXTCLK);
|
|
break;
|
|
|
|
case CLOCK_INT:
|
|
FST_WRB(card, portConfig[i].internalClock, INTCLK);
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
FST_WRL(card, portConfig[i].lineSpeed, sync.clock_rate);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
fst_get_iface(struct fst_card_info *card, struct fst_port_info *port,
|
|
struct ifreq *ifr)
|
|
{
|
|
sync_serial_settings sync;
|
|
int i;
|
|
|
|
/* First check what line type is set, we'll default to reporting X.21
|
|
* if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be
|
|
* changed
|
|
*/
|
|
switch (port->hwif) {
|
|
case E1:
|
|
ifr->ifr_settings.type = IF_IFACE_E1;
|
|
break;
|
|
case T1:
|
|
ifr->ifr_settings.type = IF_IFACE_T1;
|
|
break;
|
|
case V35:
|
|
ifr->ifr_settings.type = IF_IFACE_V35;
|
|
break;
|
|
case V24:
|
|
ifr->ifr_settings.type = IF_IFACE_V24;
|
|
break;
|
|
case X21D:
|
|
ifr->ifr_settings.type = IF_IFACE_X21D;
|
|
break;
|
|
case X21:
|
|
default:
|
|
ifr->ifr_settings.type = IF_IFACE_X21;
|
|
break;
|
|
}
|
|
if (ifr->ifr_settings.size == 0) {
|
|
return 0; /* only type requested */
|
|
}
|
|
if (ifr->ifr_settings.size < sizeof (sync)) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
i = port->index;
|
|
memset(&sync, 0, sizeof(sync));
|
|
sync.clock_rate = FST_RDL(card, portConfig[i].lineSpeed);
|
|
/* Lucky card and linux use same encoding here */
|
|
sync.clock_type = FST_RDB(card, portConfig[i].internalClock) ==
|
|
INTCLK ? CLOCK_INT : CLOCK_EXT;
|
|
sync.loopback = 0;
|
|
|
|
if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &sync, sizeof (sync))) {
|
|
return -EFAULT;
|
|
}
|
|
|
|
ifr->ifr_settings.size = sizeof (sync);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
fst_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
|
|
{
|
|
struct fst_card_info *card;
|
|
struct fst_port_info *port;
|
|
struct fstioc_write wrthdr;
|
|
struct fstioc_info info;
|
|
unsigned long flags;
|
|
void *buf;
|
|
|
|
dbg(DBG_IOCTL, "ioctl: %x, %p\n", cmd, ifr->ifr_data);
|
|
|
|
port = dev_to_port(dev);
|
|
card = port->card;
|
|
|
|
if (!capable(CAP_NET_ADMIN))
|
|
return -EPERM;
|
|
|
|
switch (cmd) {
|
|
case FSTCPURESET:
|
|
fst_cpureset(card);
|
|
card->state = FST_RESET;
|
|
return 0;
|
|
|
|
case FSTCPURELEASE:
|
|
fst_cpurelease(card);
|
|
card->state = FST_STARTING;
|
|
return 0;
|
|
|
|
case FSTWRITE: /* Code write (download) */
|
|
|
|
/* First copy in the header with the length and offset of data
|
|
* to write
|
|
*/
|
|
if (ifr->ifr_data == NULL) {
|
|
return -EINVAL;
|
|
}
|
|
if (copy_from_user(&wrthdr, ifr->ifr_data,
|
|
sizeof (struct fstioc_write))) {
|
|
return -EFAULT;
|
|
}
|
|
|
|
/* Sanity check the parameters. We don't support partial writes
|
|
* when going over the top
|
|
*/
|
|
if (wrthdr.size > FST_MEMSIZE || wrthdr.offset > FST_MEMSIZE ||
|
|
wrthdr.size + wrthdr.offset > FST_MEMSIZE) {
|
|
return -ENXIO;
|
|
}
|
|
|
|
/* Now copy the data to the card. */
|
|
|
|
buf = memdup_user(ifr->ifr_data + sizeof(struct fstioc_write),
|
|
wrthdr.size);
|
|
if (IS_ERR(buf))
|
|
return PTR_ERR(buf);
|
|
|
|
memcpy_toio(card->mem + wrthdr.offset, buf, wrthdr.size);
|
|
kfree(buf);
|
|
|
|
/* Writes to the memory of a card in the reset state constitute
|
|
* a download
|
|
*/
|
|
if (card->state == FST_RESET) {
|
|
card->state = FST_DOWNLOAD;
|
|
}
|
|
return 0;
|
|
|
|
case FSTGETCONF:
|
|
|
|
/* If card has just been started check the shared memory config
|
|
* version and marker
|
|
*/
|
|
if (card->state == FST_STARTING) {
|
|
check_started_ok(card);
|
|
|
|
/* If everything checked out enable card interrupts */
|
|
if (card->state == FST_RUNNING) {
|
|
spin_lock_irqsave(&card->card_lock, flags);
|
|
fst_enable_intr(card);
|
|
FST_WRB(card, interruptHandshake, 0xEE);
|
|
spin_unlock_irqrestore(&card->card_lock, flags);
|
|
}
|
|
}
|
|
|
|
if (ifr->ifr_data == NULL) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
gather_conf_info(card, port, &info);
|
|
|
|
if (copy_to_user(ifr->ifr_data, &info, sizeof (info))) {
|
|
return -EFAULT;
|
|
}
|
|
return 0;
|
|
|
|
case FSTSETCONF:
|
|
|
|
/*
|
|
* Most of the settings have been moved to the generic ioctls
|
|
* this just covers debug and board ident now
|
|
*/
|
|
|
|
if (card->state != FST_RUNNING) {
|
|
pr_err("Attempt to configure card %d in non-running state (%d)\n",
|
|
card->card_no, card->state);
|
|
return -EIO;
|
|
}
|
|
if (copy_from_user(&info, ifr->ifr_data, sizeof (info))) {
|
|
return -EFAULT;
|
|
}
|
|
|
|
return set_conf_from_info(card, port, &info);
|
|
|
|
case SIOCWANDEV:
|
|
switch (ifr->ifr_settings.type) {
|
|
case IF_GET_IFACE:
|
|
return fst_get_iface(card, port, ifr);
|
|
|
|
case IF_IFACE_SYNC_SERIAL:
|
|
case IF_IFACE_V35:
|
|
case IF_IFACE_V24:
|
|
case IF_IFACE_X21:
|
|
case IF_IFACE_X21D:
|
|
case IF_IFACE_T1:
|
|
case IF_IFACE_E1:
|
|
return fst_set_iface(card, port, ifr);
|
|
|
|
case IF_PROTO_RAW:
|
|
port->mode = FST_RAW;
|
|
return 0;
|
|
|
|
case IF_GET_PROTO:
|
|
if (port->mode == FST_RAW) {
|
|
ifr->ifr_settings.type = IF_PROTO_RAW;
|
|
return 0;
|
|
}
|
|
return hdlc_ioctl(dev, ifr, cmd);
|
|
|
|
default:
|
|
port->mode = FST_GEN_HDLC;
|
|
dbg(DBG_IOCTL, "Passing this type to hdlc %x\n",
|
|
ifr->ifr_settings.type);
|
|
return hdlc_ioctl(dev, ifr, cmd);
|
|
}
|
|
|
|
default:
|
|
/* Not one of ours. Pass through to HDLC package */
|
|
return hdlc_ioctl(dev, ifr, cmd);
|
|
}
|
|
}
|
|
|
|
static void
|
|
fst_openport(struct fst_port_info *port)
|
|
{
|
|
int signals;
|
|
int txq_length;
|
|
|
|
/* Only init things if card is actually running. This allows open to
|
|
* succeed for downloads etc.
|
|
*/
|
|
if (port->card->state == FST_RUNNING) {
|
|
if (port->run) {
|
|
dbg(DBG_OPEN, "open: found port already running\n");
|
|
|
|
fst_issue_cmd(port, STOPPORT);
|
|
port->run = 0;
|
|
}
|
|
|
|
fst_rx_config(port);
|
|
fst_tx_config(port);
|
|
fst_op_raise(port, OPSTS_RTS | OPSTS_DTR);
|
|
|
|
fst_issue_cmd(port, STARTPORT);
|
|
port->run = 1;
|
|
|
|
signals = FST_RDL(port->card, v24DebouncedSts[port->index]);
|
|
if (signals & (((port->hwif == X21) || (port->hwif == X21D))
|
|
? IPSTS_INDICATE : IPSTS_DCD))
|
|
netif_carrier_on(port_to_dev(port));
|
|
else
|
|
netif_carrier_off(port_to_dev(port));
|
|
|
|
txq_length = port->txqe - port->txqs;
|
|
port->txqe = 0;
|
|
port->txqs = 0;
|
|
}
|
|
|
|
}
|
|
|
|
static void
|
|
fst_closeport(struct fst_port_info *port)
|
|
{
|
|
if (port->card->state == FST_RUNNING) {
|
|
if (port->run) {
|
|
port->run = 0;
|
|
fst_op_lower(port, OPSTS_RTS | OPSTS_DTR);
|
|
|
|
fst_issue_cmd(port, STOPPORT);
|
|
} else {
|
|
dbg(DBG_OPEN, "close: port not running\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
fst_open(struct net_device *dev)
|
|
{
|
|
int err;
|
|
struct fst_port_info *port;
|
|
|
|
port = dev_to_port(dev);
|
|
if (!try_module_get(THIS_MODULE))
|
|
return -EBUSY;
|
|
|
|
if (port->mode != FST_RAW) {
|
|
err = hdlc_open(dev);
|
|
if (err) {
|
|
module_put(THIS_MODULE);
|
|
return err;
|
|
}
|
|
}
|
|
|
|
fst_openport(port);
|
|
netif_wake_queue(dev);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
fst_close(struct net_device *dev)
|
|
{
|
|
struct fst_port_info *port;
|
|
struct fst_card_info *card;
|
|
unsigned char tx_dma_done;
|
|
unsigned char rx_dma_done;
|
|
|
|
port = dev_to_port(dev);
|
|
card = port->card;
|
|
|
|
tx_dma_done = inb(card->pci_conf + DMACSR1);
|
|
rx_dma_done = inb(card->pci_conf + DMACSR0);
|
|
dbg(DBG_OPEN,
|
|
"Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n",
|
|
card->dmatx_in_progress, tx_dma_done, card->dmarx_in_progress,
|
|
rx_dma_done);
|
|
|
|
netif_stop_queue(dev);
|
|
fst_closeport(dev_to_port(dev));
|
|
if (port->mode != FST_RAW) {
|
|
hdlc_close(dev);
|
|
}
|
|
module_put(THIS_MODULE);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
fst_attach(struct net_device *dev, unsigned short encoding, unsigned short parity)
|
|
{
|
|
/*
|
|
* Setting currently fixed in FarSync card so we check and forget
|
|
*/
|
|
if (encoding != ENCODING_NRZ || parity != PARITY_CRC16_PR1_CCITT)
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
fst_tx_timeout(struct net_device *dev)
|
|
{
|
|
struct fst_port_info *port;
|
|
struct fst_card_info *card;
|
|
|
|
port = dev_to_port(dev);
|
|
card = port->card;
|
|
dev->stats.tx_errors++;
|
|
dev->stats.tx_aborted_errors++;
|
|
dbg(DBG_ASS, "Tx timeout card %d port %d\n",
|
|
card->card_no, port->index);
|
|
fst_issue_cmd(port, ABORTTX);
|
|
|
|
dev->trans_start = jiffies;
|
|
netif_wake_queue(dev);
|
|
port->start = 0;
|
|
}
|
|
|
|
static netdev_tx_t
|
|
fst_start_xmit(struct sk_buff *skb, struct net_device *dev)
|
|
{
|
|
struct fst_card_info *card;
|
|
struct fst_port_info *port;
|
|
unsigned long flags;
|
|
int txq_length;
|
|
|
|
port = dev_to_port(dev);
|
|
card = port->card;
|
|
dbg(DBG_TX, "fst_start_xmit: length = %d\n", skb->len);
|
|
|
|
/* Drop packet with error if we don't have carrier */
|
|
if (!netif_carrier_ok(dev)) {
|
|
dev_kfree_skb(skb);
|
|
dev->stats.tx_errors++;
|
|
dev->stats.tx_carrier_errors++;
|
|
dbg(DBG_ASS,
|
|
"Tried to transmit but no carrier on card %d port %d\n",
|
|
card->card_no, port->index);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
/* Drop it if it's too big! MTU failure ? */
|
|
if (skb->len > LEN_TX_BUFFER) {
|
|
dbg(DBG_ASS, "Packet too large %d vs %d\n", skb->len,
|
|
LEN_TX_BUFFER);
|
|
dev_kfree_skb(skb);
|
|
dev->stats.tx_errors++;
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
/*
|
|
* We are always going to queue the packet
|
|
* so that the bottom half is the only place we tx from
|
|
* Check there is room in the port txq
|
|
*/
|
|
spin_lock_irqsave(&card->card_lock, flags);
|
|
if ((txq_length = port->txqe - port->txqs) < 0) {
|
|
/*
|
|
* This is the case where the next free has wrapped but the
|
|
* last used hasn't
|
|
*/
|
|
txq_length = txq_length + FST_TXQ_DEPTH;
|
|
}
|
|
spin_unlock_irqrestore(&card->card_lock, flags);
|
|
if (txq_length > fst_txq_high) {
|
|
/*
|
|
* We have got enough buffers in the pipeline. Ask the network
|
|
* layer to stop sending frames down
|
|
*/
|
|
netif_stop_queue(dev);
|
|
port->start = 1; /* I'm using this to signal stop sent up */
|
|
}
|
|
|
|
if (txq_length == FST_TXQ_DEPTH - 1) {
|
|
/*
|
|
* This shouldn't have happened but such is life
|
|
*/
|
|
dev_kfree_skb(skb);
|
|
dev->stats.tx_errors++;
|
|
dbg(DBG_ASS, "Tx queue overflow card %d port %d\n",
|
|
card->card_no, port->index);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
/*
|
|
* queue the buffer
|
|
*/
|
|
spin_lock_irqsave(&card->card_lock, flags);
|
|
port->txq[port->txqe] = skb;
|
|
port->txqe++;
|
|
if (port->txqe == FST_TXQ_DEPTH)
|
|
port->txqe = 0;
|
|
spin_unlock_irqrestore(&card->card_lock, flags);
|
|
|
|
/* Scehdule the bottom half which now does transmit processing */
|
|
fst_q_work_item(&fst_work_txq, card->card_no);
|
|
tasklet_schedule(&fst_tx_task);
|
|
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
/*
|
|
* Card setup having checked hardware resources.
|
|
* Should be pretty bizarre if we get an error here (kernel memory
|
|
* exhaustion is one possibility). If we do see a problem we report it
|
|
* via a printk and leave the corresponding interface and all that follow
|
|
* disabled.
|
|
*/
|
|
static char *type_strings[] = {
|
|
"no hardware", /* Should never be seen */
|
|
"FarSync T2P",
|
|
"FarSync T4P",
|
|
"FarSync T1U",
|
|
"FarSync T2U",
|
|
"FarSync T4U",
|
|
"FarSync TE1"
|
|
};
|
|
|
|
static int
|
|
fst_init_card(struct fst_card_info *card)
|
|
{
|
|
int i;
|
|
int err;
|
|
|
|
/* We're working on a number of ports based on the card ID. If the
|
|
* firmware detects something different later (should never happen)
|
|
* we'll have to revise it in some way then.
|
|
*/
|
|
for (i = 0; i < card->nports; i++) {
|
|
err = register_hdlc_device(card->ports[i].dev);
|
|
if (err < 0) {
|
|
pr_err("Cannot register HDLC device for port %d (errno %d)\n",
|
|
i, -err);
|
|
while (i--)
|
|
unregister_hdlc_device(card->ports[i].dev);
|
|
return err;
|
|
}
|
|
}
|
|
|
|
pr_info("%s-%s: %s IRQ%d, %d ports\n",
|
|
port_to_dev(&card->ports[0])->name,
|
|
port_to_dev(&card->ports[card->nports - 1])->name,
|
|
type_strings[card->type], card->irq, card->nports);
|
|
return 0;
|
|
}
|
|
|
|
static const struct net_device_ops fst_ops = {
|
|
.ndo_open = fst_open,
|
|
.ndo_stop = fst_close,
|
|
.ndo_change_mtu = hdlc_change_mtu,
|
|
.ndo_start_xmit = hdlc_start_xmit,
|
|
.ndo_do_ioctl = fst_ioctl,
|
|
.ndo_tx_timeout = fst_tx_timeout,
|
|
};
|
|
|
|
/*
|
|
* Initialise card when detected.
|
|
* Returns 0 to indicate success, or errno otherwise.
|
|
*/
|
|
static int
|
|
fst_add_one(struct pci_dev *pdev, const struct pci_device_id *ent)
|
|
{
|
|
static int no_of_cards_added = 0;
|
|
struct fst_card_info *card;
|
|
int err = 0;
|
|
int i;
|
|
|
|
printk_once(KERN_INFO
|
|
pr_fmt("FarSync WAN driver " FST_USER_VERSION
|
|
" (c) 2001-2004 FarSite Communications Ltd.\n"));
|
|
#if FST_DEBUG
|
|
dbg(DBG_ASS, "The value of debug mask is %x\n", fst_debug_mask);
|
|
#endif
|
|
/*
|
|
* We are going to be clever and allow certain cards not to be
|
|
* configured. An exclude list can be provided in /etc/modules.conf
|
|
*/
|
|
if (fst_excluded_cards != 0) {
|
|
/*
|
|
* There are cards to exclude
|
|
*
|
|
*/
|
|
for (i = 0; i < fst_excluded_cards; i++) {
|
|
if ((pdev->devfn) >> 3 == fst_excluded_list[i]) {
|
|
pr_info("FarSync PCI device %d not assigned\n",
|
|
(pdev->devfn) >> 3);
|
|
return -EBUSY;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Allocate driver private data */
|
|
card = kzalloc(sizeof(struct fst_card_info), GFP_KERNEL);
|
|
if (card == NULL)
|
|
return -ENOMEM;
|
|
|
|
/* Try to enable the device */
|
|
if ((err = pci_enable_device(pdev)) != 0) {
|
|
pr_err("Failed to enable card. Err %d\n", -err);
|
|
goto enable_fail;
|
|
}
|
|
|
|
if ((err = pci_request_regions(pdev, "FarSync")) !=0) {
|
|
pr_err("Failed to allocate regions. Err %d\n", -err);
|
|
goto regions_fail;
|
|
}
|
|
|
|
/* Get virtual addresses of memory regions */
|
|
card->pci_conf = pci_resource_start(pdev, 1);
|
|
card->phys_mem = pci_resource_start(pdev, 2);
|
|
card->phys_ctlmem = pci_resource_start(pdev, 3);
|
|
if ((card->mem = ioremap(card->phys_mem, FST_MEMSIZE)) == NULL) {
|
|
pr_err("Physical memory remap failed\n");
|
|
err = -ENODEV;
|
|
goto ioremap_physmem_fail;
|
|
}
|
|
if ((card->ctlmem = ioremap(card->phys_ctlmem, 0x10)) == NULL) {
|
|
pr_err("Control memory remap failed\n");
|
|
err = -ENODEV;
|
|
goto ioremap_ctlmem_fail;
|
|
}
|
|
dbg(DBG_PCI, "kernel mem %p, ctlmem %p\n", card->mem, card->ctlmem);
|
|
|
|
/* Register the interrupt handler */
|
|
if (request_irq(pdev->irq, fst_intr, IRQF_SHARED, FST_DEV_NAME, card)) {
|
|
pr_err("Unable to register interrupt %d\n", card->irq);
|
|
err = -ENODEV;
|
|
goto irq_fail;
|
|
}
|
|
|
|
/* Record info we need */
|
|
card->irq = pdev->irq;
|
|
card->type = ent->driver_data;
|
|
card->family = ((ent->driver_data == FST_TYPE_T2P) ||
|
|
(ent->driver_data == FST_TYPE_T4P))
|
|
? FST_FAMILY_TXP : FST_FAMILY_TXU;
|
|
if ((ent->driver_data == FST_TYPE_T1U) ||
|
|
(ent->driver_data == FST_TYPE_TE1))
|
|
card->nports = 1;
|
|
else
|
|
card->nports = ((ent->driver_data == FST_TYPE_T2P) ||
|
|
(ent->driver_data == FST_TYPE_T2U)) ? 2 : 4;
|
|
|
|
card->state = FST_UNINIT;
|
|
spin_lock_init ( &card->card_lock );
|
|
|
|
for ( i = 0 ; i < card->nports ; i++ ) {
|
|
struct net_device *dev = alloc_hdlcdev(&card->ports[i]);
|
|
hdlc_device *hdlc;
|
|
if (!dev) {
|
|
while (i--)
|
|
free_netdev(card->ports[i].dev);
|
|
pr_err("FarSync: out of memory\n");
|
|
err = -ENOMEM;
|
|
goto hdlcdev_fail;
|
|
}
|
|
card->ports[i].dev = dev;
|
|
card->ports[i].card = card;
|
|
card->ports[i].index = i;
|
|
card->ports[i].run = 0;
|
|
|
|
hdlc = dev_to_hdlc(dev);
|
|
|
|
/* Fill in the net device info */
|
|
/* Since this is a PCI setup this is purely
|
|
* informational. Give them the buffer addresses
|
|
* and basic card I/O.
|
|
*/
|
|
dev->mem_start = card->phys_mem
|
|
+ BUF_OFFSET ( txBuffer[i][0][0]);
|
|
dev->mem_end = card->phys_mem
|
|
+ BUF_OFFSET ( txBuffer[i][NUM_TX_BUFFER][0]);
|
|
dev->base_addr = card->pci_conf;
|
|
dev->irq = card->irq;
|
|
|
|
dev->netdev_ops = &fst_ops;
|
|
dev->tx_queue_len = FST_TX_QUEUE_LEN;
|
|
dev->watchdog_timeo = FST_TX_TIMEOUT;
|
|
hdlc->attach = fst_attach;
|
|
hdlc->xmit = fst_start_xmit;
|
|
}
|
|
|
|
card->device = pdev;
|
|
|
|
dbg(DBG_PCI, "type %d nports %d irq %d\n", card->type,
|
|
card->nports, card->irq);
|
|
dbg(DBG_PCI, "conf %04x mem %08x ctlmem %08x\n",
|
|
card->pci_conf, card->phys_mem, card->phys_ctlmem);
|
|
|
|
/* Reset the card's processor */
|
|
fst_cpureset(card);
|
|
card->state = FST_RESET;
|
|
|
|
/* Initialise DMA (if required) */
|
|
fst_init_dma(card);
|
|
|
|
/* Record driver data for later use */
|
|
pci_set_drvdata(pdev, card);
|
|
|
|
/* Remainder of card setup */
|
|
if (no_of_cards_added >= FST_MAX_CARDS) {
|
|
pr_err("FarSync: too many cards\n");
|
|
err = -ENOMEM;
|
|
goto card_array_fail;
|
|
}
|
|
fst_card_array[no_of_cards_added] = card;
|
|
card->card_no = no_of_cards_added++; /* Record instance and bump it */
|
|
err = fst_init_card(card);
|
|
if (err)
|
|
goto init_card_fail;
|
|
if (card->family == FST_FAMILY_TXU) {
|
|
/*
|
|
* Allocate a dma buffer for transmit and receives
|
|
*/
|
|
card->rx_dma_handle_host =
|
|
pci_alloc_consistent(card->device, FST_MAX_MTU,
|
|
&card->rx_dma_handle_card);
|
|
if (card->rx_dma_handle_host == NULL) {
|
|
pr_err("Could not allocate rx dma buffer\n");
|
|
err = -ENOMEM;
|
|
goto rx_dma_fail;
|
|
}
|
|
card->tx_dma_handle_host =
|
|
pci_alloc_consistent(card->device, FST_MAX_MTU,
|
|
&card->tx_dma_handle_card);
|
|
if (card->tx_dma_handle_host == NULL) {
|
|
pr_err("Could not allocate tx dma buffer\n");
|
|
err = -ENOMEM;
|
|
goto tx_dma_fail;
|
|
}
|
|
}
|
|
return 0; /* Success */
|
|
|
|
tx_dma_fail:
|
|
pci_free_consistent(card->device, FST_MAX_MTU,
|
|
card->rx_dma_handle_host,
|
|
card->rx_dma_handle_card);
|
|
rx_dma_fail:
|
|
fst_disable_intr(card);
|
|
for (i = 0 ; i < card->nports ; i++)
|
|
unregister_hdlc_device(card->ports[i].dev);
|
|
init_card_fail:
|
|
fst_card_array[card->card_no] = NULL;
|
|
card_array_fail:
|
|
for (i = 0 ; i < card->nports ; i++)
|
|
free_netdev(card->ports[i].dev);
|
|
hdlcdev_fail:
|
|
free_irq(card->irq, card);
|
|
irq_fail:
|
|
iounmap(card->ctlmem);
|
|
ioremap_ctlmem_fail:
|
|
iounmap(card->mem);
|
|
ioremap_physmem_fail:
|
|
pci_release_regions(pdev);
|
|
regions_fail:
|
|
pci_disable_device(pdev);
|
|
enable_fail:
|
|
kfree(card);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Cleanup and close down a card
|
|
*/
|
|
static void
|
|
fst_remove_one(struct pci_dev *pdev)
|
|
{
|
|
struct fst_card_info *card;
|
|
int i;
|
|
|
|
card = pci_get_drvdata(pdev);
|
|
|
|
for (i = 0; i < card->nports; i++) {
|
|
struct net_device *dev = port_to_dev(&card->ports[i]);
|
|
unregister_hdlc_device(dev);
|
|
}
|
|
|
|
fst_disable_intr(card);
|
|
free_irq(card->irq, card);
|
|
|
|
iounmap(card->ctlmem);
|
|
iounmap(card->mem);
|
|
pci_release_regions(pdev);
|
|
if (card->family == FST_FAMILY_TXU) {
|
|
/*
|
|
* Free dma buffers
|
|
*/
|
|
pci_free_consistent(card->device, FST_MAX_MTU,
|
|
card->rx_dma_handle_host,
|
|
card->rx_dma_handle_card);
|
|
pci_free_consistent(card->device, FST_MAX_MTU,
|
|
card->tx_dma_handle_host,
|
|
card->tx_dma_handle_card);
|
|
}
|
|
fst_card_array[card->card_no] = NULL;
|
|
}
|
|
|
|
static struct pci_driver fst_driver = {
|
|
.name = FST_NAME,
|
|
.id_table = fst_pci_dev_id,
|
|
.probe = fst_add_one,
|
|
.remove = fst_remove_one,
|
|
.suspend = NULL,
|
|
.resume = NULL,
|
|
};
|
|
|
|
static int __init
|
|
fst_init(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < FST_MAX_CARDS; i++)
|
|
fst_card_array[i] = NULL;
|
|
spin_lock_init(&fst_work_q_lock);
|
|
return pci_register_driver(&fst_driver);
|
|
}
|
|
|
|
static void __exit
|
|
fst_cleanup_module(void)
|
|
{
|
|
pr_info("FarSync WAN driver unloading\n");
|
|
pci_unregister_driver(&fst_driver);
|
|
}
|
|
|
|
module_init(fst_init);
|
|
module_exit(fst_cleanup_module);
|