mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-22 18:44:44 +08:00
c8c655c34e
* More phys_to_virt conversions * Improvement of AP management for VSIE (nested virtualization) ARM64: * Numerous fixes for the pathological lock inversion issue that plagued KVM/arm64 since... forever. * New framework allowing SMCCC-compliant hypercalls to be forwarded to userspace, hopefully paving the way for some more features being moved to VMMs rather than be implemented in the kernel. * Large rework of the timer code to allow a VM-wide offset to be applied to both virtual and physical counters as well as a per-timer, per-vcpu offset that complements the global one. This last part allows the NV timer code to be implemented on top. * A small set of fixes to make sure that we don't change anything affecting the EL1&0 translation regime just after having having taken an exception to EL2 until we have executed a DSB. This ensures that speculative walks started in EL1&0 have completed. * The usual selftest fixes and improvements. KVM x86 changes for 6.4: * Optimize CR0.WP toggling by avoiding an MMU reload when TDP is enabled, and by giving the guest control of CR0.WP when EPT is enabled on VMX (VMX-only because SVM doesn't support per-bit controls) * Add CR0/CR4 helpers to query single bits, and clean up related code where KVM was interpreting kvm_read_cr4_bits()'s "unsigned long" return as a bool * Move AMD_PSFD to cpufeatures.h and purge KVM's definition * Avoid unnecessary writes+flushes when the guest is only adding new PTEs * Overhaul .sync_page() and .invlpg() to utilize .sync_page()'s optimizations when emulating invalidations * Clean up the range-based flushing APIs * Revamp the TDP MMU's reaping of Accessed/Dirty bits to clear a single A/D bit using a LOCK AND instead of XCHG, and skip all of the "handle changed SPTE" overhead associated with writing the entire entry * Track the number of "tail" entries in a pte_list_desc to avoid having to walk (potentially) all descriptors during insertion and deletion, which gets quite expensive if the guest is spamming fork() * Disallow virtualizing legacy LBRs if architectural LBRs are available, the two are mutually exclusive in hardware * Disallow writes to immutable feature MSRs (notably PERF_CAPABILITIES) after KVM_RUN, similar to CPUID features * Overhaul the vmx_pmu_caps selftest to better validate PERF_CAPABILITIES * Apply PMU filters to emulated events and add test coverage to the pmu_event_filter selftest x86 AMD: * Add support for virtual NMIs * Fixes for edge cases related to virtual interrupts x86 Intel: * Don't advertise XTILE_CFG in KVM_GET_SUPPORTED_CPUID if XTILE_DATA is not being reported due to userspace not opting in via prctl() * Fix a bug in emulation of ENCLS in compatibility mode * Allow emulation of NOP and PAUSE for L2 * AMX selftests improvements * Misc cleanups MIPS: * Constify MIPS's internal callbacks (a leftover from the hardware enabling rework that landed in 6.3) Generic: * Drop unnecessary casts from "void *" throughout kvm_main.c * Tweak the layout of "struct kvm_mmu_memory_cache" to shrink the struct size by 8 bytes on 64-bit kernels by utilizing a padding hole Documentation: * Fix goof introduced by the conversion to rST -----BEGIN PGP SIGNATURE----- iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmRNExkUHHBib256aW5p QHJlZGhhdC5jb20ACgkQv/vSX3jHroNyjwf+MkzDael9y9AsOZoqhEZ5OsfQYJ32 Im5ZVYsPRU2K5TuoWql6meIihgclCj1iIU32qYHa2F1WYt2rZ72rJp+HoY8b+TaI WvF0pvNtqQyg3iEKUBKPA4xQ6mj7RpQBw86qqiCHmlfNt0zxluEGEPxH8xrWcfhC huDQ+NUOdU7fmJ3rqGitCvkUbCuZNkw3aNPR8dhU8RAWrwRzP2hBOmdxIeo81WWY XMEpJSijbGpXL9CvM0Jz9nOuMJwZwCCBGxg1vSQq0xTfLySNMxzvWZC2GFaBjucb j0UOQ7yE0drIZDVhd3sdNslubXXU6FcSEzacGQb9aigMUon3Tem9SHi7Kw== =S2Hq -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm Pull kvm updates from Paolo Bonzini: "s390: - More phys_to_virt conversions - Improvement of AP management for VSIE (nested virtualization) ARM64: - Numerous fixes for the pathological lock inversion issue that plagued KVM/arm64 since... forever. - New framework allowing SMCCC-compliant hypercalls to be forwarded to userspace, hopefully paving the way for some more features being moved to VMMs rather than be implemented in the kernel. - Large rework of the timer code to allow a VM-wide offset to be applied to both virtual and physical counters as well as a per-timer, per-vcpu offset that complements the global one. This last part allows the NV timer code to be implemented on top. - A small set of fixes to make sure that we don't change anything affecting the EL1&0 translation regime just after having having taken an exception to EL2 until we have executed a DSB. This ensures that speculative walks started in EL1&0 have completed. - The usual selftest fixes and improvements. x86: - Optimize CR0.WP toggling by avoiding an MMU reload when TDP is enabled, and by giving the guest control of CR0.WP when EPT is enabled on VMX (VMX-only because SVM doesn't support per-bit controls) - Add CR0/CR4 helpers to query single bits, and clean up related code where KVM was interpreting kvm_read_cr4_bits()'s "unsigned long" return as a bool - Move AMD_PSFD to cpufeatures.h and purge KVM's definition - Avoid unnecessary writes+flushes when the guest is only adding new PTEs - Overhaul .sync_page() and .invlpg() to utilize .sync_page()'s optimizations when emulating invalidations - Clean up the range-based flushing APIs - Revamp the TDP MMU's reaping of Accessed/Dirty bits to clear a single A/D bit using a LOCK AND instead of XCHG, and skip all of the "handle changed SPTE" overhead associated with writing the entire entry - Track the number of "tail" entries in a pte_list_desc to avoid having to walk (potentially) all descriptors during insertion and deletion, which gets quite expensive if the guest is spamming fork() - Disallow virtualizing legacy LBRs if architectural LBRs are available, the two are mutually exclusive in hardware - Disallow writes to immutable feature MSRs (notably PERF_CAPABILITIES) after KVM_RUN, similar to CPUID features - Overhaul the vmx_pmu_caps selftest to better validate PERF_CAPABILITIES - Apply PMU filters to emulated events and add test coverage to the pmu_event_filter selftest - AMD SVM: - Add support for virtual NMIs - Fixes for edge cases related to virtual interrupts - Intel AMX: - Don't advertise XTILE_CFG in KVM_GET_SUPPORTED_CPUID if XTILE_DATA is not being reported due to userspace not opting in via prctl() - Fix a bug in emulation of ENCLS in compatibility mode - Allow emulation of NOP and PAUSE for L2 - AMX selftests improvements - Misc cleanups MIPS: - Constify MIPS's internal callbacks (a leftover from the hardware enabling rework that landed in 6.3) Generic: - Drop unnecessary casts from "void *" throughout kvm_main.c - Tweak the layout of "struct kvm_mmu_memory_cache" to shrink the struct size by 8 bytes on 64-bit kernels by utilizing a padding hole Documentation: - Fix goof introduced by the conversion to rST" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (211 commits) KVM: s390: pci: fix virtual-physical confusion on module unload/load KVM: s390: vsie: clarifications on setting the APCB KVM: s390: interrupt: fix virtual-physical confusion for next alert GISA KVM: arm64: Have kvm_psci_vcpu_on() use WRITE_ONCE() to update mp_state KVM: arm64: Acquire mp_state_lock in kvm_arch_vcpu_ioctl_vcpu_init() KVM: selftests: Test the PMU event "Instructions retired" KVM: selftests: Copy full counter values from guest in PMU event filter test KVM: selftests: Use error codes to signal errors in PMU event filter test KVM: selftests: Print detailed info in PMU event filter asserts KVM: selftests: Add helpers for PMC asserts in PMU event filter test KVM: selftests: Add a common helper for the PMU event filter guest code KVM: selftests: Fix spelling mistake "perrmited" -> "permitted" KVM: arm64: vhe: Drop extra isb() on guest exit KVM: arm64: vhe: Synchronise with page table walker on MMU update KVM: arm64: pkvm: Document the side effects of kvm_flush_dcache_to_poc() KVM: arm64: nvhe: Synchronise with page table walker on TLBI KVM: arm64: Handle 32bit CNTPCTSS traps KVM: arm64: nvhe: Synchronise with page table walker on vcpu run KVM: arm64: vgic: Don't acquire its_lock before config_lock KVM: selftests: Add test to verify KVM's supported XCR0 ...
2553 lines
58 KiB
C
2553 lines
58 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
*
|
|
* Copyright IBM Corp. 2007
|
|
*
|
|
* Authors: Hollis Blanchard <hollisb@us.ibm.com>
|
|
* Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
|
|
*/
|
|
|
|
#include <linux/errno.h>
|
|
#include <linux/err.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/hrtimer.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/file.h>
|
|
#include <linux/module.h>
|
|
#include <linux/irqbypass.h>
|
|
#include <linux/kvm_irqfd.h>
|
|
#include <linux/of.h>
|
|
#include <asm/cputable.h>
|
|
#include <linux/uaccess.h>
|
|
#include <asm/kvm_ppc.h>
|
|
#include <asm/cputhreads.h>
|
|
#include <asm/irqflags.h>
|
|
#include <asm/iommu.h>
|
|
#include <asm/switch_to.h>
|
|
#include <asm/xive.h>
|
|
#ifdef CONFIG_PPC_PSERIES
|
|
#include <asm/hvcall.h>
|
|
#include <asm/plpar_wrappers.h>
|
|
#endif
|
|
#include <asm/ultravisor.h>
|
|
#include <asm/setup.h>
|
|
|
|
#include "timing.h"
|
|
#include "../mm/mmu_decl.h"
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include "trace.h"
|
|
|
|
struct kvmppc_ops *kvmppc_hv_ops;
|
|
EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
|
|
struct kvmppc_ops *kvmppc_pr_ops;
|
|
EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
|
|
|
|
|
|
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
|
|
{
|
|
return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
|
|
}
|
|
|
|
bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
|
|
{
|
|
return kvm_arch_vcpu_runnable(vcpu);
|
|
}
|
|
|
|
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Common checks before entering the guest world. Call with interrupts
|
|
* disabled.
|
|
*
|
|
* returns:
|
|
*
|
|
* == 1 if we're ready to go into guest state
|
|
* <= 0 if we need to go back to the host with return value
|
|
*/
|
|
int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
|
|
{
|
|
int r;
|
|
|
|
WARN_ON(irqs_disabled());
|
|
hard_irq_disable();
|
|
|
|
while (true) {
|
|
if (need_resched()) {
|
|
local_irq_enable();
|
|
cond_resched();
|
|
hard_irq_disable();
|
|
continue;
|
|
}
|
|
|
|
if (signal_pending(current)) {
|
|
kvmppc_account_exit(vcpu, SIGNAL_EXITS);
|
|
vcpu->run->exit_reason = KVM_EXIT_INTR;
|
|
r = -EINTR;
|
|
break;
|
|
}
|
|
|
|
vcpu->mode = IN_GUEST_MODE;
|
|
|
|
/*
|
|
* Reading vcpu->requests must happen after setting vcpu->mode,
|
|
* so we don't miss a request because the requester sees
|
|
* OUTSIDE_GUEST_MODE and assumes we'll be checking requests
|
|
* before next entering the guest (and thus doesn't IPI).
|
|
* This also orders the write to mode from any reads
|
|
* to the page tables done while the VCPU is running.
|
|
* Please see the comment in kvm_flush_remote_tlbs.
|
|
*/
|
|
smp_mb();
|
|
|
|
if (kvm_request_pending(vcpu)) {
|
|
/* Make sure we process requests preemptable */
|
|
local_irq_enable();
|
|
trace_kvm_check_requests(vcpu);
|
|
r = kvmppc_core_check_requests(vcpu);
|
|
hard_irq_disable();
|
|
if (r > 0)
|
|
continue;
|
|
break;
|
|
}
|
|
|
|
if (kvmppc_core_prepare_to_enter(vcpu)) {
|
|
/* interrupts got enabled in between, so we
|
|
are back at square 1 */
|
|
continue;
|
|
}
|
|
|
|
guest_enter_irqoff();
|
|
return 1;
|
|
}
|
|
|
|
/* return to host */
|
|
local_irq_enable();
|
|
return r;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
|
|
|
|
#if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
|
|
static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
|
|
int i;
|
|
|
|
shared->sprg0 = swab64(shared->sprg0);
|
|
shared->sprg1 = swab64(shared->sprg1);
|
|
shared->sprg2 = swab64(shared->sprg2);
|
|
shared->sprg3 = swab64(shared->sprg3);
|
|
shared->srr0 = swab64(shared->srr0);
|
|
shared->srr1 = swab64(shared->srr1);
|
|
shared->dar = swab64(shared->dar);
|
|
shared->msr = swab64(shared->msr);
|
|
shared->dsisr = swab32(shared->dsisr);
|
|
shared->int_pending = swab32(shared->int_pending);
|
|
for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
|
|
shared->sr[i] = swab32(shared->sr[i]);
|
|
}
|
|
#endif
|
|
|
|
int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
|
|
{
|
|
int nr = kvmppc_get_gpr(vcpu, 11);
|
|
int r;
|
|
unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
|
|
unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
|
|
unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
|
|
unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
|
|
unsigned long r2 = 0;
|
|
|
|
if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
|
|
/* 32 bit mode */
|
|
param1 &= 0xffffffff;
|
|
param2 &= 0xffffffff;
|
|
param3 &= 0xffffffff;
|
|
param4 &= 0xffffffff;
|
|
}
|
|
|
|
switch (nr) {
|
|
case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
|
|
{
|
|
#if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
|
|
/* Book3S can be little endian, find it out here */
|
|
int shared_big_endian = true;
|
|
if (vcpu->arch.intr_msr & MSR_LE)
|
|
shared_big_endian = false;
|
|
if (shared_big_endian != vcpu->arch.shared_big_endian)
|
|
kvmppc_swab_shared(vcpu);
|
|
vcpu->arch.shared_big_endian = shared_big_endian;
|
|
#endif
|
|
|
|
if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
|
|
/*
|
|
* Older versions of the Linux magic page code had
|
|
* a bug where they would map their trampoline code
|
|
* NX. If that's the case, remove !PR NX capability.
|
|
*/
|
|
vcpu->arch.disable_kernel_nx = true;
|
|
kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
|
|
}
|
|
|
|
vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
|
|
vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
|
|
|
|
#ifdef CONFIG_PPC_64K_PAGES
|
|
/*
|
|
* Make sure our 4k magic page is in the same window of a 64k
|
|
* page within the guest and within the host's page.
|
|
*/
|
|
if ((vcpu->arch.magic_page_pa & 0xf000) !=
|
|
((ulong)vcpu->arch.shared & 0xf000)) {
|
|
void *old_shared = vcpu->arch.shared;
|
|
ulong shared = (ulong)vcpu->arch.shared;
|
|
void *new_shared;
|
|
|
|
shared &= PAGE_MASK;
|
|
shared |= vcpu->arch.magic_page_pa & 0xf000;
|
|
new_shared = (void*)shared;
|
|
memcpy(new_shared, old_shared, 0x1000);
|
|
vcpu->arch.shared = new_shared;
|
|
}
|
|
#endif
|
|
|
|
r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
|
|
|
|
r = EV_SUCCESS;
|
|
break;
|
|
}
|
|
case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
|
|
r = EV_SUCCESS;
|
|
#if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
|
|
r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
|
|
#endif
|
|
|
|
/* Second return value is in r4 */
|
|
break;
|
|
case EV_HCALL_TOKEN(EV_IDLE):
|
|
r = EV_SUCCESS;
|
|
kvm_vcpu_halt(vcpu);
|
|
break;
|
|
default:
|
|
r = EV_UNIMPLEMENTED;
|
|
break;
|
|
}
|
|
|
|
kvmppc_set_gpr(vcpu, 4, r2);
|
|
|
|
return r;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
|
|
|
|
int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
|
|
{
|
|
int r = false;
|
|
|
|
/* We have to know what CPU to virtualize */
|
|
if (!vcpu->arch.pvr)
|
|
goto out;
|
|
|
|
/* PAPR only works with book3s_64 */
|
|
if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
|
|
goto out;
|
|
|
|
/* HV KVM can only do PAPR mode for now */
|
|
if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
|
|
goto out;
|
|
|
|
#ifdef CONFIG_KVM_BOOKE_HV
|
|
if (!cpu_has_feature(CPU_FTR_EMB_HV))
|
|
goto out;
|
|
#endif
|
|
|
|
r = true;
|
|
|
|
out:
|
|
vcpu->arch.sane = r;
|
|
return r ? 0 : -EINVAL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
|
|
|
|
int kvmppc_emulate_mmio(struct kvm_vcpu *vcpu)
|
|
{
|
|
enum emulation_result er;
|
|
int r;
|
|
|
|
er = kvmppc_emulate_loadstore(vcpu);
|
|
switch (er) {
|
|
case EMULATE_DONE:
|
|
/* Future optimization: only reload non-volatiles if they were
|
|
* actually modified. */
|
|
r = RESUME_GUEST_NV;
|
|
break;
|
|
case EMULATE_AGAIN:
|
|
r = RESUME_GUEST;
|
|
break;
|
|
case EMULATE_DO_MMIO:
|
|
vcpu->run->exit_reason = KVM_EXIT_MMIO;
|
|
/* We must reload nonvolatiles because "update" load/store
|
|
* instructions modify register state. */
|
|
/* Future optimization: only reload non-volatiles if they were
|
|
* actually modified. */
|
|
r = RESUME_HOST_NV;
|
|
break;
|
|
case EMULATE_FAIL:
|
|
{
|
|
ppc_inst_t last_inst;
|
|
|
|
kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
|
|
kvm_debug_ratelimited("Guest access to device memory using unsupported instruction (opcode: %#08x)\n",
|
|
ppc_inst_val(last_inst));
|
|
|
|
/*
|
|
* Injecting a Data Storage here is a bit more
|
|
* accurate since the instruction that caused the
|
|
* access could still be a valid one.
|
|
*/
|
|
if (!IS_ENABLED(CONFIG_BOOKE)) {
|
|
ulong dsisr = DSISR_BADACCESS;
|
|
|
|
if (vcpu->mmio_is_write)
|
|
dsisr |= DSISR_ISSTORE;
|
|
|
|
kvmppc_core_queue_data_storage(vcpu,
|
|
kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
|
|
vcpu->arch.vaddr_accessed, dsisr);
|
|
} else {
|
|
/*
|
|
* BookE does not send a SIGBUS on a bad
|
|
* fault, so use a Program interrupt instead
|
|
* to avoid a fault loop.
|
|
*/
|
|
kvmppc_core_queue_program(vcpu, 0);
|
|
}
|
|
|
|
r = RESUME_GUEST;
|
|
break;
|
|
}
|
|
default:
|
|
WARN_ON(1);
|
|
r = RESUME_GUEST;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
|
|
|
|
int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
|
|
bool data)
|
|
{
|
|
ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
|
|
struct kvmppc_pte pte;
|
|
int r = -EINVAL;
|
|
|
|
vcpu->stat.st++;
|
|
|
|
if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr)
|
|
r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr,
|
|
size);
|
|
|
|
if ((!r) || (r == -EAGAIN))
|
|
return r;
|
|
|
|
r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
|
|
XLATE_WRITE, &pte);
|
|
if (r < 0)
|
|
return r;
|
|
|
|
*eaddr = pte.raddr;
|
|
|
|
if (!pte.may_write)
|
|
return -EPERM;
|
|
|
|
/* Magic page override */
|
|
if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
|
|
((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
|
|
!(kvmppc_get_msr(vcpu) & MSR_PR)) {
|
|
void *magic = vcpu->arch.shared;
|
|
magic += pte.eaddr & 0xfff;
|
|
memcpy(magic, ptr, size);
|
|
return EMULATE_DONE;
|
|
}
|
|
|
|
if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
|
|
return EMULATE_DO_MMIO;
|
|
|
|
return EMULATE_DONE;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvmppc_st);
|
|
|
|
int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
|
|
bool data)
|
|
{
|
|
ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
|
|
struct kvmppc_pte pte;
|
|
int rc = -EINVAL;
|
|
|
|
vcpu->stat.ld++;
|
|
|
|
if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr)
|
|
rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr,
|
|
size);
|
|
|
|
if ((!rc) || (rc == -EAGAIN))
|
|
return rc;
|
|
|
|
rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
|
|
XLATE_READ, &pte);
|
|
if (rc)
|
|
return rc;
|
|
|
|
*eaddr = pte.raddr;
|
|
|
|
if (!pte.may_read)
|
|
return -EPERM;
|
|
|
|
if (!data && !pte.may_execute)
|
|
return -ENOEXEC;
|
|
|
|
/* Magic page override */
|
|
if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
|
|
((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
|
|
!(kvmppc_get_msr(vcpu) & MSR_PR)) {
|
|
void *magic = vcpu->arch.shared;
|
|
magic += pte.eaddr & 0xfff;
|
|
memcpy(ptr, magic, size);
|
|
return EMULATE_DONE;
|
|
}
|
|
|
|
kvm_vcpu_srcu_read_lock(vcpu);
|
|
rc = kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size);
|
|
kvm_vcpu_srcu_read_unlock(vcpu);
|
|
if (rc)
|
|
return EMULATE_DO_MMIO;
|
|
|
|
return EMULATE_DONE;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvmppc_ld);
|
|
|
|
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
|
|
{
|
|
struct kvmppc_ops *kvm_ops = NULL;
|
|
int r;
|
|
|
|
/*
|
|
* if we have both HV and PR enabled, default is HV
|
|
*/
|
|
if (type == 0) {
|
|
if (kvmppc_hv_ops)
|
|
kvm_ops = kvmppc_hv_ops;
|
|
else
|
|
kvm_ops = kvmppc_pr_ops;
|
|
if (!kvm_ops)
|
|
goto err_out;
|
|
} else if (type == KVM_VM_PPC_HV) {
|
|
if (!kvmppc_hv_ops)
|
|
goto err_out;
|
|
kvm_ops = kvmppc_hv_ops;
|
|
} else if (type == KVM_VM_PPC_PR) {
|
|
if (!kvmppc_pr_ops)
|
|
goto err_out;
|
|
kvm_ops = kvmppc_pr_ops;
|
|
} else
|
|
goto err_out;
|
|
|
|
if (!try_module_get(kvm_ops->owner))
|
|
return -ENOENT;
|
|
|
|
kvm->arch.kvm_ops = kvm_ops;
|
|
r = kvmppc_core_init_vm(kvm);
|
|
if (r)
|
|
module_put(kvm_ops->owner);
|
|
return r;
|
|
err_out:
|
|
return -EINVAL;
|
|
}
|
|
|
|
void kvm_arch_destroy_vm(struct kvm *kvm)
|
|
{
|
|
#ifdef CONFIG_KVM_XICS
|
|
/*
|
|
* We call kick_all_cpus_sync() to ensure that all
|
|
* CPUs have executed any pending IPIs before we
|
|
* continue and free VCPUs structures below.
|
|
*/
|
|
if (is_kvmppc_hv_enabled(kvm))
|
|
kick_all_cpus_sync();
|
|
#endif
|
|
|
|
kvm_destroy_vcpus(kvm);
|
|
|
|
mutex_lock(&kvm->lock);
|
|
|
|
kvmppc_core_destroy_vm(kvm);
|
|
|
|
mutex_unlock(&kvm->lock);
|
|
|
|
/* drop the module reference */
|
|
module_put(kvm->arch.kvm_ops->owner);
|
|
}
|
|
|
|
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
|
|
{
|
|
int r;
|
|
/* Assume we're using HV mode when the HV module is loaded */
|
|
int hv_enabled = kvmppc_hv_ops ? 1 : 0;
|
|
|
|
if (kvm) {
|
|
/*
|
|
* Hooray - we know which VM type we're running on. Depend on
|
|
* that rather than the guess above.
|
|
*/
|
|
hv_enabled = is_kvmppc_hv_enabled(kvm);
|
|
}
|
|
|
|
switch (ext) {
|
|
#ifdef CONFIG_BOOKE
|
|
case KVM_CAP_PPC_BOOKE_SREGS:
|
|
case KVM_CAP_PPC_BOOKE_WATCHDOG:
|
|
case KVM_CAP_PPC_EPR:
|
|
#else
|
|
case KVM_CAP_PPC_SEGSTATE:
|
|
case KVM_CAP_PPC_HIOR:
|
|
case KVM_CAP_PPC_PAPR:
|
|
#endif
|
|
case KVM_CAP_PPC_UNSET_IRQ:
|
|
case KVM_CAP_PPC_IRQ_LEVEL:
|
|
case KVM_CAP_ENABLE_CAP:
|
|
case KVM_CAP_ONE_REG:
|
|
case KVM_CAP_IOEVENTFD:
|
|
case KVM_CAP_DEVICE_CTRL:
|
|
case KVM_CAP_IMMEDIATE_EXIT:
|
|
case KVM_CAP_SET_GUEST_DEBUG:
|
|
r = 1;
|
|
break;
|
|
case KVM_CAP_PPC_GUEST_DEBUG_SSTEP:
|
|
case KVM_CAP_PPC_PAIRED_SINGLES:
|
|
case KVM_CAP_PPC_OSI:
|
|
case KVM_CAP_PPC_GET_PVINFO:
|
|
#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
|
|
case KVM_CAP_SW_TLB:
|
|
#endif
|
|
/* We support this only for PR */
|
|
r = !hv_enabled;
|
|
break;
|
|
#ifdef CONFIG_KVM_MPIC
|
|
case KVM_CAP_IRQ_MPIC:
|
|
r = 1;
|
|
break;
|
|
#endif
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
case KVM_CAP_SPAPR_TCE:
|
|
case KVM_CAP_SPAPR_TCE_64:
|
|
r = 1;
|
|
break;
|
|
case KVM_CAP_SPAPR_TCE_VFIO:
|
|
r = !!cpu_has_feature(CPU_FTR_HVMODE);
|
|
break;
|
|
case KVM_CAP_PPC_RTAS:
|
|
case KVM_CAP_PPC_FIXUP_HCALL:
|
|
case KVM_CAP_PPC_ENABLE_HCALL:
|
|
#ifdef CONFIG_KVM_XICS
|
|
case KVM_CAP_IRQ_XICS:
|
|
#endif
|
|
case KVM_CAP_PPC_GET_CPU_CHAR:
|
|
r = 1;
|
|
break;
|
|
#ifdef CONFIG_KVM_XIVE
|
|
case KVM_CAP_PPC_IRQ_XIVE:
|
|
/*
|
|
* We need XIVE to be enabled on the platform (implies
|
|
* a POWER9 processor) and the PowerNV platform, as
|
|
* nested is not yet supported.
|
|
*/
|
|
r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE) &&
|
|
kvmppc_xive_native_supported();
|
|
break;
|
|
#endif
|
|
|
|
#ifdef CONFIG_HAVE_KVM_IRQFD
|
|
case KVM_CAP_IRQFD_RESAMPLE:
|
|
r = !xive_enabled();
|
|
break;
|
|
#endif
|
|
|
|
case KVM_CAP_PPC_ALLOC_HTAB:
|
|
r = hv_enabled;
|
|
break;
|
|
#endif /* CONFIG_PPC_BOOK3S_64 */
|
|
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
|
|
case KVM_CAP_PPC_SMT:
|
|
r = 0;
|
|
if (kvm) {
|
|
if (kvm->arch.emul_smt_mode > 1)
|
|
r = kvm->arch.emul_smt_mode;
|
|
else
|
|
r = kvm->arch.smt_mode;
|
|
} else if (hv_enabled) {
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300))
|
|
r = 1;
|
|
else
|
|
r = threads_per_subcore;
|
|
}
|
|
break;
|
|
case KVM_CAP_PPC_SMT_POSSIBLE:
|
|
r = 1;
|
|
if (hv_enabled) {
|
|
if (!cpu_has_feature(CPU_FTR_ARCH_300))
|
|
r = ((threads_per_subcore << 1) - 1);
|
|
else
|
|
/* P9 can emulate dbells, so allow any mode */
|
|
r = 8 | 4 | 2 | 1;
|
|
}
|
|
break;
|
|
case KVM_CAP_PPC_RMA:
|
|
r = 0;
|
|
break;
|
|
case KVM_CAP_PPC_HWRNG:
|
|
r = kvmppc_hwrng_present();
|
|
break;
|
|
case KVM_CAP_PPC_MMU_RADIX:
|
|
r = !!(hv_enabled && radix_enabled());
|
|
break;
|
|
case KVM_CAP_PPC_MMU_HASH_V3:
|
|
r = !!(hv_enabled && kvmppc_hv_ops->hash_v3_possible &&
|
|
kvmppc_hv_ops->hash_v3_possible());
|
|
break;
|
|
case KVM_CAP_PPC_NESTED_HV:
|
|
r = !!(hv_enabled && kvmppc_hv_ops->enable_nested &&
|
|
!kvmppc_hv_ops->enable_nested(NULL));
|
|
break;
|
|
#endif
|
|
case KVM_CAP_SYNC_MMU:
|
|
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
|
|
r = hv_enabled;
|
|
#elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
|
|
r = 1;
|
|
#else
|
|
r = 0;
|
|
#endif
|
|
break;
|
|
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
|
|
case KVM_CAP_PPC_HTAB_FD:
|
|
r = hv_enabled;
|
|
break;
|
|
#endif
|
|
case KVM_CAP_NR_VCPUS:
|
|
/*
|
|
* Recommending a number of CPUs is somewhat arbitrary; we
|
|
* return the number of present CPUs for -HV (since a host
|
|
* will have secondary threads "offline"), and for other KVM
|
|
* implementations just count online CPUs.
|
|
*/
|
|
if (hv_enabled)
|
|
r = min_t(unsigned int, num_present_cpus(), KVM_MAX_VCPUS);
|
|
else
|
|
r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
|
|
break;
|
|
case KVM_CAP_MAX_VCPUS:
|
|
r = KVM_MAX_VCPUS;
|
|
break;
|
|
case KVM_CAP_MAX_VCPU_ID:
|
|
r = KVM_MAX_VCPU_IDS;
|
|
break;
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
case KVM_CAP_PPC_GET_SMMU_INFO:
|
|
r = 1;
|
|
break;
|
|
case KVM_CAP_SPAPR_MULTITCE:
|
|
r = 1;
|
|
break;
|
|
case KVM_CAP_SPAPR_RESIZE_HPT:
|
|
r = !!hv_enabled;
|
|
break;
|
|
#endif
|
|
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
|
|
case KVM_CAP_PPC_FWNMI:
|
|
r = hv_enabled;
|
|
break;
|
|
#endif
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
case KVM_CAP_PPC_HTM:
|
|
r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
|
|
(hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
|
|
break;
|
|
#endif
|
|
#if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
|
|
case KVM_CAP_PPC_SECURE_GUEST:
|
|
r = hv_enabled && kvmppc_hv_ops->enable_svm &&
|
|
!kvmppc_hv_ops->enable_svm(NULL);
|
|
break;
|
|
case KVM_CAP_PPC_DAWR1:
|
|
r = !!(hv_enabled && kvmppc_hv_ops->enable_dawr1 &&
|
|
!kvmppc_hv_ops->enable_dawr1(NULL));
|
|
break;
|
|
case KVM_CAP_PPC_RPT_INVALIDATE:
|
|
r = 1;
|
|
break;
|
|
#endif
|
|
case KVM_CAP_PPC_AIL_MODE_3:
|
|
r = 0;
|
|
/*
|
|
* KVM PR, POWER7, and some POWER9s don't support AIL=3 mode.
|
|
* The POWER9s can support it if the guest runs in hash mode,
|
|
* but QEMU doesn't necessarily query the capability in time.
|
|
*/
|
|
if (hv_enabled) {
|
|
if (kvmhv_on_pseries()) {
|
|
if (pseries_reloc_on_exception())
|
|
r = 1;
|
|
} else if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
|
|
!cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) {
|
|
r = 1;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
r = 0;
|
|
break;
|
|
}
|
|
return r;
|
|
|
|
}
|
|
|
|
long kvm_arch_dev_ioctl(struct file *filp,
|
|
unsigned int ioctl, unsigned long arg)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
|
|
void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
|
|
{
|
|
kvmppc_core_free_memslot(kvm, slot);
|
|
}
|
|
|
|
int kvm_arch_prepare_memory_region(struct kvm *kvm,
|
|
const struct kvm_memory_slot *old,
|
|
struct kvm_memory_slot *new,
|
|
enum kvm_mr_change change)
|
|
{
|
|
return kvmppc_core_prepare_memory_region(kvm, old, new, change);
|
|
}
|
|
|
|
void kvm_arch_commit_memory_region(struct kvm *kvm,
|
|
struct kvm_memory_slot *old,
|
|
const struct kvm_memory_slot *new,
|
|
enum kvm_mr_change change)
|
|
{
|
|
kvmppc_core_commit_memory_region(kvm, old, new, change);
|
|
}
|
|
|
|
void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
|
|
struct kvm_memory_slot *slot)
|
|
{
|
|
kvmppc_core_flush_memslot(kvm, slot);
|
|
}
|
|
|
|
int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
|
|
{
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
|
|
kvmppc_decrementer_func(vcpu);
|
|
|
|
return HRTIMER_NORESTART;
|
|
}
|
|
|
|
int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
|
|
{
|
|
int err;
|
|
|
|
hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
|
|
vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
|
|
|
|
#ifdef CONFIG_KVM_EXIT_TIMING
|
|
mutex_init(&vcpu->arch.exit_timing_lock);
|
|
#endif
|
|
err = kvmppc_subarch_vcpu_init(vcpu);
|
|
if (err)
|
|
return err;
|
|
|
|
err = kvmppc_core_vcpu_create(vcpu);
|
|
if (err)
|
|
goto out_vcpu_uninit;
|
|
|
|
rcuwait_init(&vcpu->arch.wait);
|
|
vcpu->arch.waitp = &vcpu->arch.wait;
|
|
return 0;
|
|
|
|
out_vcpu_uninit:
|
|
kvmppc_subarch_vcpu_uninit(vcpu);
|
|
return err;
|
|
}
|
|
|
|
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
|
|
{
|
|
}
|
|
|
|
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
|
|
{
|
|
/* Make sure we're not using the vcpu anymore */
|
|
hrtimer_cancel(&vcpu->arch.dec_timer);
|
|
|
|
switch (vcpu->arch.irq_type) {
|
|
case KVMPPC_IRQ_MPIC:
|
|
kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
|
|
break;
|
|
case KVMPPC_IRQ_XICS:
|
|
if (xics_on_xive())
|
|
kvmppc_xive_cleanup_vcpu(vcpu);
|
|
else
|
|
kvmppc_xics_free_icp(vcpu);
|
|
break;
|
|
case KVMPPC_IRQ_XIVE:
|
|
kvmppc_xive_native_cleanup_vcpu(vcpu);
|
|
break;
|
|
}
|
|
|
|
kvmppc_core_vcpu_free(vcpu);
|
|
|
|
kvmppc_subarch_vcpu_uninit(vcpu);
|
|
}
|
|
|
|
int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
|
|
{
|
|
return kvmppc_core_pending_dec(vcpu);
|
|
}
|
|
|
|
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
|
|
{
|
|
#ifdef CONFIG_BOOKE
|
|
/*
|
|
* vrsave (formerly usprg0) isn't used by Linux, but may
|
|
* be used by the guest.
|
|
*
|
|
* On non-booke this is associated with Altivec and
|
|
* is handled by code in book3s.c.
|
|
*/
|
|
mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
|
|
#endif
|
|
kvmppc_core_vcpu_load(vcpu, cpu);
|
|
}
|
|
|
|
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvmppc_core_vcpu_put(vcpu);
|
|
#ifdef CONFIG_BOOKE
|
|
vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* irq_bypass_add_producer and irq_bypass_del_producer are only
|
|
* useful if the architecture supports PCI passthrough.
|
|
* irq_bypass_stop and irq_bypass_start are not needed and so
|
|
* kvm_ops are not defined for them.
|
|
*/
|
|
bool kvm_arch_has_irq_bypass(void)
|
|
{
|
|
return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
|
|
(kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
|
|
}
|
|
|
|
int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
|
|
struct irq_bypass_producer *prod)
|
|
{
|
|
struct kvm_kernel_irqfd *irqfd =
|
|
container_of(cons, struct kvm_kernel_irqfd, consumer);
|
|
struct kvm *kvm = irqfd->kvm;
|
|
|
|
if (kvm->arch.kvm_ops->irq_bypass_add_producer)
|
|
return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
|
|
struct irq_bypass_producer *prod)
|
|
{
|
|
struct kvm_kernel_irqfd *irqfd =
|
|
container_of(cons, struct kvm_kernel_irqfd, consumer);
|
|
struct kvm *kvm = irqfd->kvm;
|
|
|
|
if (kvm->arch.kvm_ops->irq_bypass_del_producer)
|
|
kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
|
|
}
|
|
|
|
#ifdef CONFIG_VSX
|
|
static inline int kvmppc_get_vsr_dword_offset(int index)
|
|
{
|
|
int offset;
|
|
|
|
if ((index != 0) && (index != 1))
|
|
return -1;
|
|
|
|
#ifdef __BIG_ENDIAN
|
|
offset = index;
|
|
#else
|
|
offset = 1 - index;
|
|
#endif
|
|
|
|
return offset;
|
|
}
|
|
|
|
static inline int kvmppc_get_vsr_word_offset(int index)
|
|
{
|
|
int offset;
|
|
|
|
if ((index > 3) || (index < 0))
|
|
return -1;
|
|
|
|
#ifdef __BIG_ENDIAN
|
|
offset = index;
|
|
#else
|
|
offset = 3 - index;
|
|
#endif
|
|
return offset;
|
|
}
|
|
|
|
static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
|
|
u64 gpr)
|
|
{
|
|
union kvmppc_one_reg val;
|
|
int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
|
|
int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
|
|
|
|
if (offset == -1)
|
|
return;
|
|
|
|
if (index >= 32) {
|
|
val.vval = VCPU_VSX_VR(vcpu, index - 32);
|
|
val.vsxval[offset] = gpr;
|
|
VCPU_VSX_VR(vcpu, index - 32) = val.vval;
|
|
} else {
|
|
VCPU_VSX_FPR(vcpu, index, offset) = gpr;
|
|
}
|
|
}
|
|
|
|
static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
|
|
u64 gpr)
|
|
{
|
|
union kvmppc_one_reg val;
|
|
int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
|
|
|
|
if (index >= 32) {
|
|
val.vval = VCPU_VSX_VR(vcpu, index - 32);
|
|
val.vsxval[0] = gpr;
|
|
val.vsxval[1] = gpr;
|
|
VCPU_VSX_VR(vcpu, index - 32) = val.vval;
|
|
} else {
|
|
VCPU_VSX_FPR(vcpu, index, 0) = gpr;
|
|
VCPU_VSX_FPR(vcpu, index, 1) = gpr;
|
|
}
|
|
}
|
|
|
|
static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu,
|
|
u32 gpr)
|
|
{
|
|
union kvmppc_one_reg val;
|
|
int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
|
|
|
|
if (index >= 32) {
|
|
val.vsx32val[0] = gpr;
|
|
val.vsx32val[1] = gpr;
|
|
val.vsx32val[2] = gpr;
|
|
val.vsx32val[3] = gpr;
|
|
VCPU_VSX_VR(vcpu, index - 32) = val.vval;
|
|
} else {
|
|
val.vsx32val[0] = gpr;
|
|
val.vsx32val[1] = gpr;
|
|
VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0];
|
|
VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0];
|
|
}
|
|
}
|
|
|
|
static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
|
|
u32 gpr32)
|
|
{
|
|
union kvmppc_one_reg val;
|
|
int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
|
|
int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
|
|
int dword_offset, word_offset;
|
|
|
|
if (offset == -1)
|
|
return;
|
|
|
|
if (index >= 32) {
|
|
val.vval = VCPU_VSX_VR(vcpu, index - 32);
|
|
val.vsx32val[offset] = gpr32;
|
|
VCPU_VSX_VR(vcpu, index - 32) = val.vval;
|
|
} else {
|
|
dword_offset = offset / 2;
|
|
word_offset = offset % 2;
|
|
val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
|
|
val.vsx32val[word_offset] = gpr32;
|
|
VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
|
|
}
|
|
}
|
|
#endif /* CONFIG_VSX */
|
|
|
|
#ifdef CONFIG_ALTIVEC
|
|
static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu,
|
|
int index, int element_size)
|
|
{
|
|
int offset;
|
|
int elts = sizeof(vector128)/element_size;
|
|
|
|
if ((index < 0) || (index >= elts))
|
|
return -1;
|
|
|
|
if (kvmppc_need_byteswap(vcpu))
|
|
offset = elts - index - 1;
|
|
else
|
|
offset = index;
|
|
|
|
return offset;
|
|
}
|
|
|
|
static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu,
|
|
int index)
|
|
{
|
|
return kvmppc_get_vmx_offset_generic(vcpu, index, 8);
|
|
}
|
|
|
|
static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu,
|
|
int index)
|
|
{
|
|
return kvmppc_get_vmx_offset_generic(vcpu, index, 4);
|
|
}
|
|
|
|
static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu,
|
|
int index)
|
|
{
|
|
return kvmppc_get_vmx_offset_generic(vcpu, index, 2);
|
|
}
|
|
|
|
static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu,
|
|
int index)
|
|
{
|
|
return kvmppc_get_vmx_offset_generic(vcpu, index, 1);
|
|
}
|
|
|
|
|
|
static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
|
|
u64 gpr)
|
|
{
|
|
union kvmppc_one_reg val;
|
|
int offset = kvmppc_get_vmx_dword_offset(vcpu,
|
|
vcpu->arch.mmio_vmx_offset);
|
|
int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
|
|
|
|
if (offset == -1)
|
|
return;
|
|
|
|
val.vval = VCPU_VSX_VR(vcpu, index);
|
|
val.vsxval[offset] = gpr;
|
|
VCPU_VSX_VR(vcpu, index) = val.vval;
|
|
}
|
|
|
|
static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu,
|
|
u32 gpr32)
|
|
{
|
|
union kvmppc_one_reg val;
|
|
int offset = kvmppc_get_vmx_word_offset(vcpu,
|
|
vcpu->arch.mmio_vmx_offset);
|
|
int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
|
|
|
|
if (offset == -1)
|
|
return;
|
|
|
|
val.vval = VCPU_VSX_VR(vcpu, index);
|
|
val.vsx32val[offset] = gpr32;
|
|
VCPU_VSX_VR(vcpu, index) = val.vval;
|
|
}
|
|
|
|
static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu,
|
|
u16 gpr16)
|
|
{
|
|
union kvmppc_one_reg val;
|
|
int offset = kvmppc_get_vmx_hword_offset(vcpu,
|
|
vcpu->arch.mmio_vmx_offset);
|
|
int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
|
|
|
|
if (offset == -1)
|
|
return;
|
|
|
|
val.vval = VCPU_VSX_VR(vcpu, index);
|
|
val.vsx16val[offset] = gpr16;
|
|
VCPU_VSX_VR(vcpu, index) = val.vval;
|
|
}
|
|
|
|
static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu,
|
|
u8 gpr8)
|
|
{
|
|
union kvmppc_one_reg val;
|
|
int offset = kvmppc_get_vmx_byte_offset(vcpu,
|
|
vcpu->arch.mmio_vmx_offset);
|
|
int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
|
|
|
|
if (offset == -1)
|
|
return;
|
|
|
|
val.vval = VCPU_VSX_VR(vcpu, index);
|
|
val.vsx8val[offset] = gpr8;
|
|
VCPU_VSX_VR(vcpu, index) = val.vval;
|
|
}
|
|
#endif /* CONFIG_ALTIVEC */
|
|
|
|
#ifdef CONFIG_PPC_FPU
|
|
static inline u64 sp_to_dp(u32 fprs)
|
|
{
|
|
u64 fprd;
|
|
|
|
preempt_disable();
|
|
enable_kernel_fp();
|
|
asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m<>" (fprd) : "m<>" (fprs)
|
|
: "fr0");
|
|
preempt_enable();
|
|
return fprd;
|
|
}
|
|
|
|
static inline u32 dp_to_sp(u64 fprd)
|
|
{
|
|
u32 fprs;
|
|
|
|
preempt_disable();
|
|
enable_kernel_fp();
|
|
asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m<>" (fprs) : "m<>" (fprd)
|
|
: "fr0");
|
|
preempt_enable();
|
|
return fprs;
|
|
}
|
|
|
|
#else
|
|
#define sp_to_dp(x) (x)
|
|
#define dp_to_sp(x) (x)
|
|
#endif /* CONFIG_PPC_FPU */
|
|
|
|
static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_run *run = vcpu->run;
|
|
u64 gpr;
|
|
|
|
if (run->mmio.len > sizeof(gpr))
|
|
return;
|
|
|
|
if (!vcpu->arch.mmio_host_swabbed) {
|
|
switch (run->mmio.len) {
|
|
case 8: gpr = *(u64 *)run->mmio.data; break;
|
|
case 4: gpr = *(u32 *)run->mmio.data; break;
|
|
case 2: gpr = *(u16 *)run->mmio.data; break;
|
|
case 1: gpr = *(u8 *)run->mmio.data; break;
|
|
}
|
|
} else {
|
|
switch (run->mmio.len) {
|
|
case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
|
|
case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
|
|
case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
|
|
case 1: gpr = *(u8 *)run->mmio.data; break;
|
|
}
|
|
}
|
|
|
|
/* conversion between single and double precision */
|
|
if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
|
|
gpr = sp_to_dp(gpr);
|
|
|
|
if (vcpu->arch.mmio_sign_extend) {
|
|
switch (run->mmio.len) {
|
|
#ifdef CONFIG_PPC64
|
|
case 4:
|
|
gpr = (s64)(s32)gpr;
|
|
break;
|
|
#endif
|
|
case 2:
|
|
gpr = (s64)(s16)gpr;
|
|
break;
|
|
case 1:
|
|
gpr = (s64)(s8)gpr;
|
|
break;
|
|
}
|
|
}
|
|
|
|
switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
|
|
case KVM_MMIO_REG_GPR:
|
|
kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
|
|
break;
|
|
case KVM_MMIO_REG_FPR:
|
|
if (vcpu->kvm->arch.kvm_ops->giveup_ext)
|
|
vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP);
|
|
|
|
VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
|
|
break;
|
|
#ifdef CONFIG_PPC_BOOK3S
|
|
case KVM_MMIO_REG_QPR:
|
|
vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
|
|
break;
|
|
case KVM_MMIO_REG_FQPR:
|
|
VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
|
|
vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
|
|
break;
|
|
#endif
|
|
#ifdef CONFIG_VSX
|
|
case KVM_MMIO_REG_VSX:
|
|
if (vcpu->kvm->arch.kvm_ops->giveup_ext)
|
|
vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX);
|
|
|
|
if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD)
|
|
kvmppc_set_vsr_dword(vcpu, gpr);
|
|
else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD)
|
|
kvmppc_set_vsr_word(vcpu, gpr);
|
|
else if (vcpu->arch.mmio_copy_type ==
|
|
KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
|
|
kvmppc_set_vsr_dword_dump(vcpu, gpr);
|
|
else if (vcpu->arch.mmio_copy_type ==
|
|
KVMPPC_VSX_COPY_WORD_LOAD_DUMP)
|
|
kvmppc_set_vsr_word_dump(vcpu, gpr);
|
|
break;
|
|
#endif
|
|
#ifdef CONFIG_ALTIVEC
|
|
case KVM_MMIO_REG_VMX:
|
|
if (vcpu->kvm->arch.kvm_ops->giveup_ext)
|
|
vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC);
|
|
|
|
if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD)
|
|
kvmppc_set_vmx_dword(vcpu, gpr);
|
|
else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD)
|
|
kvmppc_set_vmx_word(vcpu, gpr);
|
|
else if (vcpu->arch.mmio_copy_type ==
|
|
KVMPPC_VMX_COPY_HWORD)
|
|
kvmppc_set_vmx_hword(vcpu, gpr);
|
|
else if (vcpu->arch.mmio_copy_type ==
|
|
KVMPPC_VMX_COPY_BYTE)
|
|
kvmppc_set_vmx_byte(vcpu, gpr);
|
|
break;
|
|
#endif
|
|
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
|
|
case KVM_MMIO_REG_NESTED_GPR:
|
|
if (kvmppc_need_byteswap(vcpu))
|
|
gpr = swab64(gpr);
|
|
kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr,
|
|
sizeof(gpr));
|
|
break;
|
|
#endif
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
static int __kvmppc_handle_load(struct kvm_vcpu *vcpu,
|
|
unsigned int rt, unsigned int bytes,
|
|
int is_default_endian, int sign_extend)
|
|
{
|
|
struct kvm_run *run = vcpu->run;
|
|
int idx, ret;
|
|
bool host_swabbed;
|
|
|
|
/* Pity C doesn't have a logical XOR operator */
|
|
if (kvmppc_need_byteswap(vcpu)) {
|
|
host_swabbed = is_default_endian;
|
|
} else {
|
|
host_swabbed = !is_default_endian;
|
|
}
|
|
|
|
if (bytes > sizeof(run->mmio.data))
|
|
return EMULATE_FAIL;
|
|
|
|
run->mmio.phys_addr = vcpu->arch.paddr_accessed;
|
|
run->mmio.len = bytes;
|
|
run->mmio.is_write = 0;
|
|
|
|
vcpu->arch.io_gpr = rt;
|
|
vcpu->arch.mmio_host_swabbed = host_swabbed;
|
|
vcpu->mmio_needed = 1;
|
|
vcpu->mmio_is_write = 0;
|
|
vcpu->arch.mmio_sign_extend = sign_extend;
|
|
|
|
idx = srcu_read_lock(&vcpu->kvm->srcu);
|
|
|
|
ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
|
|
bytes, &run->mmio.data);
|
|
|
|
srcu_read_unlock(&vcpu->kvm->srcu, idx);
|
|
|
|
if (!ret) {
|
|
kvmppc_complete_mmio_load(vcpu);
|
|
vcpu->mmio_needed = 0;
|
|
return EMULATE_DONE;
|
|
}
|
|
|
|
return EMULATE_DO_MMIO;
|
|
}
|
|
|
|
int kvmppc_handle_load(struct kvm_vcpu *vcpu,
|
|
unsigned int rt, unsigned int bytes,
|
|
int is_default_endian)
|
|
{
|
|
return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 0);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvmppc_handle_load);
|
|
|
|
/* Same as above, but sign extends */
|
|
int kvmppc_handle_loads(struct kvm_vcpu *vcpu,
|
|
unsigned int rt, unsigned int bytes,
|
|
int is_default_endian)
|
|
{
|
|
return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 1);
|
|
}
|
|
|
|
#ifdef CONFIG_VSX
|
|
int kvmppc_handle_vsx_load(struct kvm_vcpu *vcpu,
|
|
unsigned int rt, unsigned int bytes,
|
|
int is_default_endian, int mmio_sign_extend)
|
|
{
|
|
enum emulation_result emulated = EMULATE_DONE;
|
|
|
|
/* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
|
|
if (vcpu->arch.mmio_vsx_copy_nums > 4)
|
|
return EMULATE_FAIL;
|
|
|
|
while (vcpu->arch.mmio_vsx_copy_nums) {
|
|
emulated = __kvmppc_handle_load(vcpu, rt, bytes,
|
|
is_default_endian, mmio_sign_extend);
|
|
|
|
if (emulated != EMULATE_DONE)
|
|
break;
|
|
|
|
vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
|
|
|
|
vcpu->arch.mmio_vsx_copy_nums--;
|
|
vcpu->arch.mmio_vsx_offset++;
|
|
}
|
|
return emulated;
|
|
}
|
|
#endif /* CONFIG_VSX */
|
|
|
|
int kvmppc_handle_store(struct kvm_vcpu *vcpu,
|
|
u64 val, unsigned int bytes, int is_default_endian)
|
|
{
|
|
struct kvm_run *run = vcpu->run;
|
|
void *data = run->mmio.data;
|
|
int idx, ret;
|
|
bool host_swabbed;
|
|
|
|
/* Pity C doesn't have a logical XOR operator */
|
|
if (kvmppc_need_byteswap(vcpu)) {
|
|
host_swabbed = is_default_endian;
|
|
} else {
|
|
host_swabbed = !is_default_endian;
|
|
}
|
|
|
|
if (bytes > sizeof(run->mmio.data))
|
|
return EMULATE_FAIL;
|
|
|
|
run->mmio.phys_addr = vcpu->arch.paddr_accessed;
|
|
run->mmio.len = bytes;
|
|
run->mmio.is_write = 1;
|
|
vcpu->mmio_needed = 1;
|
|
vcpu->mmio_is_write = 1;
|
|
|
|
if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
|
|
val = dp_to_sp(val);
|
|
|
|
/* Store the value at the lowest bytes in 'data'. */
|
|
if (!host_swabbed) {
|
|
switch (bytes) {
|
|
case 8: *(u64 *)data = val; break;
|
|
case 4: *(u32 *)data = val; break;
|
|
case 2: *(u16 *)data = val; break;
|
|
case 1: *(u8 *)data = val; break;
|
|
}
|
|
} else {
|
|
switch (bytes) {
|
|
case 8: *(u64 *)data = swab64(val); break;
|
|
case 4: *(u32 *)data = swab32(val); break;
|
|
case 2: *(u16 *)data = swab16(val); break;
|
|
case 1: *(u8 *)data = val; break;
|
|
}
|
|
}
|
|
|
|
idx = srcu_read_lock(&vcpu->kvm->srcu);
|
|
|
|
ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
|
|
bytes, &run->mmio.data);
|
|
|
|
srcu_read_unlock(&vcpu->kvm->srcu, idx);
|
|
|
|
if (!ret) {
|
|
vcpu->mmio_needed = 0;
|
|
return EMULATE_DONE;
|
|
}
|
|
|
|
return EMULATE_DO_MMIO;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvmppc_handle_store);
|
|
|
|
#ifdef CONFIG_VSX
|
|
static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
|
|
{
|
|
u32 dword_offset, word_offset;
|
|
union kvmppc_one_reg reg;
|
|
int vsx_offset = 0;
|
|
int copy_type = vcpu->arch.mmio_copy_type;
|
|
int result = 0;
|
|
|
|
switch (copy_type) {
|
|
case KVMPPC_VSX_COPY_DWORD:
|
|
vsx_offset =
|
|
kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
|
|
|
|
if (vsx_offset == -1) {
|
|
result = -1;
|
|
break;
|
|
}
|
|
|
|
if (rs < 32) {
|
|
*val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
|
|
} else {
|
|
reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
|
|
*val = reg.vsxval[vsx_offset];
|
|
}
|
|
break;
|
|
|
|
case KVMPPC_VSX_COPY_WORD:
|
|
vsx_offset =
|
|
kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
|
|
|
|
if (vsx_offset == -1) {
|
|
result = -1;
|
|
break;
|
|
}
|
|
|
|
if (rs < 32) {
|
|
dword_offset = vsx_offset / 2;
|
|
word_offset = vsx_offset % 2;
|
|
reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
|
|
*val = reg.vsx32val[word_offset];
|
|
} else {
|
|
reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
|
|
*val = reg.vsx32val[vsx_offset];
|
|
}
|
|
break;
|
|
|
|
default:
|
|
result = -1;
|
|
break;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
int kvmppc_handle_vsx_store(struct kvm_vcpu *vcpu,
|
|
int rs, unsigned int bytes, int is_default_endian)
|
|
{
|
|
u64 val;
|
|
enum emulation_result emulated = EMULATE_DONE;
|
|
|
|
vcpu->arch.io_gpr = rs;
|
|
|
|
/* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
|
|
if (vcpu->arch.mmio_vsx_copy_nums > 4)
|
|
return EMULATE_FAIL;
|
|
|
|
while (vcpu->arch.mmio_vsx_copy_nums) {
|
|
if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
|
|
return EMULATE_FAIL;
|
|
|
|
emulated = kvmppc_handle_store(vcpu,
|
|
val, bytes, is_default_endian);
|
|
|
|
if (emulated != EMULATE_DONE)
|
|
break;
|
|
|
|
vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
|
|
|
|
vcpu->arch.mmio_vsx_copy_nums--;
|
|
vcpu->arch.mmio_vsx_offset++;
|
|
}
|
|
|
|
return emulated;
|
|
}
|
|
|
|
static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_run *run = vcpu->run;
|
|
enum emulation_result emulated = EMULATE_FAIL;
|
|
int r;
|
|
|
|
vcpu->arch.paddr_accessed += run->mmio.len;
|
|
|
|
if (!vcpu->mmio_is_write) {
|
|
emulated = kvmppc_handle_vsx_load(vcpu, vcpu->arch.io_gpr,
|
|
run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
|
|
} else {
|
|
emulated = kvmppc_handle_vsx_store(vcpu,
|
|
vcpu->arch.io_gpr, run->mmio.len, 1);
|
|
}
|
|
|
|
switch (emulated) {
|
|
case EMULATE_DO_MMIO:
|
|
run->exit_reason = KVM_EXIT_MMIO;
|
|
r = RESUME_HOST;
|
|
break;
|
|
case EMULATE_FAIL:
|
|
pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
|
|
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
|
|
run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
|
|
r = RESUME_HOST;
|
|
break;
|
|
default:
|
|
r = RESUME_GUEST;
|
|
break;
|
|
}
|
|
return r;
|
|
}
|
|
#endif /* CONFIG_VSX */
|
|
|
|
#ifdef CONFIG_ALTIVEC
|
|
int kvmppc_handle_vmx_load(struct kvm_vcpu *vcpu,
|
|
unsigned int rt, unsigned int bytes, int is_default_endian)
|
|
{
|
|
enum emulation_result emulated = EMULATE_DONE;
|
|
|
|
if (vcpu->arch.mmio_vmx_copy_nums > 2)
|
|
return EMULATE_FAIL;
|
|
|
|
while (vcpu->arch.mmio_vmx_copy_nums) {
|
|
emulated = __kvmppc_handle_load(vcpu, rt, bytes,
|
|
is_default_endian, 0);
|
|
|
|
if (emulated != EMULATE_DONE)
|
|
break;
|
|
|
|
vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
|
|
vcpu->arch.mmio_vmx_copy_nums--;
|
|
vcpu->arch.mmio_vmx_offset++;
|
|
}
|
|
|
|
return emulated;
|
|
}
|
|
|
|
static int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
|
|
{
|
|
union kvmppc_one_reg reg;
|
|
int vmx_offset = 0;
|
|
int result = 0;
|
|
|
|
vmx_offset =
|
|
kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
|
|
|
|
if (vmx_offset == -1)
|
|
return -1;
|
|
|
|
reg.vval = VCPU_VSX_VR(vcpu, index);
|
|
*val = reg.vsxval[vmx_offset];
|
|
|
|
return result;
|
|
}
|
|
|
|
static int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
|
|
{
|
|
union kvmppc_one_reg reg;
|
|
int vmx_offset = 0;
|
|
int result = 0;
|
|
|
|
vmx_offset =
|
|
kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset);
|
|
|
|
if (vmx_offset == -1)
|
|
return -1;
|
|
|
|
reg.vval = VCPU_VSX_VR(vcpu, index);
|
|
*val = reg.vsx32val[vmx_offset];
|
|
|
|
return result;
|
|
}
|
|
|
|
static int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
|
|
{
|
|
union kvmppc_one_reg reg;
|
|
int vmx_offset = 0;
|
|
int result = 0;
|
|
|
|
vmx_offset =
|
|
kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
|
|
|
|
if (vmx_offset == -1)
|
|
return -1;
|
|
|
|
reg.vval = VCPU_VSX_VR(vcpu, index);
|
|
*val = reg.vsx16val[vmx_offset];
|
|
|
|
return result;
|
|
}
|
|
|
|
static int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
|
|
{
|
|
union kvmppc_one_reg reg;
|
|
int vmx_offset = 0;
|
|
int result = 0;
|
|
|
|
vmx_offset =
|
|
kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset);
|
|
|
|
if (vmx_offset == -1)
|
|
return -1;
|
|
|
|
reg.vval = VCPU_VSX_VR(vcpu, index);
|
|
*val = reg.vsx8val[vmx_offset];
|
|
|
|
return result;
|
|
}
|
|
|
|
int kvmppc_handle_vmx_store(struct kvm_vcpu *vcpu,
|
|
unsigned int rs, unsigned int bytes, int is_default_endian)
|
|
{
|
|
u64 val = 0;
|
|
unsigned int index = rs & KVM_MMIO_REG_MASK;
|
|
enum emulation_result emulated = EMULATE_DONE;
|
|
|
|
if (vcpu->arch.mmio_vmx_copy_nums > 2)
|
|
return EMULATE_FAIL;
|
|
|
|
vcpu->arch.io_gpr = rs;
|
|
|
|
while (vcpu->arch.mmio_vmx_copy_nums) {
|
|
switch (vcpu->arch.mmio_copy_type) {
|
|
case KVMPPC_VMX_COPY_DWORD:
|
|
if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1)
|
|
return EMULATE_FAIL;
|
|
|
|
break;
|
|
case KVMPPC_VMX_COPY_WORD:
|
|
if (kvmppc_get_vmx_word(vcpu, index, &val) == -1)
|
|
return EMULATE_FAIL;
|
|
break;
|
|
case KVMPPC_VMX_COPY_HWORD:
|
|
if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1)
|
|
return EMULATE_FAIL;
|
|
break;
|
|
case KVMPPC_VMX_COPY_BYTE:
|
|
if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1)
|
|
return EMULATE_FAIL;
|
|
break;
|
|
default:
|
|
return EMULATE_FAIL;
|
|
}
|
|
|
|
emulated = kvmppc_handle_store(vcpu, val, bytes,
|
|
is_default_endian);
|
|
if (emulated != EMULATE_DONE)
|
|
break;
|
|
|
|
vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
|
|
vcpu->arch.mmio_vmx_copy_nums--;
|
|
vcpu->arch.mmio_vmx_offset++;
|
|
}
|
|
|
|
return emulated;
|
|
}
|
|
|
|
static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_run *run = vcpu->run;
|
|
enum emulation_result emulated = EMULATE_FAIL;
|
|
int r;
|
|
|
|
vcpu->arch.paddr_accessed += run->mmio.len;
|
|
|
|
if (!vcpu->mmio_is_write) {
|
|
emulated = kvmppc_handle_vmx_load(vcpu,
|
|
vcpu->arch.io_gpr, run->mmio.len, 1);
|
|
} else {
|
|
emulated = kvmppc_handle_vmx_store(vcpu,
|
|
vcpu->arch.io_gpr, run->mmio.len, 1);
|
|
}
|
|
|
|
switch (emulated) {
|
|
case EMULATE_DO_MMIO:
|
|
run->exit_reason = KVM_EXIT_MMIO;
|
|
r = RESUME_HOST;
|
|
break;
|
|
case EMULATE_FAIL:
|
|
pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
|
|
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
|
|
run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
|
|
r = RESUME_HOST;
|
|
break;
|
|
default:
|
|
r = RESUME_GUEST;
|
|
break;
|
|
}
|
|
return r;
|
|
}
|
|
#endif /* CONFIG_ALTIVEC */
|
|
|
|
int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
|
|
{
|
|
int r = 0;
|
|
union kvmppc_one_reg val;
|
|
int size;
|
|
|
|
size = one_reg_size(reg->id);
|
|
if (size > sizeof(val))
|
|
return -EINVAL;
|
|
|
|
r = kvmppc_get_one_reg(vcpu, reg->id, &val);
|
|
if (r == -EINVAL) {
|
|
r = 0;
|
|
switch (reg->id) {
|
|
#ifdef CONFIG_ALTIVEC
|
|
case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
|
|
if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
|
|
r = -ENXIO;
|
|
break;
|
|
}
|
|
val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
|
|
break;
|
|
case KVM_REG_PPC_VSCR:
|
|
if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
|
|
r = -ENXIO;
|
|
break;
|
|
}
|
|
val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
|
|
break;
|
|
case KVM_REG_PPC_VRSAVE:
|
|
val = get_reg_val(reg->id, vcpu->arch.vrsave);
|
|
break;
|
|
#endif /* CONFIG_ALTIVEC */
|
|
default:
|
|
r = -EINVAL;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (r)
|
|
return r;
|
|
|
|
if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
|
|
r = -EFAULT;
|
|
|
|
return r;
|
|
}
|
|
|
|
int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
|
|
{
|
|
int r;
|
|
union kvmppc_one_reg val;
|
|
int size;
|
|
|
|
size = one_reg_size(reg->id);
|
|
if (size > sizeof(val))
|
|
return -EINVAL;
|
|
|
|
if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
|
|
return -EFAULT;
|
|
|
|
r = kvmppc_set_one_reg(vcpu, reg->id, &val);
|
|
if (r == -EINVAL) {
|
|
r = 0;
|
|
switch (reg->id) {
|
|
#ifdef CONFIG_ALTIVEC
|
|
case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
|
|
if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
|
|
r = -ENXIO;
|
|
break;
|
|
}
|
|
vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
|
|
break;
|
|
case KVM_REG_PPC_VSCR:
|
|
if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
|
|
r = -ENXIO;
|
|
break;
|
|
}
|
|
vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
|
|
break;
|
|
case KVM_REG_PPC_VRSAVE:
|
|
if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
|
|
r = -ENXIO;
|
|
break;
|
|
}
|
|
vcpu->arch.vrsave = set_reg_val(reg->id, val);
|
|
break;
|
|
#endif /* CONFIG_ALTIVEC */
|
|
default:
|
|
r = -EINVAL;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_run *run = vcpu->run;
|
|
int r;
|
|
|
|
vcpu_load(vcpu);
|
|
|
|
if (vcpu->mmio_needed) {
|
|
vcpu->mmio_needed = 0;
|
|
if (!vcpu->mmio_is_write)
|
|
kvmppc_complete_mmio_load(vcpu);
|
|
#ifdef CONFIG_VSX
|
|
if (vcpu->arch.mmio_vsx_copy_nums > 0) {
|
|
vcpu->arch.mmio_vsx_copy_nums--;
|
|
vcpu->arch.mmio_vsx_offset++;
|
|
}
|
|
|
|
if (vcpu->arch.mmio_vsx_copy_nums > 0) {
|
|
r = kvmppc_emulate_mmio_vsx_loadstore(vcpu);
|
|
if (r == RESUME_HOST) {
|
|
vcpu->mmio_needed = 1;
|
|
goto out;
|
|
}
|
|
}
|
|
#endif
|
|
#ifdef CONFIG_ALTIVEC
|
|
if (vcpu->arch.mmio_vmx_copy_nums > 0) {
|
|
vcpu->arch.mmio_vmx_copy_nums--;
|
|
vcpu->arch.mmio_vmx_offset++;
|
|
}
|
|
|
|
if (vcpu->arch.mmio_vmx_copy_nums > 0) {
|
|
r = kvmppc_emulate_mmio_vmx_loadstore(vcpu);
|
|
if (r == RESUME_HOST) {
|
|
vcpu->mmio_needed = 1;
|
|
goto out;
|
|
}
|
|
}
|
|
#endif
|
|
} else if (vcpu->arch.osi_needed) {
|
|
u64 *gprs = run->osi.gprs;
|
|
int i;
|
|
|
|
for (i = 0; i < 32; i++)
|
|
kvmppc_set_gpr(vcpu, i, gprs[i]);
|
|
vcpu->arch.osi_needed = 0;
|
|
} else if (vcpu->arch.hcall_needed) {
|
|
int i;
|
|
|
|
kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
|
|
for (i = 0; i < 9; ++i)
|
|
kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
|
|
vcpu->arch.hcall_needed = 0;
|
|
#ifdef CONFIG_BOOKE
|
|
} else if (vcpu->arch.epr_needed) {
|
|
kvmppc_set_epr(vcpu, run->epr.epr);
|
|
vcpu->arch.epr_needed = 0;
|
|
#endif
|
|
}
|
|
|
|
kvm_sigset_activate(vcpu);
|
|
|
|
if (run->immediate_exit)
|
|
r = -EINTR;
|
|
else
|
|
r = kvmppc_vcpu_run(vcpu);
|
|
|
|
kvm_sigset_deactivate(vcpu);
|
|
|
|
#ifdef CONFIG_ALTIVEC
|
|
out:
|
|
#endif
|
|
|
|
/*
|
|
* We're already returning to userspace, don't pass the
|
|
* RESUME_HOST flags along.
|
|
*/
|
|
if (r > 0)
|
|
r = 0;
|
|
|
|
vcpu_put(vcpu);
|
|
return r;
|
|
}
|
|
|
|
int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
|
|
{
|
|
if (irq->irq == KVM_INTERRUPT_UNSET) {
|
|
kvmppc_core_dequeue_external(vcpu);
|
|
return 0;
|
|
}
|
|
|
|
kvmppc_core_queue_external(vcpu, irq);
|
|
|
|
kvm_vcpu_kick(vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
|
|
struct kvm_enable_cap *cap)
|
|
{
|
|
int r;
|
|
|
|
if (cap->flags)
|
|
return -EINVAL;
|
|
|
|
switch (cap->cap) {
|
|
case KVM_CAP_PPC_OSI:
|
|
r = 0;
|
|
vcpu->arch.osi_enabled = true;
|
|
break;
|
|
case KVM_CAP_PPC_PAPR:
|
|
r = 0;
|
|
vcpu->arch.papr_enabled = true;
|
|
break;
|
|
case KVM_CAP_PPC_EPR:
|
|
r = 0;
|
|
if (cap->args[0])
|
|
vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
|
|
else
|
|
vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
|
|
break;
|
|
#ifdef CONFIG_BOOKE
|
|
case KVM_CAP_PPC_BOOKE_WATCHDOG:
|
|
r = 0;
|
|
vcpu->arch.watchdog_enabled = true;
|
|
break;
|
|
#endif
|
|
#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
|
|
case KVM_CAP_SW_TLB: {
|
|
struct kvm_config_tlb cfg;
|
|
void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
|
|
break;
|
|
|
|
r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
|
|
break;
|
|
}
|
|
#endif
|
|
#ifdef CONFIG_KVM_MPIC
|
|
case KVM_CAP_IRQ_MPIC: {
|
|
struct fd f;
|
|
struct kvm_device *dev;
|
|
|
|
r = -EBADF;
|
|
f = fdget(cap->args[0]);
|
|
if (!f.file)
|
|
break;
|
|
|
|
r = -EPERM;
|
|
dev = kvm_device_from_filp(f.file);
|
|
if (dev)
|
|
r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
|
|
|
|
fdput(f);
|
|
break;
|
|
}
|
|
#endif
|
|
#ifdef CONFIG_KVM_XICS
|
|
case KVM_CAP_IRQ_XICS: {
|
|
struct fd f;
|
|
struct kvm_device *dev;
|
|
|
|
r = -EBADF;
|
|
f = fdget(cap->args[0]);
|
|
if (!f.file)
|
|
break;
|
|
|
|
r = -EPERM;
|
|
dev = kvm_device_from_filp(f.file);
|
|
if (dev) {
|
|
if (xics_on_xive())
|
|
r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
|
|
else
|
|
r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
|
|
}
|
|
|
|
fdput(f);
|
|
break;
|
|
}
|
|
#endif /* CONFIG_KVM_XICS */
|
|
#ifdef CONFIG_KVM_XIVE
|
|
case KVM_CAP_PPC_IRQ_XIVE: {
|
|
struct fd f;
|
|
struct kvm_device *dev;
|
|
|
|
r = -EBADF;
|
|
f = fdget(cap->args[0]);
|
|
if (!f.file)
|
|
break;
|
|
|
|
r = -ENXIO;
|
|
if (!xive_enabled())
|
|
break;
|
|
|
|
r = -EPERM;
|
|
dev = kvm_device_from_filp(f.file);
|
|
if (dev)
|
|
r = kvmppc_xive_native_connect_vcpu(dev, vcpu,
|
|
cap->args[1]);
|
|
|
|
fdput(f);
|
|
break;
|
|
}
|
|
#endif /* CONFIG_KVM_XIVE */
|
|
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
|
|
case KVM_CAP_PPC_FWNMI:
|
|
r = -EINVAL;
|
|
if (!is_kvmppc_hv_enabled(vcpu->kvm))
|
|
break;
|
|
r = 0;
|
|
vcpu->kvm->arch.fwnmi_enabled = true;
|
|
break;
|
|
#endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
|
|
default:
|
|
r = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
if (!r)
|
|
r = kvmppc_sanity_check(vcpu);
|
|
|
|
return r;
|
|
}
|
|
|
|
bool kvm_arch_intc_initialized(struct kvm *kvm)
|
|
{
|
|
#ifdef CONFIG_KVM_MPIC
|
|
if (kvm->arch.mpic)
|
|
return true;
|
|
#endif
|
|
#ifdef CONFIG_KVM_XICS
|
|
if (kvm->arch.xics || kvm->arch.xive)
|
|
return true;
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
|
|
struct kvm_mp_state *mp_state)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
|
|
int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
|
|
struct kvm_mp_state *mp_state)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
|
|
long kvm_arch_vcpu_async_ioctl(struct file *filp,
|
|
unsigned int ioctl, unsigned long arg)
|
|
{
|
|
struct kvm_vcpu *vcpu = filp->private_data;
|
|
void __user *argp = (void __user *)arg;
|
|
|
|
if (ioctl == KVM_INTERRUPT) {
|
|
struct kvm_interrupt irq;
|
|
if (copy_from_user(&irq, argp, sizeof(irq)))
|
|
return -EFAULT;
|
|
return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
|
|
}
|
|
return -ENOIOCTLCMD;
|
|
}
|
|
|
|
long kvm_arch_vcpu_ioctl(struct file *filp,
|
|
unsigned int ioctl, unsigned long arg)
|
|
{
|
|
struct kvm_vcpu *vcpu = filp->private_data;
|
|
void __user *argp = (void __user *)arg;
|
|
long r;
|
|
|
|
switch (ioctl) {
|
|
case KVM_ENABLE_CAP:
|
|
{
|
|
struct kvm_enable_cap cap;
|
|
r = -EFAULT;
|
|
if (copy_from_user(&cap, argp, sizeof(cap)))
|
|
goto out;
|
|
vcpu_load(vcpu);
|
|
r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
|
|
vcpu_put(vcpu);
|
|
break;
|
|
}
|
|
|
|
case KVM_SET_ONE_REG:
|
|
case KVM_GET_ONE_REG:
|
|
{
|
|
struct kvm_one_reg reg;
|
|
r = -EFAULT;
|
|
if (copy_from_user(®, argp, sizeof(reg)))
|
|
goto out;
|
|
if (ioctl == KVM_SET_ONE_REG)
|
|
r = kvm_vcpu_ioctl_set_one_reg(vcpu, ®);
|
|
else
|
|
r = kvm_vcpu_ioctl_get_one_reg(vcpu, ®);
|
|
break;
|
|
}
|
|
|
|
#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
|
|
case KVM_DIRTY_TLB: {
|
|
struct kvm_dirty_tlb dirty;
|
|
r = -EFAULT;
|
|
if (copy_from_user(&dirty, argp, sizeof(dirty)))
|
|
goto out;
|
|
vcpu_load(vcpu);
|
|
r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
|
|
vcpu_put(vcpu);
|
|
break;
|
|
}
|
|
#endif
|
|
default:
|
|
r = -EINVAL;
|
|
}
|
|
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
|
|
{
|
|
return VM_FAULT_SIGBUS;
|
|
}
|
|
|
|
static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
|
|
{
|
|
u32 inst_nop = 0x60000000;
|
|
#ifdef CONFIG_KVM_BOOKE_HV
|
|
u32 inst_sc1 = 0x44000022;
|
|
pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
|
|
pvinfo->hcall[1] = cpu_to_be32(inst_nop);
|
|
pvinfo->hcall[2] = cpu_to_be32(inst_nop);
|
|
pvinfo->hcall[3] = cpu_to_be32(inst_nop);
|
|
#else
|
|
u32 inst_lis = 0x3c000000;
|
|
u32 inst_ori = 0x60000000;
|
|
u32 inst_sc = 0x44000002;
|
|
u32 inst_imm_mask = 0xffff;
|
|
|
|
/*
|
|
* The hypercall to get into KVM from within guest context is as
|
|
* follows:
|
|
*
|
|
* lis r0, r0, KVM_SC_MAGIC_R0@h
|
|
* ori r0, KVM_SC_MAGIC_R0@l
|
|
* sc
|
|
* nop
|
|
*/
|
|
pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
|
|
pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
|
|
pvinfo->hcall[2] = cpu_to_be32(inst_sc);
|
|
pvinfo->hcall[3] = cpu_to_be32(inst_nop);
|
|
#endif
|
|
|
|
pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
|
|
{
|
|
int ret = 0;
|
|
|
|
#ifdef CONFIG_KVM_MPIC
|
|
ret = ret || (kvm->arch.mpic != NULL);
|
|
#endif
|
|
#ifdef CONFIG_KVM_XICS
|
|
ret = ret || (kvm->arch.xics != NULL);
|
|
ret = ret || (kvm->arch.xive != NULL);
|
|
#endif
|
|
smp_rmb();
|
|
return ret;
|
|
}
|
|
|
|
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
|
|
bool line_status)
|
|
{
|
|
if (!kvm_arch_irqchip_in_kernel(kvm))
|
|
return -ENXIO;
|
|
|
|
irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
|
|
irq_event->irq, irq_event->level,
|
|
line_status);
|
|
return 0;
|
|
}
|
|
|
|
|
|
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
|
|
struct kvm_enable_cap *cap)
|
|
{
|
|
int r;
|
|
|
|
if (cap->flags)
|
|
return -EINVAL;
|
|
|
|
switch (cap->cap) {
|
|
#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
|
|
case KVM_CAP_PPC_ENABLE_HCALL: {
|
|
unsigned long hcall = cap->args[0];
|
|
|
|
r = -EINVAL;
|
|
if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
|
|
cap->args[1] > 1)
|
|
break;
|
|
if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
|
|
break;
|
|
if (cap->args[1])
|
|
set_bit(hcall / 4, kvm->arch.enabled_hcalls);
|
|
else
|
|
clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_CAP_PPC_SMT: {
|
|
unsigned long mode = cap->args[0];
|
|
unsigned long flags = cap->args[1];
|
|
|
|
r = -EINVAL;
|
|
if (kvm->arch.kvm_ops->set_smt_mode)
|
|
r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
|
|
break;
|
|
}
|
|
|
|
case KVM_CAP_PPC_NESTED_HV:
|
|
r = -EINVAL;
|
|
if (!is_kvmppc_hv_enabled(kvm) ||
|
|
!kvm->arch.kvm_ops->enable_nested)
|
|
break;
|
|
r = kvm->arch.kvm_ops->enable_nested(kvm);
|
|
break;
|
|
#endif
|
|
#if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
|
|
case KVM_CAP_PPC_SECURE_GUEST:
|
|
r = -EINVAL;
|
|
if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_svm)
|
|
break;
|
|
r = kvm->arch.kvm_ops->enable_svm(kvm);
|
|
break;
|
|
case KVM_CAP_PPC_DAWR1:
|
|
r = -EINVAL;
|
|
if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_dawr1)
|
|
break;
|
|
r = kvm->arch.kvm_ops->enable_dawr1(kvm);
|
|
break;
|
|
#endif
|
|
default:
|
|
r = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
/*
|
|
* These functions check whether the underlying hardware is safe
|
|
* against attacks based on observing the effects of speculatively
|
|
* executed instructions, and whether it supplies instructions for
|
|
* use in workarounds. The information comes from firmware, either
|
|
* via the device tree on powernv platforms or from an hcall on
|
|
* pseries platforms.
|
|
*/
|
|
#ifdef CONFIG_PPC_PSERIES
|
|
static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
|
|
{
|
|
struct h_cpu_char_result c;
|
|
unsigned long rc;
|
|
|
|
if (!machine_is(pseries))
|
|
return -ENOTTY;
|
|
|
|
rc = plpar_get_cpu_characteristics(&c);
|
|
if (rc == H_SUCCESS) {
|
|
cp->character = c.character;
|
|
cp->behaviour = c.behaviour;
|
|
cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
|
|
KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
|
|
KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
|
|
KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
|
|
KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
|
|
KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
|
|
KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
|
|
KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
|
|
KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
|
|
cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
|
|
KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
|
|
KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
|
|
KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
|
|
}
|
|
return 0;
|
|
}
|
|
#else
|
|
static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
|
|
{
|
|
return -ENOTTY;
|
|
}
|
|
#endif
|
|
|
|
static inline bool have_fw_feat(struct device_node *fw_features,
|
|
const char *state, const char *name)
|
|
{
|
|
struct device_node *np;
|
|
bool r = false;
|
|
|
|
np = of_get_child_by_name(fw_features, name);
|
|
if (np) {
|
|
r = of_property_read_bool(np, state);
|
|
of_node_put(np);
|
|
}
|
|
return r;
|
|
}
|
|
|
|
static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
|
|
{
|
|
struct device_node *np, *fw_features;
|
|
int r;
|
|
|
|
memset(cp, 0, sizeof(*cp));
|
|
r = pseries_get_cpu_char(cp);
|
|
if (r != -ENOTTY)
|
|
return r;
|
|
|
|
np = of_find_node_by_name(NULL, "ibm,opal");
|
|
if (np) {
|
|
fw_features = of_get_child_by_name(np, "fw-features");
|
|
of_node_put(np);
|
|
if (!fw_features)
|
|
return 0;
|
|
if (have_fw_feat(fw_features, "enabled",
|
|
"inst-spec-barrier-ori31,31,0"))
|
|
cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
|
|
if (have_fw_feat(fw_features, "enabled",
|
|
"fw-bcctrl-serialized"))
|
|
cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
|
|
if (have_fw_feat(fw_features, "enabled",
|
|
"inst-l1d-flush-ori30,30,0"))
|
|
cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
|
|
if (have_fw_feat(fw_features, "enabled",
|
|
"inst-l1d-flush-trig2"))
|
|
cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
|
|
if (have_fw_feat(fw_features, "enabled",
|
|
"fw-l1d-thread-split"))
|
|
cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
|
|
if (have_fw_feat(fw_features, "enabled",
|
|
"fw-count-cache-disabled"))
|
|
cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
|
|
if (have_fw_feat(fw_features, "enabled",
|
|
"fw-count-cache-flush-bcctr2,0,0"))
|
|
cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
|
|
cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
|
|
KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
|
|
KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
|
|
KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
|
|
KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
|
|
KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
|
|
KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
|
|
|
|
if (have_fw_feat(fw_features, "enabled",
|
|
"speculation-policy-favor-security"))
|
|
cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
|
|
if (!have_fw_feat(fw_features, "disabled",
|
|
"needs-l1d-flush-msr-pr-0-to-1"))
|
|
cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
|
|
if (!have_fw_feat(fw_features, "disabled",
|
|
"needs-spec-barrier-for-bound-checks"))
|
|
cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
|
|
if (have_fw_feat(fw_features, "enabled",
|
|
"needs-count-cache-flush-on-context-switch"))
|
|
cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
|
|
cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
|
|
KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
|
|
KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
|
|
KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
|
|
|
|
of_node_put(fw_features);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
|
|
{
|
|
struct kvm *kvm __maybe_unused = filp->private_data;
|
|
void __user *argp = (void __user *)arg;
|
|
int r;
|
|
|
|
switch (ioctl) {
|
|
case KVM_PPC_GET_PVINFO: {
|
|
struct kvm_ppc_pvinfo pvinfo;
|
|
memset(&pvinfo, 0, sizeof(pvinfo));
|
|
r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
|
|
if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
|
|
r = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
break;
|
|
}
|
|
#ifdef CONFIG_SPAPR_TCE_IOMMU
|
|
case KVM_CREATE_SPAPR_TCE_64: {
|
|
struct kvm_create_spapr_tce_64 create_tce_64;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
|
|
goto out;
|
|
if (create_tce_64.flags) {
|
|
r = -EINVAL;
|
|
goto out;
|
|
}
|
|
r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
|
|
goto out;
|
|
}
|
|
case KVM_CREATE_SPAPR_TCE: {
|
|
struct kvm_create_spapr_tce create_tce;
|
|
struct kvm_create_spapr_tce_64 create_tce_64;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
|
|
goto out;
|
|
|
|
create_tce_64.liobn = create_tce.liobn;
|
|
create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
|
|
create_tce_64.offset = 0;
|
|
create_tce_64.size = create_tce.window_size >>
|
|
IOMMU_PAGE_SHIFT_4K;
|
|
create_tce_64.flags = 0;
|
|
r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
|
|
goto out;
|
|
}
|
|
#endif
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
case KVM_PPC_GET_SMMU_INFO: {
|
|
struct kvm_ppc_smmu_info info;
|
|
struct kvm *kvm = filp->private_data;
|
|
|
|
memset(&info, 0, sizeof(info));
|
|
r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
|
|
if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
|
|
r = -EFAULT;
|
|
break;
|
|
}
|
|
case KVM_PPC_RTAS_DEFINE_TOKEN: {
|
|
struct kvm *kvm = filp->private_data;
|
|
|
|
r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
|
|
break;
|
|
}
|
|
case KVM_PPC_CONFIGURE_V3_MMU: {
|
|
struct kvm *kvm = filp->private_data;
|
|
struct kvm_ppc_mmuv3_cfg cfg;
|
|
|
|
r = -EINVAL;
|
|
if (!kvm->arch.kvm_ops->configure_mmu)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_from_user(&cfg, argp, sizeof(cfg)))
|
|
goto out;
|
|
r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
|
|
break;
|
|
}
|
|
case KVM_PPC_GET_RMMU_INFO: {
|
|
struct kvm *kvm = filp->private_data;
|
|
struct kvm_ppc_rmmu_info info;
|
|
|
|
r = -EINVAL;
|
|
if (!kvm->arch.kvm_ops->get_rmmu_info)
|
|
goto out;
|
|
r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
|
|
if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
|
|
r = -EFAULT;
|
|
break;
|
|
}
|
|
case KVM_PPC_GET_CPU_CHAR: {
|
|
struct kvm_ppc_cpu_char cpuchar;
|
|
|
|
r = kvmppc_get_cpu_char(&cpuchar);
|
|
if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
|
|
r = -EFAULT;
|
|
break;
|
|
}
|
|
case KVM_PPC_SVM_OFF: {
|
|
struct kvm *kvm = filp->private_data;
|
|
|
|
r = 0;
|
|
if (!kvm->arch.kvm_ops->svm_off)
|
|
goto out;
|
|
|
|
r = kvm->arch.kvm_ops->svm_off(kvm);
|
|
break;
|
|
}
|
|
default: {
|
|
struct kvm *kvm = filp->private_data;
|
|
r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
|
|
}
|
|
#else /* CONFIG_PPC_BOOK3S_64 */
|
|
default:
|
|
r = -ENOTTY;
|
|
#endif
|
|
}
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
static DEFINE_IDA(lpid_inuse);
|
|
static unsigned long nr_lpids;
|
|
|
|
long kvmppc_alloc_lpid(void)
|
|
{
|
|
int lpid;
|
|
|
|
/* The host LPID must always be 0 (allocation starts at 1) */
|
|
lpid = ida_alloc_range(&lpid_inuse, 1, nr_lpids - 1, GFP_KERNEL);
|
|
if (lpid < 0) {
|
|
if (lpid == -ENOMEM)
|
|
pr_err("%s: Out of memory\n", __func__);
|
|
else
|
|
pr_err("%s: No LPIDs free\n", __func__);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return lpid;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
|
|
|
|
void kvmppc_free_lpid(long lpid)
|
|
{
|
|
ida_free(&lpid_inuse, lpid);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
|
|
|
|
/* nr_lpids_param includes the host LPID */
|
|
void kvmppc_init_lpid(unsigned long nr_lpids_param)
|
|
{
|
|
nr_lpids = nr_lpids_param;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
|
|
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);
|
|
|
|
void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
|
|
{
|
|
if (vcpu->kvm->arch.kvm_ops->create_vcpu_debugfs)
|
|
vcpu->kvm->arch.kvm_ops->create_vcpu_debugfs(vcpu, debugfs_dentry);
|
|
}
|
|
|
|
int kvm_arch_create_vm_debugfs(struct kvm *kvm)
|
|
{
|
|
if (kvm->arch.kvm_ops->create_vm_debugfs)
|
|
kvm->arch.kvm_ops->create_vm_debugfs(kvm);
|
|
return 0;
|
|
}
|