mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-27 14:14:24 +08:00
8bccf5b313
Christopher reports that perf_event_print_debug() can crash in uniprocessor builds. The crash is due to pcr_ops being NULL. This happens because pcr_arch_init() is only invoked by smp_cpus_done() which only executes in SMP builds. init_hw_perf_events() is closely intertwined with pcr_ops being setup properly, therefore: 1) Call pcr_arch_init() early on from init_hw_perf_events(), instead of from smp_cpus_done(). 2) Do not hook up a PMU type if pcr_ops is NULL after pcr_arch_init(). 3) Move init_hw_perf_events to a later initcall so that it we will be sure to invoke pcr_arch_init() after all cpus are brought up. Finally, guard the one naked sequence of pcr_ops dereferences in __global_pmu_self() with an appropriate NULL check. Reported-by: Christopher Alexander Tobias Schulze <cat.schulze@alice-dsl.net> Signed-off-by: David S. Miller <davem@davemloft.net>
1523 lines
36 KiB
C
1523 lines
36 KiB
C
/* smp.c: Sparc64 SMP support.
|
|
*
|
|
* Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
|
|
*/
|
|
|
|
#include <linux/export.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/threads.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/init.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/cache.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/profile.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/ftrace.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/kgdb.h>
|
|
|
|
#include <asm/head.h>
|
|
#include <asm/ptrace.h>
|
|
#include <linux/atomic.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/cpudata.h>
|
|
#include <asm/hvtramp.h>
|
|
#include <asm/io.h>
|
|
#include <asm/timer.h>
|
|
#include <asm/setup.h>
|
|
|
|
#include <asm/irq.h>
|
|
#include <asm/irq_regs.h>
|
|
#include <asm/page.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/oplib.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/starfire.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/prom.h>
|
|
#include <asm/mdesc.h>
|
|
#include <asm/ldc.h>
|
|
#include <asm/hypervisor.h>
|
|
#include <asm/pcr.h>
|
|
|
|
#include "cpumap.h"
|
|
#include "kernel.h"
|
|
|
|
DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
|
|
cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
|
|
{ [0 ... NR_CPUS-1] = CPU_MASK_NONE };
|
|
|
|
EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
|
|
EXPORT_SYMBOL(cpu_core_map);
|
|
|
|
static cpumask_t smp_commenced_mask;
|
|
|
|
void smp_info(struct seq_file *m)
|
|
{
|
|
int i;
|
|
|
|
seq_printf(m, "State:\n");
|
|
for_each_online_cpu(i)
|
|
seq_printf(m, "CPU%d:\t\tonline\n", i);
|
|
}
|
|
|
|
void smp_bogo(struct seq_file *m)
|
|
{
|
|
int i;
|
|
|
|
for_each_online_cpu(i)
|
|
seq_printf(m,
|
|
"Cpu%dClkTck\t: %016lx\n",
|
|
i, cpu_data(i).clock_tick);
|
|
}
|
|
|
|
extern void setup_sparc64_timer(void);
|
|
|
|
static volatile unsigned long callin_flag = 0;
|
|
|
|
void smp_callin(void)
|
|
{
|
|
int cpuid = hard_smp_processor_id();
|
|
|
|
__local_per_cpu_offset = __per_cpu_offset(cpuid);
|
|
|
|
if (tlb_type == hypervisor)
|
|
sun4v_ktsb_register();
|
|
|
|
__flush_tlb_all();
|
|
|
|
setup_sparc64_timer();
|
|
|
|
if (cheetah_pcache_forced_on)
|
|
cheetah_enable_pcache();
|
|
|
|
callin_flag = 1;
|
|
__asm__ __volatile__("membar #Sync\n\t"
|
|
"flush %%g6" : : : "memory");
|
|
|
|
/* Clear this or we will die instantly when we
|
|
* schedule back to this idler...
|
|
*/
|
|
current_thread_info()->new_child = 0;
|
|
|
|
/* Attach to the address space of init_task. */
|
|
atomic_inc(&init_mm.mm_count);
|
|
current->active_mm = &init_mm;
|
|
|
|
/* inform the notifiers about the new cpu */
|
|
notify_cpu_starting(cpuid);
|
|
|
|
while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
|
|
rmb();
|
|
|
|
set_cpu_online(cpuid, true);
|
|
|
|
/* idle thread is expected to have preempt disabled */
|
|
preempt_disable();
|
|
|
|
local_irq_enable();
|
|
|
|
cpu_startup_entry(CPUHP_ONLINE);
|
|
}
|
|
|
|
void cpu_panic(void)
|
|
{
|
|
printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
|
|
panic("SMP bolixed\n");
|
|
}
|
|
|
|
/* This tick register synchronization scheme is taken entirely from
|
|
* the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
|
|
*
|
|
* The only change I've made is to rework it so that the master
|
|
* initiates the synchonization instead of the slave. -DaveM
|
|
*/
|
|
|
|
#define MASTER 0
|
|
#define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
|
|
|
|
#define NUM_ROUNDS 64 /* magic value */
|
|
#define NUM_ITERS 5 /* likewise */
|
|
|
|
static DEFINE_RAW_SPINLOCK(itc_sync_lock);
|
|
static unsigned long go[SLAVE + 1];
|
|
|
|
#define DEBUG_TICK_SYNC 0
|
|
|
|
static inline long get_delta (long *rt, long *master)
|
|
{
|
|
unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
|
|
unsigned long tcenter, t0, t1, tm;
|
|
unsigned long i;
|
|
|
|
for (i = 0; i < NUM_ITERS; i++) {
|
|
t0 = tick_ops->get_tick();
|
|
go[MASTER] = 1;
|
|
membar_safe("#StoreLoad");
|
|
while (!(tm = go[SLAVE]))
|
|
rmb();
|
|
go[SLAVE] = 0;
|
|
wmb();
|
|
t1 = tick_ops->get_tick();
|
|
|
|
if (t1 - t0 < best_t1 - best_t0)
|
|
best_t0 = t0, best_t1 = t1, best_tm = tm;
|
|
}
|
|
|
|
*rt = best_t1 - best_t0;
|
|
*master = best_tm - best_t0;
|
|
|
|
/* average best_t0 and best_t1 without overflow: */
|
|
tcenter = (best_t0/2 + best_t1/2);
|
|
if (best_t0 % 2 + best_t1 % 2 == 2)
|
|
tcenter++;
|
|
return tcenter - best_tm;
|
|
}
|
|
|
|
void smp_synchronize_tick_client(void)
|
|
{
|
|
long i, delta, adj, adjust_latency = 0, done = 0;
|
|
unsigned long flags, rt, master_time_stamp;
|
|
#if DEBUG_TICK_SYNC
|
|
struct {
|
|
long rt; /* roundtrip time */
|
|
long master; /* master's timestamp */
|
|
long diff; /* difference between midpoint and master's timestamp */
|
|
long lat; /* estimate of itc adjustment latency */
|
|
} t[NUM_ROUNDS];
|
|
#endif
|
|
|
|
go[MASTER] = 1;
|
|
|
|
while (go[MASTER])
|
|
rmb();
|
|
|
|
local_irq_save(flags);
|
|
{
|
|
for (i = 0; i < NUM_ROUNDS; i++) {
|
|
delta = get_delta(&rt, &master_time_stamp);
|
|
if (delta == 0)
|
|
done = 1; /* let's lock on to this... */
|
|
|
|
if (!done) {
|
|
if (i > 0) {
|
|
adjust_latency += -delta;
|
|
adj = -delta + adjust_latency/4;
|
|
} else
|
|
adj = -delta;
|
|
|
|
tick_ops->add_tick(adj);
|
|
}
|
|
#if DEBUG_TICK_SYNC
|
|
t[i].rt = rt;
|
|
t[i].master = master_time_stamp;
|
|
t[i].diff = delta;
|
|
t[i].lat = adjust_latency/4;
|
|
#endif
|
|
}
|
|
}
|
|
local_irq_restore(flags);
|
|
|
|
#if DEBUG_TICK_SYNC
|
|
for (i = 0; i < NUM_ROUNDS; i++)
|
|
printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
|
|
t[i].rt, t[i].master, t[i].diff, t[i].lat);
|
|
#endif
|
|
|
|
printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
|
|
"(last diff %ld cycles, maxerr %lu cycles)\n",
|
|
smp_processor_id(), delta, rt);
|
|
}
|
|
|
|
static void smp_start_sync_tick_client(int cpu);
|
|
|
|
static void smp_synchronize_one_tick(int cpu)
|
|
{
|
|
unsigned long flags, i;
|
|
|
|
go[MASTER] = 0;
|
|
|
|
smp_start_sync_tick_client(cpu);
|
|
|
|
/* wait for client to be ready */
|
|
while (!go[MASTER])
|
|
rmb();
|
|
|
|
/* now let the client proceed into his loop */
|
|
go[MASTER] = 0;
|
|
membar_safe("#StoreLoad");
|
|
|
|
raw_spin_lock_irqsave(&itc_sync_lock, flags);
|
|
{
|
|
for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
|
|
while (!go[MASTER])
|
|
rmb();
|
|
go[MASTER] = 0;
|
|
wmb();
|
|
go[SLAVE] = tick_ops->get_tick();
|
|
membar_safe("#StoreLoad");
|
|
}
|
|
}
|
|
raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
|
|
}
|
|
|
|
#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
|
|
static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
|
|
void **descrp)
|
|
{
|
|
extern unsigned long sparc64_ttable_tl0;
|
|
extern unsigned long kern_locked_tte_data;
|
|
struct hvtramp_descr *hdesc;
|
|
unsigned long trampoline_ra;
|
|
struct trap_per_cpu *tb;
|
|
u64 tte_vaddr, tte_data;
|
|
unsigned long hv_err;
|
|
int i;
|
|
|
|
hdesc = kzalloc(sizeof(*hdesc) +
|
|
(sizeof(struct hvtramp_mapping) *
|
|
num_kernel_image_mappings - 1),
|
|
GFP_KERNEL);
|
|
if (!hdesc) {
|
|
printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
|
|
"hvtramp_descr.\n");
|
|
return;
|
|
}
|
|
*descrp = hdesc;
|
|
|
|
hdesc->cpu = cpu;
|
|
hdesc->num_mappings = num_kernel_image_mappings;
|
|
|
|
tb = &trap_block[cpu];
|
|
|
|
hdesc->fault_info_va = (unsigned long) &tb->fault_info;
|
|
hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
|
|
|
|
hdesc->thread_reg = thread_reg;
|
|
|
|
tte_vaddr = (unsigned long) KERNBASE;
|
|
tte_data = kern_locked_tte_data;
|
|
|
|
for (i = 0; i < hdesc->num_mappings; i++) {
|
|
hdesc->maps[i].vaddr = tte_vaddr;
|
|
hdesc->maps[i].tte = tte_data;
|
|
tte_vaddr += 0x400000;
|
|
tte_data += 0x400000;
|
|
}
|
|
|
|
trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
|
|
|
|
hv_err = sun4v_cpu_start(cpu, trampoline_ra,
|
|
kimage_addr_to_ra(&sparc64_ttable_tl0),
|
|
__pa(hdesc));
|
|
if (hv_err)
|
|
printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
|
|
"gives error %lu\n", hv_err);
|
|
}
|
|
#endif
|
|
|
|
extern unsigned long sparc64_cpu_startup;
|
|
|
|
/* The OBP cpu startup callback truncates the 3rd arg cookie to
|
|
* 32-bits (I think) so to be safe we have it read the pointer
|
|
* contained here so we work on >4GB machines. -DaveM
|
|
*/
|
|
static struct thread_info *cpu_new_thread = NULL;
|
|
|
|
static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
|
|
{
|
|
unsigned long entry =
|
|
(unsigned long)(&sparc64_cpu_startup);
|
|
unsigned long cookie =
|
|
(unsigned long)(&cpu_new_thread);
|
|
void *descr = NULL;
|
|
int timeout, ret;
|
|
|
|
callin_flag = 0;
|
|
cpu_new_thread = task_thread_info(idle);
|
|
|
|
if (tlb_type == hypervisor) {
|
|
#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
|
|
if (ldom_domaining_enabled)
|
|
ldom_startcpu_cpuid(cpu,
|
|
(unsigned long) cpu_new_thread,
|
|
&descr);
|
|
else
|
|
#endif
|
|
prom_startcpu_cpuid(cpu, entry, cookie);
|
|
} else {
|
|
struct device_node *dp = of_find_node_by_cpuid(cpu);
|
|
|
|
prom_startcpu(dp->phandle, entry, cookie);
|
|
}
|
|
|
|
for (timeout = 0; timeout < 50000; timeout++) {
|
|
if (callin_flag)
|
|
break;
|
|
udelay(100);
|
|
}
|
|
|
|
if (callin_flag) {
|
|
ret = 0;
|
|
} else {
|
|
printk("Processor %d is stuck.\n", cpu);
|
|
ret = -ENODEV;
|
|
}
|
|
cpu_new_thread = NULL;
|
|
|
|
kfree(descr);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
|
|
{
|
|
u64 result, target;
|
|
int stuck, tmp;
|
|
|
|
if (this_is_starfire) {
|
|
/* map to real upaid */
|
|
cpu = (((cpu & 0x3c) << 1) |
|
|
((cpu & 0x40) >> 4) |
|
|
(cpu & 0x3));
|
|
}
|
|
|
|
target = (cpu << 14) | 0x70;
|
|
again:
|
|
/* Ok, this is the real Spitfire Errata #54.
|
|
* One must read back from a UDB internal register
|
|
* after writes to the UDB interrupt dispatch, but
|
|
* before the membar Sync for that write.
|
|
* So we use the high UDB control register (ASI 0x7f,
|
|
* ADDR 0x20) for the dummy read. -DaveM
|
|
*/
|
|
tmp = 0x40;
|
|
__asm__ __volatile__(
|
|
"wrpr %1, %2, %%pstate\n\t"
|
|
"stxa %4, [%0] %3\n\t"
|
|
"stxa %5, [%0+%8] %3\n\t"
|
|
"add %0, %8, %0\n\t"
|
|
"stxa %6, [%0+%8] %3\n\t"
|
|
"membar #Sync\n\t"
|
|
"stxa %%g0, [%7] %3\n\t"
|
|
"membar #Sync\n\t"
|
|
"mov 0x20, %%g1\n\t"
|
|
"ldxa [%%g1] 0x7f, %%g0\n\t"
|
|
"membar #Sync"
|
|
: "=r" (tmp)
|
|
: "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
|
|
"r" (data0), "r" (data1), "r" (data2), "r" (target),
|
|
"r" (0x10), "0" (tmp)
|
|
: "g1");
|
|
|
|
/* NOTE: PSTATE_IE is still clear. */
|
|
stuck = 100000;
|
|
do {
|
|
__asm__ __volatile__("ldxa [%%g0] %1, %0"
|
|
: "=r" (result)
|
|
: "i" (ASI_INTR_DISPATCH_STAT));
|
|
if (result == 0) {
|
|
__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
|
|
: : "r" (pstate));
|
|
return;
|
|
}
|
|
stuck -= 1;
|
|
if (stuck == 0)
|
|
break;
|
|
} while (result & 0x1);
|
|
__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
|
|
: : "r" (pstate));
|
|
if (stuck == 0) {
|
|
printk("CPU[%d]: mondo stuckage result[%016llx]\n",
|
|
smp_processor_id(), result);
|
|
} else {
|
|
udelay(2);
|
|
goto again;
|
|
}
|
|
}
|
|
|
|
static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
|
|
{
|
|
u64 *mondo, data0, data1, data2;
|
|
u16 *cpu_list;
|
|
u64 pstate;
|
|
int i;
|
|
|
|
__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
|
|
cpu_list = __va(tb->cpu_list_pa);
|
|
mondo = __va(tb->cpu_mondo_block_pa);
|
|
data0 = mondo[0];
|
|
data1 = mondo[1];
|
|
data2 = mondo[2];
|
|
for (i = 0; i < cnt; i++)
|
|
spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
|
|
}
|
|
|
|
/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
|
|
* packet, but we have no use for that. However we do take advantage of
|
|
* the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
|
|
*/
|
|
static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
|
|
{
|
|
int nack_busy_id, is_jbus, need_more;
|
|
u64 *mondo, pstate, ver, busy_mask;
|
|
u16 *cpu_list;
|
|
|
|
cpu_list = __va(tb->cpu_list_pa);
|
|
mondo = __va(tb->cpu_mondo_block_pa);
|
|
|
|
/* Unfortunately, someone at Sun had the brilliant idea to make the
|
|
* busy/nack fields hard-coded by ITID number for this Ultra-III
|
|
* derivative processor.
|
|
*/
|
|
__asm__ ("rdpr %%ver, %0" : "=r" (ver));
|
|
is_jbus = ((ver >> 32) == __JALAPENO_ID ||
|
|
(ver >> 32) == __SERRANO_ID);
|
|
|
|
__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
|
|
|
|
retry:
|
|
need_more = 0;
|
|
__asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
|
|
: : "r" (pstate), "i" (PSTATE_IE));
|
|
|
|
/* Setup the dispatch data registers. */
|
|
__asm__ __volatile__("stxa %0, [%3] %6\n\t"
|
|
"stxa %1, [%4] %6\n\t"
|
|
"stxa %2, [%5] %6\n\t"
|
|
"membar #Sync\n\t"
|
|
: /* no outputs */
|
|
: "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
|
|
"r" (0x40), "r" (0x50), "r" (0x60),
|
|
"i" (ASI_INTR_W));
|
|
|
|
nack_busy_id = 0;
|
|
busy_mask = 0;
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < cnt; i++) {
|
|
u64 target, nr;
|
|
|
|
nr = cpu_list[i];
|
|
if (nr == 0xffff)
|
|
continue;
|
|
|
|
target = (nr << 14) | 0x70;
|
|
if (is_jbus) {
|
|
busy_mask |= (0x1UL << (nr * 2));
|
|
} else {
|
|
target |= (nack_busy_id << 24);
|
|
busy_mask |= (0x1UL <<
|
|
(nack_busy_id * 2));
|
|
}
|
|
__asm__ __volatile__(
|
|
"stxa %%g0, [%0] %1\n\t"
|
|
"membar #Sync\n\t"
|
|
: /* no outputs */
|
|
: "r" (target), "i" (ASI_INTR_W));
|
|
nack_busy_id++;
|
|
if (nack_busy_id == 32) {
|
|
need_more = 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Now, poll for completion. */
|
|
{
|
|
u64 dispatch_stat, nack_mask;
|
|
long stuck;
|
|
|
|
stuck = 100000 * nack_busy_id;
|
|
nack_mask = busy_mask << 1;
|
|
do {
|
|
__asm__ __volatile__("ldxa [%%g0] %1, %0"
|
|
: "=r" (dispatch_stat)
|
|
: "i" (ASI_INTR_DISPATCH_STAT));
|
|
if (!(dispatch_stat & (busy_mask | nack_mask))) {
|
|
__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
|
|
: : "r" (pstate));
|
|
if (unlikely(need_more)) {
|
|
int i, this_cnt = 0;
|
|
for (i = 0; i < cnt; i++) {
|
|
if (cpu_list[i] == 0xffff)
|
|
continue;
|
|
cpu_list[i] = 0xffff;
|
|
this_cnt++;
|
|
if (this_cnt == 32)
|
|
break;
|
|
}
|
|
goto retry;
|
|
}
|
|
return;
|
|
}
|
|
if (!--stuck)
|
|
break;
|
|
} while (dispatch_stat & busy_mask);
|
|
|
|
__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
|
|
: : "r" (pstate));
|
|
|
|
if (dispatch_stat & busy_mask) {
|
|
/* Busy bits will not clear, continue instead
|
|
* of freezing up on this cpu.
|
|
*/
|
|
printk("CPU[%d]: mondo stuckage result[%016llx]\n",
|
|
smp_processor_id(), dispatch_stat);
|
|
} else {
|
|
int i, this_busy_nack = 0;
|
|
|
|
/* Delay some random time with interrupts enabled
|
|
* to prevent deadlock.
|
|
*/
|
|
udelay(2 * nack_busy_id);
|
|
|
|
/* Clear out the mask bits for cpus which did not
|
|
* NACK us.
|
|
*/
|
|
for (i = 0; i < cnt; i++) {
|
|
u64 check_mask, nr;
|
|
|
|
nr = cpu_list[i];
|
|
if (nr == 0xffff)
|
|
continue;
|
|
|
|
if (is_jbus)
|
|
check_mask = (0x2UL << (2*nr));
|
|
else
|
|
check_mask = (0x2UL <<
|
|
this_busy_nack);
|
|
if ((dispatch_stat & check_mask) == 0)
|
|
cpu_list[i] = 0xffff;
|
|
this_busy_nack += 2;
|
|
if (this_busy_nack == 64)
|
|
break;
|
|
}
|
|
|
|
goto retry;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Multi-cpu list version. */
|
|
static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
|
|
{
|
|
int retries, this_cpu, prev_sent, i, saw_cpu_error;
|
|
unsigned long status;
|
|
u16 *cpu_list;
|
|
|
|
this_cpu = smp_processor_id();
|
|
|
|
cpu_list = __va(tb->cpu_list_pa);
|
|
|
|
saw_cpu_error = 0;
|
|
retries = 0;
|
|
prev_sent = 0;
|
|
do {
|
|
int forward_progress, n_sent;
|
|
|
|
status = sun4v_cpu_mondo_send(cnt,
|
|
tb->cpu_list_pa,
|
|
tb->cpu_mondo_block_pa);
|
|
|
|
/* HV_EOK means all cpus received the xcall, we're done. */
|
|
if (likely(status == HV_EOK))
|
|
break;
|
|
|
|
/* First, see if we made any forward progress.
|
|
*
|
|
* The hypervisor indicates successful sends by setting
|
|
* cpu list entries to the value 0xffff.
|
|
*/
|
|
n_sent = 0;
|
|
for (i = 0; i < cnt; i++) {
|
|
if (likely(cpu_list[i] == 0xffff))
|
|
n_sent++;
|
|
}
|
|
|
|
forward_progress = 0;
|
|
if (n_sent > prev_sent)
|
|
forward_progress = 1;
|
|
|
|
prev_sent = n_sent;
|
|
|
|
/* If we get a HV_ECPUERROR, then one or more of the cpus
|
|
* in the list are in error state. Use the cpu_state()
|
|
* hypervisor call to find out which cpus are in error state.
|
|
*/
|
|
if (unlikely(status == HV_ECPUERROR)) {
|
|
for (i = 0; i < cnt; i++) {
|
|
long err;
|
|
u16 cpu;
|
|
|
|
cpu = cpu_list[i];
|
|
if (cpu == 0xffff)
|
|
continue;
|
|
|
|
err = sun4v_cpu_state(cpu);
|
|
if (err == HV_CPU_STATE_ERROR) {
|
|
saw_cpu_error = (cpu + 1);
|
|
cpu_list[i] = 0xffff;
|
|
}
|
|
}
|
|
} else if (unlikely(status != HV_EWOULDBLOCK))
|
|
goto fatal_mondo_error;
|
|
|
|
/* Don't bother rewriting the CPU list, just leave the
|
|
* 0xffff and non-0xffff entries in there and the
|
|
* hypervisor will do the right thing.
|
|
*
|
|
* Only advance timeout state if we didn't make any
|
|
* forward progress.
|
|
*/
|
|
if (unlikely(!forward_progress)) {
|
|
if (unlikely(++retries > 10000))
|
|
goto fatal_mondo_timeout;
|
|
|
|
/* Delay a little bit to let other cpus catch up
|
|
* on their cpu mondo queue work.
|
|
*/
|
|
udelay(2 * cnt);
|
|
}
|
|
} while (1);
|
|
|
|
if (unlikely(saw_cpu_error))
|
|
goto fatal_mondo_cpu_error;
|
|
|
|
return;
|
|
|
|
fatal_mondo_cpu_error:
|
|
printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
|
|
"(including %d) were in error state\n",
|
|
this_cpu, saw_cpu_error - 1);
|
|
return;
|
|
|
|
fatal_mondo_timeout:
|
|
printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
|
|
" progress after %d retries.\n",
|
|
this_cpu, retries);
|
|
goto dump_cpu_list_and_out;
|
|
|
|
fatal_mondo_error:
|
|
printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
|
|
this_cpu, status);
|
|
printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
|
|
"mondo_block_pa(%lx)\n",
|
|
this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
|
|
|
|
dump_cpu_list_and_out:
|
|
printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
|
|
for (i = 0; i < cnt; i++)
|
|
printk("%u ", cpu_list[i]);
|
|
printk("]\n");
|
|
}
|
|
|
|
static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
|
|
|
|
static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
|
|
{
|
|
struct trap_per_cpu *tb;
|
|
int this_cpu, i, cnt;
|
|
unsigned long flags;
|
|
u16 *cpu_list;
|
|
u64 *mondo;
|
|
|
|
/* We have to do this whole thing with interrupts fully disabled.
|
|
* Otherwise if we send an xcall from interrupt context it will
|
|
* corrupt both our mondo block and cpu list state.
|
|
*
|
|
* One consequence of this is that we cannot use timeout mechanisms
|
|
* that depend upon interrupts being delivered locally. So, for
|
|
* example, we cannot sample jiffies and expect it to advance.
|
|
*
|
|
* Fortunately, udelay() uses %stick/%tick so we can use that.
|
|
*/
|
|
local_irq_save(flags);
|
|
|
|
this_cpu = smp_processor_id();
|
|
tb = &trap_block[this_cpu];
|
|
|
|
mondo = __va(tb->cpu_mondo_block_pa);
|
|
mondo[0] = data0;
|
|
mondo[1] = data1;
|
|
mondo[2] = data2;
|
|
wmb();
|
|
|
|
cpu_list = __va(tb->cpu_list_pa);
|
|
|
|
/* Setup the initial cpu list. */
|
|
cnt = 0;
|
|
for_each_cpu(i, mask) {
|
|
if (i == this_cpu || !cpu_online(i))
|
|
continue;
|
|
cpu_list[cnt++] = i;
|
|
}
|
|
|
|
if (cnt)
|
|
xcall_deliver_impl(tb, cnt);
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/* Send cross call to all processors mentioned in MASK_P
|
|
* except self. Really, there are only two cases currently,
|
|
* "cpu_online_mask" and "mm_cpumask(mm)".
|
|
*/
|
|
static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
|
|
{
|
|
u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
|
|
|
|
xcall_deliver(data0, data1, data2, mask);
|
|
}
|
|
|
|
/* Send cross call to all processors except self. */
|
|
static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
|
|
{
|
|
smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
|
|
}
|
|
|
|
extern unsigned long xcall_sync_tick;
|
|
|
|
static void smp_start_sync_tick_client(int cpu)
|
|
{
|
|
xcall_deliver((u64) &xcall_sync_tick, 0, 0,
|
|
cpumask_of(cpu));
|
|
}
|
|
|
|
extern unsigned long xcall_call_function;
|
|
|
|
void arch_send_call_function_ipi_mask(const struct cpumask *mask)
|
|
{
|
|
xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
|
|
}
|
|
|
|
extern unsigned long xcall_call_function_single;
|
|
|
|
void arch_send_call_function_single_ipi(int cpu)
|
|
{
|
|
xcall_deliver((u64) &xcall_call_function_single, 0, 0,
|
|
cpumask_of(cpu));
|
|
}
|
|
|
|
void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
|
|
{
|
|
clear_softint(1 << irq);
|
|
generic_smp_call_function_interrupt();
|
|
}
|
|
|
|
void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
|
|
{
|
|
clear_softint(1 << irq);
|
|
generic_smp_call_function_single_interrupt();
|
|
}
|
|
|
|
static void tsb_sync(void *info)
|
|
{
|
|
struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
|
|
struct mm_struct *mm = info;
|
|
|
|
/* It is not valid to test "current->active_mm == mm" here.
|
|
*
|
|
* The value of "current" is not changed atomically with
|
|
* switch_mm(). But that's OK, we just need to check the
|
|
* current cpu's trap block PGD physical address.
|
|
*/
|
|
if (tp->pgd_paddr == __pa(mm->pgd))
|
|
tsb_context_switch(mm);
|
|
}
|
|
|
|
void smp_tsb_sync(struct mm_struct *mm)
|
|
{
|
|
smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
|
|
}
|
|
|
|
extern unsigned long xcall_flush_tlb_mm;
|
|
extern unsigned long xcall_flush_tlb_page;
|
|
extern unsigned long xcall_flush_tlb_kernel_range;
|
|
extern unsigned long xcall_fetch_glob_regs;
|
|
extern unsigned long xcall_fetch_glob_pmu;
|
|
extern unsigned long xcall_fetch_glob_pmu_n4;
|
|
extern unsigned long xcall_receive_signal;
|
|
extern unsigned long xcall_new_mmu_context_version;
|
|
#ifdef CONFIG_KGDB
|
|
extern unsigned long xcall_kgdb_capture;
|
|
#endif
|
|
|
|
#ifdef DCACHE_ALIASING_POSSIBLE
|
|
extern unsigned long xcall_flush_dcache_page_cheetah;
|
|
#endif
|
|
extern unsigned long xcall_flush_dcache_page_spitfire;
|
|
|
|
static inline void __local_flush_dcache_page(struct page *page)
|
|
{
|
|
#ifdef DCACHE_ALIASING_POSSIBLE
|
|
__flush_dcache_page(page_address(page),
|
|
((tlb_type == spitfire) &&
|
|
page_mapping(page) != NULL));
|
|
#else
|
|
if (page_mapping(page) != NULL &&
|
|
tlb_type == spitfire)
|
|
__flush_icache_page(__pa(page_address(page)));
|
|
#endif
|
|
}
|
|
|
|
void smp_flush_dcache_page_impl(struct page *page, int cpu)
|
|
{
|
|
int this_cpu;
|
|
|
|
if (tlb_type == hypervisor)
|
|
return;
|
|
|
|
#ifdef CONFIG_DEBUG_DCFLUSH
|
|
atomic_inc(&dcpage_flushes);
|
|
#endif
|
|
|
|
this_cpu = get_cpu();
|
|
|
|
if (cpu == this_cpu) {
|
|
__local_flush_dcache_page(page);
|
|
} else if (cpu_online(cpu)) {
|
|
void *pg_addr = page_address(page);
|
|
u64 data0 = 0;
|
|
|
|
if (tlb_type == spitfire) {
|
|
data0 = ((u64)&xcall_flush_dcache_page_spitfire);
|
|
if (page_mapping(page) != NULL)
|
|
data0 |= ((u64)1 << 32);
|
|
} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
|
|
#ifdef DCACHE_ALIASING_POSSIBLE
|
|
data0 = ((u64)&xcall_flush_dcache_page_cheetah);
|
|
#endif
|
|
}
|
|
if (data0) {
|
|
xcall_deliver(data0, __pa(pg_addr),
|
|
(u64) pg_addr, cpumask_of(cpu));
|
|
#ifdef CONFIG_DEBUG_DCFLUSH
|
|
atomic_inc(&dcpage_flushes_xcall);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
put_cpu();
|
|
}
|
|
|
|
void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
|
|
{
|
|
void *pg_addr;
|
|
u64 data0;
|
|
|
|
if (tlb_type == hypervisor)
|
|
return;
|
|
|
|
preempt_disable();
|
|
|
|
#ifdef CONFIG_DEBUG_DCFLUSH
|
|
atomic_inc(&dcpage_flushes);
|
|
#endif
|
|
data0 = 0;
|
|
pg_addr = page_address(page);
|
|
if (tlb_type == spitfire) {
|
|
data0 = ((u64)&xcall_flush_dcache_page_spitfire);
|
|
if (page_mapping(page) != NULL)
|
|
data0 |= ((u64)1 << 32);
|
|
} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
|
|
#ifdef DCACHE_ALIASING_POSSIBLE
|
|
data0 = ((u64)&xcall_flush_dcache_page_cheetah);
|
|
#endif
|
|
}
|
|
if (data0) {
|
|
xcall_deliver(data0, __pa(pg_addr),
|
|
(u64) pg_addr, cpu_online_mask);
|
|
#ifdef CONFIG_DEBUG_DCFLUSH
|
|
atomic_inc(&dcpage_flushes_xcall);
|
|
#endif
|
|
}
|
|
__local_flush_dcache_page(page);
|
|
|
|
preempt_enable();
|
|
}
|
|
|
|
void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
|
|
{
|
|
struct mm_struct *mm;
|
|
unsigned long flags;
|
|
|
|
clear_softint(1 << irq);
|
|
|
|
/* See if we need to allocate a new TLB context because
|
|
* the version of the one we are using is now out of date.
|
|
*/
|
|
mm = current->active_mm;
|
|
if (unlikely(!mm || (mm == &init_mm)))
|
|
return;
|
|
|
|
spin_lock_irqsave(&mm->context.lock, flags);
|
|
|
|
if (unlikely(!CTX_VALID(mm->context)))
|
|
get_new_mmu_context(mm);
|
|
|
|
spin_unlock_irqrestore(&mm->context.lock, flags);
|
|
|
|
load_secondary_context(mm);
|
|
__flush_tlb_mm(CTX_HWBITS(mm->context),
|
|
SECONDARY_CONTEXT);
|
|
}
|
|
|
|
void smp_new_mmu_context_version(void)
|
|
{
|
|
smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
|
|
}
|
|
|
|
#ifdef CONFIG_KGDB
|
|
void kgdb_roundup_cpus(unsigned long flags)
|
|
{
|
|
smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
|
|
}
|
|
#endif
|
|
|
|
void smp_fetch_global_regs(void)
|
|
{
|
|
smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
|
|
}
|
|
|
|
void smp_fetch_global_pmu(void)
|
|
{
|
|
if (tlb_type == hypervisor &&
|
|
sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
|
|
smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
|
|
else
|
|
smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
|
|
}
|
|
|
|
/* We know that the window frames of the user have been flushed
|
|
* to the stack before we get here because all callers of us
|
|
* are flush_tlb_*() routines, and these run after flush_cache_*()
|
|
* which performs the flushw.
|
|
*
|
|
* The SMP TLB coherency scheme we use works as follows:
|
|
*
|
|
* 1) mm->cpu_vm_mask is a bit mask of which cpus an address
|
|
* space has (potentially) executed on, this is the heuristic
|
|
* we use to avoid doing cross calls.
|
|
*
|
|
* Also, for flushing from kswapd and also for clones, we
|
|
* use cpu_vm_mask as the list of cpus to make run the TLB.
|
|
*
|
|
* 2) TLB context numbers are shared globally across all processors
|
|
* in the system, this allows us to play several games to avoid
|
|
* cross calls.
|
|
*
|
|
* One invariant is that when a cpu switches to a process, and
|
|
* that processes tsk->active_mm->cpu_vm_mask does not have the
|
|
* current cpu's bit set, that tlb context is flushed locally.
|
|
*
|
|
* If the address space is non-shared (ie. mm->count == 1) we avoid
|
|
* cross calls when we want to flush the currently running process's
|
|
* tlb state. This is done by clearing all cpu bits except the current
|
|
* processor's in current->mm->cpu_vm_mask and performing the
|
|
* flush locally only. This will force any subsequent cpus which run
|
|
* this task to flush the context from the local tlb if the process
|
|
* migrates to another cpu (again).
|
|
*
|
|
* 3) For shared address spaces (threads) and swapping we bite the
|
|
* bullet for most cases and perform the cross call (but only to
|
|
* the cpus listed in cpu_vm_mask).
|
|
*
|
|
* The performance gain from "optimizing" away the cross call for threads is
|
|
* questionable (in theory the big win for threads is the massive sharing of
|
|
* address space state across processors).
|
|
*/
|
|
|
|
/* This currently is only used by the hugetlb arch pre-fault
|
|
* hook on UltraSPARC-III+ and later when changing the pagesize
|
|
* bits of the context register for an address space.
|
|
*/
|
|
void smp_flush_tlb_mm(struct mm_struct *mm)
|
|
{
|
|
u32 ctx = CTX_HWBITS(mm->context);
|
|
int cpu = get_cpu();
|
|
|
|
if (atomic_read(&mm->mm_users) == 1) {
|
|
cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
|
|
goto local_flush_and_out;
|
|
}
|
|
|
|
smp_cross_call_masked(&xcall_flush_tlb_mm,
|
|
ctx, 0, 0,
|
|
mm_cpumask(mm));
|
|
|
|
local_flush_and_out:
|
|
__flush_tlb_mm(ctx, SECONDARY_CONTEXT);
|
|
|
|
put_cpu();
|
|
}
|
|
|
|
struct tlb_pending_info {
|
|
unsigned long ctx;
|
|
unsigned long nr;
|
|
unsigned long *vaddrs;
|
|
};
|
|
|
|
static void tlb_pending_func(void *info)
|
|
{
|
|
struct tlb_pending_info *t = info;
|
|
|
|
__flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
|
|
}
|
|
|
|
void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
|
|
{
|
|
u32 ctx = CTX_HWBITS(mm->context);
|
|
struct tlb_pending_info info;
|
|
int cpu = get_cpu();
|
|
|
|
info.ctx = ctx;
|
|
info.nr = nr;
|
|
info.vaddrs = vaddrs;
|
|
|
|
if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
|
|
cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
|
|
else
|
|
smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
|
|
&info, 1);
|
|
|
|
__flush_tlb_pending(ctx, nr, vaddrs);
|
|
|
|
put_cpu();
|
|
}
|
|
|
|
void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
|
|
{
|
|
unsigned long context = CTX_HWBITS(mm->context);
|
|
int cpu = get_cpu();
|
|
|
|
if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
|
|
cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
|
|
else
|
|
smp_cross_call_masked(&xcall_flush_tlb_page,
|
|
context, vaddr, 0,
|
|
mm_cpumask(mm));
|
|
__flush_tlb_page(context, vaddr);
|
|
|
|
put_cpu();
|
|
}
|
|
|
|
void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
|
|
{
|
|
start &= PAGE_MASK;
|
|
end = PAGE_ALIGN(end);
|
|
if (start != end) {
|
|
smp_cross_call(&xcall_flush_tlb_kernel_range,
|
|
0, start, end);
|
|
|
|
__flush_tlb_kernel_range(start, end);
|
|
}
|
|
}
|
|
|
|
/* CPU capture. */
|
|
/* #define CAPTURE_DEBUG */
|
|
extern unsigned long xcall_capture;
|
|
|
|
static atomic_t smp_capture_depth = ATOMIC_INIT(0);
|
|
static atomic_t smp_capture_registry = ATOMIC_INIT(0);
|
|
static unsigned long penguins_are_doing_time;
|
|
|
|
void smp_capture(void)
|
|
{
|
|
int result = atomic_add_ret(1, &smp_capture_depth);
|
|
|
|
if (result == 1) {
|
|
int ncpus = num_online_cpus();
|
|
|
|
#ifdef CAPTURE_DEBUG
|
|
printk("CPU[%d]: Sending penguins to jail...",
|
|
smp_processor_id());
|
|
#endif
|
|
penguins_are_doing_time = 1;
|
|
atomic_inc(&smp_capture_registry);
|
|
smp_cross_call(&xcall_capture, 0, 0, 0);
|
|
while (atomic_read(&smp_capture_registry) != ncpus)
|
|
rmb();
|
|
#ifdef CAPTURE_DEBUG
|
|
printk("done\n");
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void smp_release(void)
|
|
{
|
|
if (atomic_dec_and_test(&smp_capture_depth)) {
|
|
#ifdef CAPTURE_DEBUG
|
|
printk("CPU[%d]: Giving pardon to "
|
|
"imprisoned penguins\n",
|
|
smp_processor_id());
|
|
#endif
|
|
penguins_are_doing_time = 0;
|
|
membar_safe("#StoreLoad");
|
|
atomic_dec(&smp_capture_registry);
|
|
}
|
|
}
|
|
|
|
/* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
|
|
* set, so they can service tlb flush xcalls...
|
|
*/
|
|
extern void prom_world(int);
|
|
|
|
void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
|
|
{
|
|
clear_softint(1 << irq);
|
|
|
|
preempt_disable();
|
|
|
|
__asm__ __volatile__("flushw");
|
|
prom_world(1);
|
|
atomic_inc(&smp_capture_registry);
|
|
membar_safe("#StoreLoad");
|
|
while (penguins_are_doing_time)
|
|
rmb();
|
|
atomic_dec(&smp_capture_registry);
|
|
prom_world(0);
|
|
|
|
preempt_enable();
|
|
}
|
|
|
|
/* /proc/profile writes can call this, don't __init it please. */
|
|
int setup_profiling_timer(unsigned int multiplier)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
|
|
void __init smp_prepare_cpus(unsigned int max_cpus)
|
|
{
|
|
}
|
|
|
|
void smp_prepare_boot_cpu(void)
|
|
{
|
|
}
|
|
|
|
void __init smp_setup_processor_id(void)
|
|
{
|
|
if (tlb_type == spitfire)
|
|
xcall_deliver_impl = spitfire_xcall_deliver;
|
|
else if (tlb_type == cheetah || tlb_type == cheetah_plus)
|
|
xcall_deliver_impl = cheetah_xcall_deliver;
|
|
else
|
|
xcall_deliver_impl = hypervisor_xcall_deliver;
|
|
}
|
|
|
|
void smp_fill_in_sib_core_maps(void)
|
|
{
|
|
unsigned int i;
|
|
|
|
for_each_present_cpu(i) {
|
|
unsigned int j;
|
|
|
|
cpumask_clear(&cpu_core_map[i]);
|
|
if (cpu_data(i).core_id == 0) {
|
|
cpumask_set_cpu(i, &cpu_core_map[i]);
|
|
continue;
|
|
}
|
|
|
|
for_each_present_cpu(j) {
|
|
if (cpu_data(i).core_id ==
|
|
cpu_data(j).core_id)
|
|
cpumask_set_cpu(j, &cpu_core_map[i]);
|
|
}
|
|
}
|
|
|
|
for_each_present_cpu(i) {
|
|
unsigned int j;
|
|
|
|
cpumask_clear(&per_cpu(cpu_sibling_map, i));
|
|
if (cpu_data(i).proc_id == -1) {
|
|
cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
|
|
continue;
|
|
}
|
|
|
|
for_each_present_cpu(j) {
|
|
if (cpu_data(i).proc_id ==
|
|
cpu_data(j).proc_id)
|
|
cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
|
|
}
|
|
}
|
|
}
|
|
|
|
int __cpu_up(unsigned int cpu, struct task_struct *tidle)
|
|
{
|
|
int ret = smp_boot_one_cpu(cpu, tidle);
|
|
|
|
if (!ret) {
|
|
cpumask_set_cpu(cpu, &smp_commenced_mask);
|
|
while (!cpu_online(cpu))
|
|
mb();
|
|
if (!cpu_online(cpu)) {
|
|
ret = -ENODEV;
|
|
} else {
|
|
/* On SUN4V, writes to %tick and %stick are
|
|
* not allowed.
|
|
*/
|
|
if (tlb_type != hypervisor)
|
|
smp_synchronize_one_tick(cpu);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
void cpu_play_dead(void)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
unsigned long pstate;
|
|
|
|
idle_task_exit();
|
|
|
|
if (tlb_type == hypervisor) {
|
|
struct trap_per_cpu *tb = &trap_block[cpu];
|
|
|
|
sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
|
|
tb->cpu_mondo_pa, 0);
|
|
sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
|
|
tb->dev_mondo_pa, 0);
|
|
sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
|
|
tb->resum_mondo_pa, 0);
|
|
sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
|
|
tb->nonresum_mondo_pa, 0);
|
|
}
|
|
|
|
cpumask_clear_cpu(cpu, &smp_commenced_mask);
|
|
membar_safe("#Sync");
|
|
|
|
local_irq_disable();
|
|
|
|
__asm__ __volatile__(
|
|
"rdpr %%pstate, %0\n\t"
|
|
"wrpr %0, %1, %%pstate"
|
|
: "=r" (pstate)
|
|
: "i" (PSTATE_IE));
|
|
|
|
while (1)
|
|
barrier();
|
|
}
|
|
|
|
int __cpu_disable(void)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
cpuinfo_sparc *c;
|
|
int i;
|
|
|
|
for_each_cpu(i, &cpu_core_map[cpu])
|
|
cpumask_clear_cpu(cpu, &cpu_core_map[i]);
|
|
cpumask_clear(&cpu_core_map[cpu]);
|
|
|
|
for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
|
|
cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
|
|
cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
|
|
|
|
c = &cpu_data(cpu);
|
|
|
|
c->core_id = 0;
|
|
c->proc_id = -1;
|
|
|
|
smp_wmb();
|
|
|
|
/* Make sure no interrupts point to this cpu. */
|
|
fixup_irqs();
|
|
|
|
local_irq_enable();
|
|
mdelay(1);
|
|
local_irq_disable();
|
|
|
|
set_cpu_online(cpu, false);
|
|
|
|
cpu_map_rebuild();
|
|
|
|
return 0;
|
|
}
|
|
|
|
void __cpu_die(unsigned int cpu)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 100; i++) {
|
|
smp_rmb();
|
|
if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
|
|
break;
|
|
msleep(100);
|
|
}
|
|
if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
|
|
printk(KERN_ERR "CPU %u didn't die...\n", cpu);
|
|
} else {
|
|
#if defined(CONFIG_SUN_LDOMS)
|
|
unsigned long hv_err;
|
|
int limit = 100;
|
|
|
|
do {
|
|
hv_err = sun4v_cpu_stop(cpu);
|
|
if (hv_err == HV_EOK) {
|
|
set_cpu_present(cpu, false);
|
|
break;
|
|
}
|
|
} while (--limit > 0);
|
|
if (limit <= 0) {
|
|
printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
|
|
hv_err);
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void __init smp_cpus_done(unsigned int max_cpus)
|
|
{
|
|
}
|
|
|
|
void smp_send_reschedule(int cpu)
|
|
{
|
|
if (cpu == smp_processor_id()) {
|
|
WARN_ON_ONCE(preemptible());
|
|
set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
|
|
} else {
|
|
xcall_deliver((u64) &xcall_receive_signal,
|
|
0, 0, cpumask_of(cpu));
|
|
}
|
|
}
|
|
|
|
void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
|
|
{
|
|
clear_softint(1 << irq);
|
|
scheduler_ipi();
|
|
}
|
|
|
|
/* This is a nop because we capture all other cpus
|
|
* anyways when making the PROM active.
|
|
*/
|
|
void smp_send_stop(void)
|
|
{
|
|
}
|
|
|
|
/**
|
|
* pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
|
|
* @cpu: cpu to allocate for
|
|
* @size: size allocation in bytes
|
|
* @align: alignment
|
|
*
|
|
* Allocate @size bytes aligned at @align for cpu @cpu. This wrapper
|
|
* does the right thing for NUMA regardless of the current
|
|
* configuration.
|
|
*
|
|
* RETURNS:
|
|
* Pointer to the allocated area on success, NULL on failure.
|
|
*/
|
|
static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
|
|
size_t align)
|
|
{
|
|
const unsigned long goal = __pa(MAX_DMA_ADDRESS);
|
|
#ifdef CONFIG_NEED_MULTIPLE_NODES
|
|
int node = cpu_to_node(cpu);
|
|
void *ptr;
|
|
|
|
if (!node_online(node) || !NODE_DATA(node)) {
|
|
ptr = __alloc_bootmem(size, align, goal);
|
|
pr_info("cpu %d has no node %d or node-local memory\n",
|
|
cpu, node);
|
|
pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
|
|
cpu, size, __pa(ptr));
|
|
} else {
|
|
ptr = __alloc_bootmem_node(NODE_DATA(node),
|
|
size, align, goal);
|
|
pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
|
|
"%016lx\n", cpu, size, node, __pa(ptr));
|
|
}
|
|
return ptr;
|
|
#else
|
|
return __alloc_bootmem(size, align, goal);
|
|
#endif
|
|
}
|
|
|
|
static void __init pcpu_free_bootmem(void *ptr, size_t size)
|
|
{
|
|
free_bootmem(__pa(ptr), size);
|
|
}
|
|
|
|
static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
|
|
{
|
|
if (cpu_to_node(from) == cpu_to_node(to))
|
|
return LOCAL_DISTANCE;
|
|
else
|
|
return REMOTE_DISTANCE;
|
|
}
|
|
|
|
static void __init pcpu_populate_pte(unsigned long addr)
|
|
{
|
|
pgd_t *pgd = pgd_offset_k(addr);
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
|
|
pud = pud_offset(pgd, addr);
|
|
if (pud_none(*pud)) {
|
|
pmd_t *new;
|
|
|
|
new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
|
|
pud_populate(&init_mm, pud, new);
|
|
}
|
|
|
|
pmd = pmd_offset(pud, addr);
|
|
if (!pmd_present(*pmd)) {
|
|
pte_t *new;
|
|
|
|
new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
|
|
pmd_populate_kernel(&init_mm, pmd, new);
|
|
}
|
|
}
|
|
|
|
void __init setup_per_cpu_areas(void)
|
|
{
|
|
unsigned long delta;
|
|
unsigned int cpu;
|
|
int rc = -EINVAL;
|
|
|
|
if (pcpu_chosen_fc != PCPU_FC_PAGE) {
|
|
rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
|
|
PERCPU_DYNAMIC_RESERVE, 4 << 20,
|
|
pcpu_cpu_distance,
|
|
pcpu_alloc_bootmem,
|
|
pcpu_free_bootmem);
|
|
if (rc)
|
|
pr_warning("PERCPU: %s allocator failed (%d), "
|
|
"falling back to page size\n",
|
|
pcpu_fc_names[pcpu_chosen_fc], rc);
|
|
}
|
|
if (rc < 0)
|
|
rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
|
|
pcpu_alloc_bootmem,
|
|
pcpu_free_bootmem,
|
|
pcpu_populate_pte);
|
|
if (rc < 0)
|
|
panic("cannot initialize percpu area (err=%d)", rc);
|
|
|
|
delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
|
|
for_each_possible_cpu(cpu)
|
|
__per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
|
|
|
|
/* Setup %g5 for the boot cpu. */
|
|
__local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
|
|
|
|
of_fill_in_cpu_data();
|
|
if (tlb_type == hypervisor)
|
|
mdesc_fill_in_cpu_data(cpu_all_mask);
|
|
}
|