linux/arch/powerpc/kernel/exceptions-64s.S
Nicholas Piggin 7fa95f9ada powerpc/64s: system call support for scv/rfscv instructions
Add support for the scv instruction on POWER9 and later CPUs.

For now this implements the zeroth scv vector 'scv 0', as identical to
'sc' system calls, with the exception that LR is not preserved, nor
are volatile CR registers, and error is not indicated with CR0[SO],
but by returning a negative errno.

rfscv is implemented to return from scv type system calls. It can not
be used to return from sc system calls because those are defined to
preserve LR.

getpid syscall throughput on POWER9 is improved by 26% (428 to 318
cycles), largely due to reducing mtmsr and mtspr.

Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Fix ppc64e build]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200611081203.995112-3-npiggin@gmail.com
2020-07-22 23:00:27 +10:00

3288 lines
89 KiB
ArmAsm

/* SPDX-License-Identifier: GPL-2.0 */
/*
* This file contains the 64-bit "server" PowerPC variant
* of the low level exception handling including exception
* vectors, exception return, part of the slb and stab
* handling and other fixed offset specific things.
*
* This file is meant to be #included from head_64.S due to
* position dependent assembly.
*
* Most of this originates from head_64.S and thus has the same
* copyright history.
*
*/
#include <asm/hw_irq.h>
#include <asm/exception-64s.h>
#include <asm/ptrace.h>
#include <asm/cpuidle.h>
#include <asm/head-64.h>
#include <asm/feature-fixups.h>
#include <asm/kup.h>
/* PACA save area offsets (exgen, exmc, etc) */
#define EX_R9 0
#define EX_R10 8
#define EX_R11 16
#define EX_R12 24
#define EX_R13 32
#define EX_DAR 40
#define EX_DSISR 48
#define EX_CCR 52
#define EX_CFAR 56
#define EX_PPR 64
#define EX_CTR 72
.if EX_SIZE != 10
.error "EX_SIZE is wrong"
.endif
/*
* Following are fixed section helper macros.
*
* EXC_REAL_BEGIN/END - real, unrelocated exception vectors
* EXC_VIRT_BEGIN/END - virt (AIL), unrelocated exception vectors
* TRAMP_REAL_BEGIN - real, unrelocated helpers (virt may call these)
* TRAMP_VIRT_BEGIN - virt, unreloc helpers (in practice, real can use)
* EXC_COMMON - After switching to virtual, relocated mode.
*/
#define EXC_REAL_BEGIN(name, start, size) \
FIXED_SECTION_ENTRY_BEGIN_LOCATION(real_vectors, exc_real_##start##_##name, start, size)
#define EXC_REAL_END(name, start, size) \
FIXED_SECTION_ENTRY_END_LOCATION(real_vectors, exc_real_##start##_##name, start, size)
#define EXC_VIRT_BEGIN(name, start, size) \
FIXED_SECTION_ENTRY_BEGIN_LOCATION(virt_vectors, exc_virt_##start##_##name, start, size)
#define EXC_VIRT_END(name, start, size) \
FIXED_SECTION_ENTRY_END_LOCATION(virt_vectors, exc_virt_##start##_##name, start, size)
#define EXC_COMMON_BEGIN(name) \
USE_TEXT_SECTION(); \
.balign IFETCH_ALIGN_BYTES; \
.global name; \
_ASM_NOKPROBE_SYMBOL(name); \
DEFINE_FIXED_SYMBOL(name); \
name:
#define TRAMP_REAL_BEGIN(name) \
FIXED_SECTION_ENTRY_BEGIN(real_trampolines, name)
#define TRAMP_VIRT_BEGIN(name) \
FIXED_SECTION_ENTRY_BEGIN(virt_trampolines, name)
#define EXC_REAL_NONE(start, size) \
FIXED_SECTION_ENTRY_BEGIN_LOCATION(real_vectors, exc_real_##start##_##unused, start, size); \
FIXED_SECTION_ENTRY_END_LOCATION(real_vectors, exc_real_##start##_##unused, start, size)
#define EXC_VIRT_NONE(start, size) \
FIXED_SECTION_ENTRY_BEGIN_LOCATION(virt_vectors, exc_virt_##start##_##unused, start, size); \
FIXED_SECTION_ENTRY_END_LOCATION(virt_vectors, exc_virt_##start##_##unused, start, size)
/*
* We're short on space and time in the exception prolog, so we can't
* use the normal LOAD_REG_IMMEDIATE macro to load the address of label.
* Instead we get the base of the kernel from paca->kernelbase and or in the low
* part of label. This requires that the label be within 64KB of kernelbase, and
* that kernelbase be 64K aligned.
*/
#define LOAD_HANDLER(reg, label) \
ld reg,PACAKBASE(r13); /* get high part of &label */ \
ori reg,reg,FIXED_SYMBOL_ABS_ADDR(label)
#define __LOAD_HANDLER(reg, label) \
ld reg,PACAKBASE(r13); \
ori reg,reg,(ABS_ADDR(label))@l
/*
* Branches from unrelocated code (e.g., interrupts) to labels outside
* head-y require >64K offsets.
*/
#define __LOAD_FAR_HANDLER(reg, label) \
ld reg,PACAKBASE(r13); \
ori reg,reg,(ABS_ADDR(label))@l; \
addis reg,reg,(ABS_ADDR(label))@h
/*
* Branch to label using its 0xC000 address. This results in instruction
* address suitable for MSR[IR]=0 or 1, which allows relocation to be turned
* on using mtmsr rather than rfid.
*
* This could set the 0xc bits for !RELOCATABLE as an immediate, rather than
* load KBASE for a slight optimisation.
*/
#define BRANCH_TO_C000(reg, label) \
__LOAD_FAR_HANDLER(reg, label); \
mtctr reg; \
bctr
/*
* Interrupt code generation macros
*/
#define IVEC .L_IVEC_\name\() /* Interrupt vector address */
#define IHSRR .L_IHSRR_\name\() /* Sets SRR or HSRR registers */
#define IHSRR_IF_HVMODE .L_IHSRR_IF_HVMODE_\name\() /* HSRR if HV else SRR */
#define IAREA .L_IAREA_\name\() /* PACA save area */
#define IVIRT .L_IVIRT_\name\() /* Has virt mode entry point */
#define IISIDE .L_IISIDE_\name\() /* Uses SRR0/1 not DAR/DSISR */
#define IDAR .L_IDAR_\name\() /* Uses DAR (or SRR0) */
#define IDSISR .L_IDSISR_\name\() /* Uses DSISR (or SRR1) */
#define ISET_RI .L_ISET_RI_\name\() /* Run common code w/ MSR[RI]=1 */
#define IBRANCH_TO_COMMON .L_IBRANCH_TO_COMMON_\name\() /* ENTRY branch to common */
#define IREALMODE_COMMON .L_IREALMODE_COMMON_\name\() /* Common runs in realmode */
#define IMASK .L_IMASK_\name\() /* IRQ soft-mask bit */
#define IKVM_SKIP .L_IKVM_SKIP_\name\() /* Generate KVM skip handler */
#define IKVM_REAL .L_IKVM_REAL_\name\() /* Real entry tests KVM */
#define __IKVM_REAL(name) .L_IKVM_REAL_ ## name
#define IKVM_VIRT .L_IKVM_VIRT_\name\() /* Virt entry tests KVM */
#define ISTACK .L_ISTACK_\name\() /* Set regular kernel stack */
#define __ISTACK(name) .L_ISTACK_ ## name
#define IRECONCILE .L_IRECONCILE_\name\() /* Do RECONCILE_IRQ_STATE */
#define IKUAP .L_IKUAP_\name\() /* Do KUAP lock */
#define INT_DEFINE_BEGIN(n) \
.macro int_define_ ## n name
#define INT_DEFINE_END(n) \
.endm ; \
int_define_ ## n n ; \
do_define_int n
.macro do_define_int name
.ifndef IVEC
.error "IVEC not defined"
.endif
.ifndef IHSRR
IHSRR=0
.endif
.ifndef IHSRR_IF_HVMODE
IHSRR_IF_HVMODE=0
.endif
.ifndef IAREA
IAREA=PACA_EXGEN
.endif
.ifndef IVIRT
IVIRT=1
.endif
.ifndef IISIDE
IISIDE=0
.endif
.ifndef IDAR
IDAR=0
.endif
.ifndef IDSISR
IDSISR=0
.endif
.ifndef ISET_RI
ISET_RI=1
.endif
.ifndef IBRANCH_TO_COMMON
IBRANCH_TO_COMMON=1
.endif
.ifndef IREALMODE_COMMON
IREALMODE_COMMON=0
.else
.if ! IBRANCH_TO_COMMON
.error "IREALMODE_COMMON=1 but IBRANCH_TO_COMMON=0"
.endif
.endif
.ifndef IMASK
IMASK=0
.endif
.ifndef IKVM_SKIP
IKVM_SKIP=0
.endif
.ifndef IKVM_REAL
IKVM_REAL=0
.endif
.ifndef IKVM_VIRT
IKVM_VIRT=0
.endif
.ifndef ISTACK
ISTACK=1
.endif
.ifndef IRECONCILE
IRECONCILE=1
.endif
.ifndef IKUAP
IKUAP=1
.endif
.endm
#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
/*
* All interrupts which set HSRR registers, as well as SRESET and MCE and
* syscall when invoked with "sc 1" switch to MSR[HV]=1 (HVMODE) to be taken,
* so they all generally need to test whether they were taken in guest context.
*
* Note: SRESET and MCE may also be sent to the guest by the hypervisor, and be
* taken with MSR[HV]=0.
*
* Interrupts which set SRR registers (with the above exceptions) do not
* elevate to MSR[HV]=1 mode, though most can be taken when running with
* MSR[HV]=1 (e.g., bare metal kernel and userspace). So these interrupts do
* not need to test whether a guest is running because they get delivered to
* the guest directly, including nested HV KVM guests.
*
* The exception is PR KVM, where the guest runs with MSR[PR]=1 and the host
* runs with MSR[HV]=0, so the host takes all interrupts on behalf of the
* guest. PR KVM runs with LPCR[AIL]=0 which causes interrupts to always be
* delivered to the real-mode entry point, therefore such interrupts only test
* KVM in their real mode handlers, and only when PR KVM is possible.
*
* Interrupts that are taken in MSR[HV]=0 and escalate to MSR[HV]=1 are always
* delivered in real-mode when the MMU is in hash mode because the MMU
* registers are not set appropriately to translate host addresses. In nested
* radix mode these can be delivered in virt-mode as the host translations are
* used implicitly (see: effective LPID, effective PID).
*/
/*
* If an interrupt is taken while a guest is running, it is immediately routed
* to KVM to handle. If both HV and PR KVM arepossible, KVM interrupts go first
* to kvmppc_interrupt_hv, which handles the PR guest case.
*/
#define kvmppc_interrupt kvmppc_interrupt_hv
#else
#define kvmppc_interrupt kvmppc_interrupt_pr
#endif
.macro KVMTEST name
lbz r10,HSTATE_IN_GUEST(r13)
cmpwi r10,0
bne \name\()_kvm
.endm
.macro GEN_KVM name
.balign IFETCH_ALIGN_BYTES
\name\()_kvm:
.if IKVM_SKIP
cmpwi r10,KVM_GUEST_MODE_SKIP
beq 89f
.else
BEGIN_FTR_SECTION
ld r10,IAREA+EX_CFAR(r13)
std r10,HSTATE_CFAR(r13)
END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
.endif
ld r10,IAREA+EX_CTR(r13)
mtctr r10
BEGIN_FTR_SECTION
ld r10,IAREA+EX_PPR(r13)
std r10,HSTATE_PPR(r13)
END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
ld r11,IAREA+EX_R11(r13)
ld r12,IAREA+EX_R12(r13)
std r12,HSTATE_SCRATCH0(r13)
sldi r12,r9,32
ld r9,IAREA+EX_R9(r13)
ld r10,IAREA+EX_R10(r13)
/* HSRR variants have the 0x2 bit added to their trap number */
.if IHSRR_IF_HVMODE
BEGIN_FTR_SECTION
ori r12,r12,(IVEC + 0x2)
FTR_SECTION_ELSE
ori r12,r12,(IVEC)
ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
.elseif IHSRR
ori r12,r12,(IVEC+ 0x2)
.else
ori r12,r12,(IVEC)
.endif
b kvmppc_interrupt
.if IKVM_SKIP
89: mtocrf 0x80,r9
ld r10,IAREA+EX_CTR(r13)
mtctr r10
ld r9,IAREA+EX_R9(r13)
ld r10,IAREA+EX_R10(r13)
ld r11,IAREA+EX_R11(r13)
ld r12,IAREA+EX_R12(r13)
.if IHSRR_IF_HVMODE
BEGIN_FTR_SECTION
b kvmppc_skip_Hinterrupt
FTR_SECTION_ELSE
b kvmppc_skip_interrupt
ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
.elseif IHSRR
b kvmppc_skip_Hinterrupt
.else
b kvmppc_skip_interrupt
.endif
.endif
.endm
#else
.macro KVMTEST name
.endm
.macro GEN_KVM name
.endm
#endif
/*
* This is the BOOK3S interrupt entry code macro.
*
* This can result in one of several things happening:
* - Branch to the _common handler, relocated, in virtual mode.
* These are normal interrupts (synchronous and asynchronous) handled by
* the kernel.
* - Branch to KVM, relocated but real mode interrupts remain in real mode.
* These occur when HSTATE_IN_GUEST is set. The interrupt may be caused by
* / intended for host or guest kernel, but KVM must always be involved
* because the machine state is set for guest execution.
* - Branch to the masked handler, unrelocated.
* These occur when maskable asynchronous interrupts are taken with the
* irq_soft_mask set.
* - Branch to an "early" handler in real mode but relocated.
* This is done if early=1. MCE and HMI use these to handle errors in real
* mode.
* - Fall through and continue executing in real, unrelocated mode.
* This is done if early=2.
*/
.macro GEN_BRANCH_TO_COMMON name, virt
.if IREALMODE_COMMON
LOAD_HANDLER(r10, \name\()_common)
mtctr r10
bctr
.else
.if \virt
#ifndef CONFIG_RELOCATABLE
b \name\()_common_virt
#else
LOAD_HANDLER(r10, \name\()_common_virt)
mtctr r10
bctr
#endif
.else
LOAD_HANDLER(r10, \name\()_common_real)
mtctr r10
bctr
.endif
.endif
.endm
.macro GEN_INT_ENTRY name, virt, ool=0
SET_SCRATCH0(r13) /* save r13 */
GET_PACA(r13)
std r9,IAREA+EX_R9(r13) /* save r9 */
BEGIN_FTR_SECTION
mfspr r9,SPRN_PPR
END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
HMT_MEDIUM
std r10,IAREA+EX_R10(r13) /* save r10 - r12 */
BEGIN_FTR_SECTION
mfspr r10,SPRN_CFAR
END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
.if \ool
.if !\virt
b tramp_real_\name
.pushsection .text
TRAMP_REAL_BEGIN(tramp_real_\name)
.else
b tramp_virt_\name
.pushsection .text
TRAMP_VIRT_BEGIN(tramp_virt_\name)
.endif
.endif
BEGIN_FTR_SECTION
std r9,IAREA+EX_PPR(r13)
END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
BEGIN_FTR_SECTION
std r10,IAREA+EX_CFAR(r13)
END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
INTERRUPT_TO_KERNEL
mfctr r10
std r10,IAREA+EX_CTR(r13)
mfcr r9
std r11,IAREA+EX_R11(r13)
std r12,IAREA+EX_R12(r13)
/*
* DAR/DSISR, SCRATCH0 must be read before setting MSR[RI],
* because a d-side MCE will clobber those registers so is
* not recoverable if they are live.
*/
GET_SCRATCH0(r10)
std r10,IAREA+EX_R13(r13)
.if IDAR && !IISIDE
.if IHSRR
mfspr r10,SPRN_HDAR
.else
mfspr r10,SPRN_DAR
.endif
std r10,IAREA+EX_DAR(r13)
.endif
.if IDSISR && !IISIDE
.if IHSRR
mfspr r10,SPRN_HDSISR
.else
mfspr r10,SPRN_DSISR
.endif
stw r10,IAREA+EX_DSISR(r13)
.endif
.if IHSRR_IF_HVMODE
BEGIN_FTR_SECTION
mfspr r11,SPRN_HSRR0 /* save HSRR0 */
mfspr r12,SPRN_HSRR1 /* and HSRR1 */
FTR_SECTION_ELSE
mfspr r11,SPRN_SRR0 /* save SRR0 */
mfspr r12,SPRN_SRR1 /* and SRR1 */
ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
.elseif IHSRR
mfspr r11,SPRN_HSRR0 /* save HSRR0 */
mfspr r12,SPRN_HSRR1 /* and HSRR1 */
.else
mfspr r11,SPRN_SRR0 /* save SRR0 */
mfspr r12,SPRN_SRR1 /* and SRR1 */
.endif
.if IBRANCH_TO_COMMON
GEN_BRANCH_TO_COMMON \name \virt
.endif
.if \ool
.popsection
.endif
.endm
/*
* __GEN_COMMON_ENTRY is required to receive the branch from interrupt
* entry, except in the case of the real-mode handlers which require
* __GEN_REALMODE_COMMON_ENTRY.
*
* This switches to virtual mode and sets MSR[RI].
*/
.macro __GEN_COMMON_ENTRY name
DEFINE_FIXED_SYMBOL(\name\()_common_real)
\name\()_common_real:
.if IKVM_REAL
KVMTEST \name
.endif
ld r10,PACAKMSR(r13) /* get MSR value for kernel */
/* MSR[RI] is clear iff using SRR regs */
.if IHSRR == EXC_HV_OR_STD
BEGIN_FTR_SECTION
xori r10,r10,MSR_RI
END_FTR_SECTION_IFCLR(CPU_FTR_HVMODE)
.elseif ! IHSRR
xori r10,r10,MSR_RI
.endif
mtmsrd r10
.if IVIRT
.if IKVM_VIRT
b 1f /* skip the virt test coming from real */
.endif
.balign IFETCH_ALIGN_BYTES
DEFINE_FIXED_SYMBOL(\name\()_common_virt)
\name\()_common_virt:
.if IKVM_VIRT
KVMTEST \name
1:
.endif
.endif /* IVIRT */
.endm
/*
* Don't switch to virt mode. Used for early MCE and HMI handlers that
* want to run in real mode.
*/
.macro __GEN_REALMODE_COMMON_ENTRY name
DEFINE_FIXED_SYMBOL(\name\()_common_real)
\name\()_common_real:
.if IKVM_REAL
KVMTEST \name
.endif
.endm
.macro __GEN_COMMON_BODY name
.if IMASK
.if ! ISTACK
.error "No support for masked interrupt to use custom stack"
.endif
/* If coming from user, skip soft-mask tests. */
andi. r10,r12,MSR_PR
bne 2f
/* Kernel code running below __end_interrupts is implicitly
* soft-masked */
LOAD_HANDLER(r10, __end_interrupts)
cmpld r11,r10
li r10,IMASK
blt- 1f
/* Test the soft mask state against our interrupt's bit */
lbz r10,PACAIRQSOFTMASK(r13)
1: andi. r10,r10,IMASK
/* Associate vector numbers with bits in paca->irq_happened */
.if IVEC == 0x500 || IVEC == 0xea0
li r10,PACA_IRQ_EE
.elseif IVEC == 0x900
li r10,PACA_IRQ_DEC
.elseif IVEC == 0xa00 || IVEC == 0xe80
li r10,PACA_IRQ_DBELL
.elseif IVEC == 0xe60
li r10,PACA_IRQ_HMI
.elseif IVEC == 0xf00
li r10,PACA_IRQ_PMI
.else
.abort "Bad maskable vector"
.endif
.if IHSRR_IF_HVMODE
BEGIN_FTR_SECTION
bne masked_Hinterrupt
FTR_SECTION_ELSE
bne masked_interrupt
ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
.elseif IHSRR
bne masked_Hinterrupt
.else
bne masked_interrupt
.endif
.endif
.if ISTACK
andi. r10,r12,MSR_PR /* See if coming from user */
2: mr r10,r1 /* Save r1 */
subi r1,r1,INT_FRAME_SIZE /* alloc frame on kernel stack */
beq- 100f
ld r1,PACAKSAVE(r13) /* kernel stack to use */
100: tdgei r1,-INT_FRAME_SIZE /* trap if r1 is in userspace */
EMIT_BUG_ENTRY 100b,__FILE__,__LINE__,0
.endif
std r9,_CCR(r1) /* save CR in stackframe */
std r11,_NIP(r1) /* save SRR0 in stackframe */
std r12,_MSR(r1) /* save SRR1 in stackframe */
std r10,0(r1) /* make stack chain pointer */
std r0,GPR0(r1) /* save r0 in stackframe */
std r10,GPR1(r1) /* save r1 in stackframe */
.if ISET_RI
li r10,MSR_RI
mtmsrd r10,1 /* Set MSR_RI */
.endif
.if ISTACK
.if IKUAP
kuap_save_amr_and_lock r9, r10, cr1, cr0
.endif
beq 101f /* if from kernel mode */
ACCOUNT_CPU_USER_ENTRY(r13, r9, r10)
BEGIN_FTR_SECTION
ld r9,IAREA+EX_PPR(r13) /* Read PPR from paca */
std r9,_PPR(r1)
END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
101:
.else
.if IKUAP
kuap_save_amr_and_lock r9, r10, cr1
.endif
.endif
/* Save original regs values from save area to stack frame. */
ld r9,IAREA+EX_R9(r13) /* move r9, r10 to stackframe */
ld r10,IAREA+EX_R10(r13)
std r9,GPR9(r1)
std r10,GPR10(r1)
ld r9,IAREA+EX_R11(r13) /* move r11 - r13 to stackframe */
ld r10,IAREA+EX_R12(r13)
ld r11,IAREA+EX_R13(r13)
std r9,GPR11(r1)
std r10,GPR12(r1)
std r11,GPR13(r1)
SAVE_NVGPRS(r1)
.if IDAR
.if IISIDE
ld r10,_NIP(r1)
.else
ld r10,IAREA+EX_DAR(r13)
.endif
std r10,_DAR(r1)
.endif
.if IDSISR
.if IISIDE
ld r10,_MSR(r1)
lis r11,DSISR_SRR1_MATCH_64S@h
and r10,r10,r11
.else
lwz r10,IAREA+EX_DSISR(r13)
.endif
std r10,_DSISR(r1)
.endif
BEGIN_FTR_SECTION
ld r10,IAREA+EX_CFAR(r13)
std r10,ORIG_GPR3(r1)
END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
ld r10,IAREA+EX_CTR(r13)
std r10,_CTR(r1)
std r2,GPR2(r1) /* save r2 in stackframe */
SAVE_4GPRS(3, r1) /* save r3 - r6 in stackframe */
SAVE_2GPRS(7, r1) /* save r7, r8 in stackframe */
mflr r9 /* Get LR, later save to stack */
ld r2,PACATOC(r13) /* get kernel TOC into r2 */
std r9,_LINK(r1)
lbz r10,PACAIRQSOFTMASK(r13)
mfspr r11,SPRN_XER /* save XER in stackframe */
std r10,SOFTE(r1)
std r11,_XER(r1)
li r9,IVEC
std r9,_TRAP(r1) /* set trap number */
li r10,0
ld r11,exception_marker@toc(r2)
std r10,RESULT(r1) /* clear regs->result */
std r11,STACK_FRAME_OVERHEAD-16(r1) /* mark the frame */
.if ISTACK
ACCOUNT_STOLEN_TIME
.endif
.if IRECONCILE
RECONCILE_IRQ_STATE(r10, r11)
.endif
.endm
/*
* On entry r13 points to the paca, r9-r13 are saved in the paca,
* r9 contains the saved CR, r11 and r12 contain the saved SRR0 and
* SRR1, and relocation is on.
*
* If stack=0, then the stack is already set in r1, and r1 is saved in r10.
* PPR save and CPU accounting is not done for the !stack case (XXX why not?)
*/
.macro GEN_COMMON name
__GEN_COMMON_ENTRY \name
__GEN_COMMON_BODY \name
.endm
/*
* Restore all registers including H/SRR0/1 saved in a stack frame of a
* standard exception.
*/
.macro EXCEPTION_RESTORE_REGS hsrr=0
/* Move original SRR0 and SRR1 into the respective regs */
ld r9,_MSR(r1)
.if \hsrr
mtspr SPRN_HSRR1,r9
.else
mtspr SPRN_SRR1,r9
.endif
ld r9,_NIP(r1)
.if \hsrr
mtspr SPRN_HSRR0,r9
.else
mtspr SPRN_SRR0,r9
.endif
ld r9,_CTR(r1)
mtctr r9
ld r9,_XER(r1)
mtxer r9
ld r9,_LINK(r1)
mtlr r9
ld r9,_CCR(r1)
mtcr r9
REST_8GPRS(2, r1)
REST_4GPRS(10, r1)
REST_GPR(0, r1)
/* restore original r1. */
ld r1,GPR1(r1)
.endm
#define RUNLATCH_ON \
BEGIN_FTR_SECTION \
ld r3, PACA_THREAD_INFO(r13); \
ld r4,TI_LOCAL_FLAGS(r3); \
andi. r0,r4,_TLF_RUNLATCH; \
beql ppc64_runlatch_on_trampoline; \
END_FTR_SECTION_IFSET(CPU_FTR_CTRL)
/*
* When the idle code in power4_idle puts the CPU into NAP mode,
* it has to do so in a loop, and relies on the external interrupt
* and decrementer interrupt entry code to get it out of the loop.
* It sets the _TLF_NAPPING bit in current_thread_info()->local_flags
* to signal that it is in the loop and needs help to get out.
*/
#ifdef CONFIG_PPC_970_NAP
#define FINISH_NAP \
BEGIN_FTR_SECTION \
ld r11, PACA_THREAD_INFO(r13); \
ld r9,TI_LOCAL_FLAGS(r11); \
andi. r10,r9,_TLF_NAPPING; \
bnel power4_fixup_nap; \
END_FTR_SECTION_IFSET(CPU_FTR_CAN_NAP)
#else
#define FINISH_NAP
#endif
/*
* There are a few constraints to be concerned with.
* - Real mode exceptions code/data must be located at their physical location.
* - Virtual mode exceptions must be mapped at their 0xc000... location.
* - Fixed location code must not call directly beyond the __end_interrupts
* area when built with CONFIG_RELOCATABLE. LOAD_HANDLER / bctr sequence
* must be used.
* - LOAD_HANDLER targets must be within first 64K of physical 0 /
* virtual 0xc00...
* - Conditional branch targets must be within +/-32K of caller.
*
* "Virtual exceptions" run with relocation on (MSR_IR=1, MSR_DR=1), and
* therefore don't have to run in physically located code or rfid to
* virtual mode kernel code. However on relocatable kernels they do have
* to branch to KERNELBASE offset because the rest of the kernel (outside
* the exception vectors) may be located elsewhere.
*
* Virtual exceptions correspond with physical, except their entry points
* are offset by 0xc000000000000000 and also tend to get an added 0x4000
* offset applied. Virtual exceptions are enabled with the Alternate
* Interrupt Location (AIL) bit set in the LPCR. However this does not
* guarantee they will be delivered virtually. Some conditions (see the ISA)
* cause exceptions to be delivered in real mode.
*
* The scv instructions are a special case. They get a 0x3000 offset applied.
* scv exceptions have unique reentrancy properties, see below.
*
* It's impossible to receive interrupts below 0x300 via AIL.
*
* KVM: None of the virtual exceptions are from the guest. Anything that
* escalated to HV=1 from HV=0 is delivered via real mode handlers.
*
*
* We layout physical memory as follows:
* 0x0000 - 0x00ff : Secondary processor spin code
* 0x0100 - 0x18ff : Real mode pSeries interrupt vectors
* 0x1900 - 0x2fff : Real mode trampolines
* 0x3000 - 0x58ff : Relon (IR=1,DR=1) mode pSeries interrupt vectors
* 0x5900 - 0x6fff : Relon mode trampolines
* 0x7000 - 0x7fff : FWNMI data area
* 0x8000 - .... : Common interrupt handlers, remaining early
* setup code, rest of kernel.
*
* We could reclaim 0x4000-0x42ff for real mode trampolines if the space
* is necessary. Until then it's more consistent to explicitly put VIRT_NONE
* vectors there.
*/
OPEN_FIXED_SECTION(real_vectors, 0x0100, 0x1900)
OPEN_FIXED_SECTION(real_trampolines, 0x1900, 0x3000)
OPEN_FIXED_SECTION(virt_vectors, 0x3000, 0x5900)
OPEN_FIXED_SECTION(virt_trampolines, 0x5900, 0x7000)
#ifdef CONFIG_PPC_POWERNV
.globl start_real_trampolines
.globl end_real_trampolines
.globl start_virt_trampolines
.globl end_virt_trampolines
#endif
#if defined(CONFIG_PPC_PSERIES) || defined(CONFIG_PPC_POWERNV)
/*
* Data area reserved for FWNMI option.
* This address (0x7000) is fixed by the RPA.
* pseries and powernv need to keep the whole page from
* 0x7000 to 0x8000 free for use by the firmware
*/
ZERO_FIXED_SECTION(fwnmi_page, 0x7000, 0x8000)
OPEN_TEXT_SECTION(0x8000)
#else
OPEN_TEXT_SECTION(0x7000)
#endif
USE_FIXED_SECTION(real_vectors)
/*
* This is the start of the interrupt handlers for pSeries
* This code runs with relocation off.
* Code from here to __end_interrupts gets copied down to real
* address 0x100 when we are running a relocatable kernel.
* Therefore any relative branches in this section must only
* branch to labels in this section.
*/
.globl __start_interrupts
__start_interrupts:
/**
* Interrupt 0x3000 - System Call Vectored Interrupt (syscall).
* This is a synchronous interrupt invoked with the "scv" instruction. The
* system call does not alter the HV bit, so it is directed to the OS.
*
* Handling:
* scv instructions enter the kernel without changing EE, RI, ME, or HV.
* In particular, this means we can take a maskable interrupt at any point
* in the scv handler, which is unlike any other interrupt. This is solved
* by treating the instruction addresses below __end_interrupts as being
* soft-masked.
*
* AIL-0 mode scv exceptions go to 0x17000-0x17fff, but we set AIL-3 and
* ensure scv is never executed with relocation off, which means AIL-0
* should never happen.
*
* Before leaving the below __end_interrupts text, at least of the following
* must be true:
* - MSR[PR]=1 (i.e., return to userspace)
* - MSR_EE|MSR_RI is set (no reentrant exceptions)
* - Standard kernel environment is set up (stack, paca, etc)
*
* Call convention:
*
* syscall register convention is in Documentation/powerpc/syscall64-abi.rst
*/
EXC_VIRT_BEGIN(system_call_vectored, 0x3000, 0x1000)
/* SCV 0 */
mr r9,r13
GET_PACA(r13)
mflr r11
mfctr r12
li r10,IRQS_ALL_DISABLED
stb r10,PACAIRQSOFTMASK(r13)
#ifdef CONFIG_RELOCATABLE
b system_call_vectored_tramp
#else
b system_call_vectored_common
#endif
nop
/* SCV 1 - 127 */
.rept 127
mr r9,r13
GET_PACA(r13)
mflr r11
mfctr r12
li r10,IRQS_ALL_DISABLED
stb r10,PACAIRQSOFTMASK(r13)
li r0,-1 /* cause failure */
#ifdef CONFIG_RELOCATABLE
b system_call_vectored_sigill_tramp
#else
b system_call_vectored_sigill
#endif
.endr
EXC_VIRT_END(system_call_vectored, 0x3000, 0x1000)
#ifdef CONFIG_RELOCATABLE
TRAMP_VIRT_BEGIN(system_call_vectored_tramp)
__LOAD_HANDLER(r10, system_call_vectored_common)
mtctr r10
bctr
TRAMP_VIRT_BEGIN(system_call_vectored_sigill_tramp)
__LOAD_HANDLER(r10, system_call_vectored_sigill)
mtctr r10
bctr
#endif
/* No virt vectors corresponding with 0x0..0x100 */
EXC_VIRT_NONE(0x4000, 0x100)
/**
* Interrupt 0x100 - System Reset Interrupt (SRESET aka NMI).
* This is a non-maskable, asynchronous interrupt always taken in real-mode.
* It is caused by:
* - Wake from power-saving state, on powernv.
* - An NMI from another CPU, triggered by firmware or hypercall.
* - As crash/debug signal injected from BMC, firmware or hypervisor.
*
* Handling:
* Power-save wakeup is the only performance critical path, so this is
* determined quickly as possible first. In this case volatile registers
* can be discarded and SPRs like CFAR don't need to be read.
*
* If not a powersave wakeup, then it's run as a regular interrupt, however
* it uses its own stack and PACA save area to preserve the regular kernel
* environment for debugging.
*
* This interrupt is not maskable, so triggering it when MSR[RI] is clear,
* or SCRATCH0 is in use, etc. may cause a crash. It's also not entirely
* correct to switch to virtual mode to run the regular interrupt handler
* because it might be interrupted when the MMU is in a bad state (e.g., SLB
* is clear).
*
* FWNMI:
* PAPR specifies a "fwnmi" facility which sends the sreset to a different
* entry point with a different register set up. Some hypervisors will
* send the sreset to 0x100 in the guest if it is not fwnmi capable.
*
* KVM:
* Unlike most SRR interrupts, this may be taken by the host while executing
* in a guest, so a KVM test is required. KVM will pull the CPU out of guest
* mode and then raise the sreset.
*/
INT_DEFINE_BEGIN(system_reset)
IVEC=0x100
IAREA=PACA_EXNMI
IVIRT=0 /* no virt entry point */
/*
* MSR_RI is not enabled, because PACA_EXNMI and nmi stack is
* being used, so a nested NMI exception would corrupt it.
*/
ISET_RI=0
ISTACK=0
IRECONCILE=0
IKVM_REAL=1
INT_DEFINE_END(system_reset)
EXC_REAL_BEGIN(system_reset, 0x100, 0x100)
#ifdef CONFIG_PPC_P7_NAP
/*
* If running native on arch 2.06 or later, check if we are waking up
* from nap/sleep/winkle, and branch to idle handler. This tests SRR1
* bits 46:47. A non-0 value indicates that we are coming from a power
* saving state. The idle wakeup handler initially runs in real mode,
* but we branch to the 0xc000... address so we can turn on relocation
* with mtmsrd later, after SPRs are restored.
*
* Careful to minimise cost for the fast path (idle wakeup) while
* also avoiding clobbering CFAR for the debug path (non-idle).
*
* For the idle wake case volatile registers can be clobbered, which
* is why we use those initially. If it turns out to not be an idle
* wake, carefully put everything back the way it was, so we can use
* common exception macros to handle it.
*/
BEGIN_FTR_SECTION
SET_SCRATCH0(r13)
GET_PACA(r13)
std r3,PACA_EXNMI+0*8(r13)
std r4,PACA_EXNMI+1*8(r13)
std r5,PACA_EXNMI+2*8(r13)
mfspr r3,SPRN_SRR1
mfocrf r4,0x80
rlwinm. r5,r3,47-31,30,31
bne+ system_reset_idle_wake
/* Not powersave wakeup. Restore regs for regular interrupt handler. */
mtocrf 0x80,r4
ld r3,PACA_EXNMI+0*8(r13)
ld r4,PACA_EXNMI+1*8(r13)
ld r5,PACA_EXNMI+2*8(r13)
GET_SCRATCH0(r13)
END_FTR_SECTION_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
#endif
GEN_INT_ENTRY system_reset, virt=0
/*
* In theory, we should not enable relocation here if it was disabled
* in SRR1, because the MMU may not be configured to support it (e.g.,
* SLB may have been cleared). In practice, there should only be a few
* small windows where that's the case, and sreset is considered to
* be dangerous anyway.
*/
EXC_REAL_END(system_reset, 0x100, 0x100)
EXC_VIRT_NONE(0x4100, 0x100)
#ifdef CONFIG_PPC_P7_NAP
TRAMP_REAL_BEGIN(system_reset_idle_wake)
/* We are waking up from idle, so may clobber any volatile register */
cmpwi cr1,r5,2
bltlr cr1 /* no state loss, return to idle caller with r3=SRR1 */
BRANCH_TO_C000(r12, DOTSYM(idle_return_gpr_loss))
#endif
#ifdef CONFIG_PPC_PSERIES
/*
* Vectors for the FWNMI option. Share common code.
*/
TRAMP_REAL_BEGIN(system_reset_fwnmi)
/* XXX: fwnmi guest could run a nested/PR guest, so why no test? */
__IKVM_REAL(system_reset)=0
GEN_INT_ENTRY system_reset, virt=0
#endif /* CONFIG_PPC_PSERIES */
EXC_COMMON_BEGIN(system_reset_common)
__GEN_COMMON_ENTRY system_reset
/*
* Increment paca->in_nmi then enable MSR_RI. SLB or MCE will be able
* to recover, but nested NMI will notice in_nmi and not recover
* because of the use of the NMI stack. in_nmi reentrancy is tested in
* system_reset_exception.
*/
lhz r10,PACA_IN_NMI(r13)
addi r10,r10,1
sth r10,PACA_IN_NMI(r13)
li r10,MSR_RI
mtmsrd r10,1
mr r10,r1
ld r1,PACA_NMI_EMERG_SP(r13)
subi r1,r1,INT_FRAME_SIZE
__GEN_COMMON_BODY system_reset
/*
* Set IRQS_ALL_DISABLED unconditionally so irqs_disabled() does
* the right thing. We do not want to reconcile because that goes
* through irq tracing which we don't want in NMI.
*
* Save PACAIRQHAPPENED to RESULT (otherwise unused), and set HARD_DIS
* as we are running with MSR[EE]=0.
*/
li r10,IRQS_ALL_DISABLED
stb r10,PACAIRQSOFTMASK(r13)
lbz r10,PACAIRQHAPPENED(r13)
std r10,RESULT(r1)
ori r10,r10,PACA_IRQ_HARD_DIS
stb r10,PACAIRQHAPPENED(r13)
addi r3,r1,STACK_FRAME_OVERHEAD
bl system_reset_exception
/* Clear MSR_RI before setting SRR0 and SRR1. */
li r9,0
mtmsrd r9,1
/*
* MSR_RI is clear, now we can decrement paca->in_nmi.
*/
lhz r10,PACA_IN_NMI(r13)
subi r10,r10,1
sth r10,PACA_IN_NMI(r13)
/*
* Restore soft mask settings.
*/
ld r10,RESULT(r1)
stb r10,PACAIRQHAPPENED(r13)
ld r10,SOFTE(r1)
stb r10,PACAIRQSOFTMASK(r13)
kuap_restore_amr r9, r10
EXCEPTION_RESTORE_REGS
RFI_TO_USER_OR_KERNEL
GEN_KVM system_reset
/**
* Interrupt 0x200 - Machine Check Interrupt (MCE).
* This is a non-maskable interrupt always taken in real-mode. It can be
* synchronous or asynchronous, caused by hardware or software, and it may be
* taken in a power-saving state.
*
* Handling:
* Similarly to system reset, this uses its own stack and PACA save area,
* the difference is re-entrancy is allowed on the machine check stack.
*
* machine_check_early is run in real mode, and carefully decodes the
* machine check and tries to handle it (e.g., flush the SLB if there was an
* error detected there), determines if it was recoverable and logs the
* event.
*
* This early code does not "reconcile" irq soft-mask state like SRESET or
* regular interrupts do, so irqs_disabled() among other things may not work
* properly (irq disable/enable already doesn't work because irq tracing can
* not work in real mode).
*
* Then, depending on the execution context when the interrupt is taken, there
* are 3 main actions:
* - Executing in kernel mode. The event is queued with irq_work, which means
* it is handled when it is next safe to do so (i.e., the kernel has enabled
* interrupts), which could be immediately when the interrupt returns. This
* avoids nasty issues like switching to virtual mode when the MMU is in a
* bad state, or when executing OPAL code. (SRESET is exposed to such issues,
* but it has different priorities). Check to see if the CPU was in power
* save, and return via the wake up code if it was.
*
* - Executing in user mode. machine_check_exception is run like a normal
* interrupt handler, which processes the data generated by the early handler.
*
* - Executing in guest mode. The interrupt is run with its KVM test, and
* branches to KVM to deal with. KVM may queue the event for the host
* to report later.
*
* This interrupt is not maskable, so if it triggers when MSR[RI] is clear,
* or SCRATCH0 is in use, it may cause a crash.
*
* KVM:
* See SRESET.
*/
INT_DEFINE_BEGIN(machine_check_early)
IVEC=0x200
IAREA=PACA_EXMC
IVIRT=0 /* no virt entry point */
IREALMODE_COMMON=1
/*
* MSR_RI is not enabled, because PACA_EXMC is being used, so a
* nested machine check corrupts it. machine_check_common enables
* MSR_RI.
*/
ISET_RI=0
ISTACK=0
IDAR=1
IDSISR=1
IRECONCILE=0
IKUAP=0 /* We don't touch AMR here, we never go to virtual mode */
INT_DEFINE_END(machine_check_early)
INT_DEFINE_BEGIN(machine_check)
IVEC=0x200
IAREA=PACA_EXMC
IVIRT=0 /* no virt entry point */
ISET_RI=0
IDAR=1
IDSISR=1
IKVM_SKIP=1
IKVM_REAL=1
INT_DEFINE_END(machine_check)
EXC_REAL_BEGIN(machine_check, 0x200, 0x100)
GEN_INT_ENTRY machine_check_early, virt=0
EXC_REAL_END(machine_check, 0x200, 0x100)
EXC_VIRT_NONE(0x4200, 0x100)
#ifdef CONFIG_PPC_PSERIES
TRAMP_REAL_BEGIN(machine_check_fwnmi)
/* See comment at machine_check exception, don't turn on RI */
GEN_INT_ENTRY machine_check_early, virt=0
#endif
#define MACHINE_CHECK_HANDLER_WINDUP \
/* Clear MSR_RI before setting SRR0 and SRR1. */\
li r9,0; \
mtmsrd r9,1; /* Clear MSR_RI */ \
/* Decrement paca->in_mce now RI is clear. */ \
lhz r12,PACA_IN_MCE(r13); \
subi r12,r12,1; \
sth r12,PACA_IN_MCE(r13); \
EXCEPTION_RESTORE_REGS
EXC_COMMON_BEGIN(machine_check_early_common)
__GEN_REALMODE_COMMON_ENTRY machine_check_early
/*
* Switch to mc_emergency stack and handle re-entrancy (we limit
* the nested MCE upto level 4 to avoid stack overflow).
* Save MCE registers srr1, srr0, dar and dsisr and then set ME=1
*
* We use paca->in_mce to check whether this is the first entry or
* nested machine check. We increment paca->in_mce to track nested
* machine checks.
*
* If this is the first entry then set stack pointer to
* paca->mc_emergency_sp, otherwise r1 is already pointing to
* stack frame on mc_emergency stack.
*
* NOTE: We are here with MSR_ME=0 (off), which means we risk a
* checkstop if we get another machine check exception before we do
* rfid with MSR_ME=1.
*
* This interrupt can wake directly from idle. If that is the case,
* the machine check is handled then the idle wakeup code is called
* to restore state.
*/
lhz r10,PACA_IN_MCE(r13)
cmpwi r10,0 /* Are we in nested machine check */
cmpwi cr1,r10,MAX_MCE_DEPTH /* Are we at maximum nesting */
addi r10,r10,1 /* increment paca->in_mce */
sth r10,PACA_IN_MCE(r13)
mr r10,r1 /* Save r1 */
bne 1f
/* First machine check entry */
ld r1,PACAMCEMERGSP(r13) /* Use MC emergency stack */
1: /* Limit nested MCE to level 4 to avoid stack overflow */
bgt cr1,unrecoverable_mce /* Check if we hit limit of 4 */
subi r1,r1,INT_FRAME_SIZE /* alloc stack frame */
__GEN_COMMON_BODY machine_check_early
BEGIN_FTR_SECTION
bl enable_machine_check
END_FTR_SECTION_IFSET(CPU_FTR_HVMODE)
li r10,MSR_RI
mtmsrd r10,1
/*
* Set IRQS_ALL_DISABLED and save PACAIRQHAPPENED (see
* system_reset_common)
*/
li r10,IRQS_ALL_DISABLED
stb r10,PACAIRQSOFTMASK(r13)
lbz r10,PACAIRQHAPPENED(r13)
std r10,RESULT(r1)
ori r10,r10,PACA_IRQ_HARD_DIS
stb r10,PACAIRQHAPPENED(r13)
addi r3,r1,STACK_FRAME_OVERHEAD
bl machine_check_early
std r3,RESULT(r1) /* Save result */
ld r12,_MSR(r1)
/*
* Restore soft mask settings.
*/
ld r10,RESULT(r1)
stb r10,PACAIRQHAPPENED(r13)
ld r10,SOFTE(r1)
stb r10,PACAIRQSOFTMASK(r13)
#ifdef CONFIG_PPC_P7_NAP
/*
* Check if thread was in power saving mode. We come here when any
* of the following is true:
* a. thread wasn't in power saving mode
* b. thread was in power saving mode with no state loss,
* supervisor state loss or hypervisor state loss.
*
* Go back to nap/sleep/winkle mode again if (b) is true.
*/
BEGIN_FTR_SECTION
rlwinm. r11,r12,47-31,30,31
bne machine_check_idle_common
END_FTR_SECTION_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
#endif
#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
/*
* Check if we are coming from guest. If yes, then run the normal
* exception handler which will take the
* machine_check_kvm->kvmppc_interrupt branch to deliver the MC event
* to guest.
*/
lbz r11,HSTATE_IN_GUEST(r13)
cmpwi r11,0 /* Check if coming from guest */
bne mce_deliver /* continue if we are. */
#endif
/*
* Check if we are coming from userspace. If yes, then run the normal
* exception handler which will deliver the MC event to this kernel.
*/
andi. r11,r12,MSR_PR /* See if coming from user. */
bne mce_deliver /* continue in V mode if we are. */
/*
* At this point we are coming from kernel context.
* Queue up the MCE event and return from the interrupt.
* But before that, check if this is an un-recoverable exception.
* If yes, then stay on emergency stack and panic.
*/
andi. r11,r12,MSR_RI
beq unrecoverable_mce
/*
* Check if we have successfully handled/recovered from error, if not
* then stay on emergency stack and panic.
*/
ld r3,RESULT(r1) /* Load result */
cmpdi r3,0 /* see if we handled MCE successfully */
beq unrecoverable_mce /* if !handled then panic */
/*
* Return from MC interrupt.
* Queue up the MCE event so that we can log it later, while
* returning from kernel or opal call.
*/
bl machine_check_queue_event
MACHINE_CHECK_HANDLER_WINDUP
RFI_TO_KERNEL
mce_deliver:
/*
* This is a host user or guest MCE. Restore all registers, then
* run the "late" handler. For host user, this will run the
* machine_check_exception handler in virtual mode like a normal
* interrupt handler. For guest, this will trigger the KVM test
* and branch to the KVM interrupt similarly to other interrupts.
*/
BEGIN_FTR_SECTION
ld r10,ORIG_GPR3(r1)
mtspr SPRN_CFAR,r10
END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
MACHINE_CHECK_HANDLER_WINDUP
GEN_INT_ENTRY machine_check, virt=0
EXC_COMMON_BEGIN(machine_check_common)
/*
* Machine check is different because we use a different
* save area: PACA_EXMC instead of PACA_EXGEN.
*/
GEN_COMMON machine_check
FINISH_NAP
/* Enable MSR_RI when finished with PACA_EXMC */
li r10,MSR_RI
mtmsrd r10,1
addi r3,r1,STACK_FRAME_OVERHEAD
bl machine_check_exception
b interrupt_return
GEN_KVM machine_check
#ifdef CONFIG_PPC_P7_NAP
/*
* This is an idle wakeup. Low level machine check has already been
* done. Queue the event then call the idle code to do the wake up.
*/
EXC_COMMON_BEGIN(machine_check_idle_common)
bl machine_check_queue_event
/*
* GPR-loss wakeups are relatively straightforward, because the
* idle sleep code has saved all non-volatile registers on its
* own stack, and r1 in PACAR1.
*
* For no-loss wakeups the r1 and lr registers used by the
* early machine check handler have to be restored first. r2 is
* the kernel TOC, so no need to restore it.
*
* Then decrement MCE nesting after finishing with the stack.
*/
ld r3,_MSR(r1)
ld r4,_LINK(r1)
ld r1,GPR1(r1)
lhz r11,PACA_IN_MCE(r13)
subi r11,r11,1
sth r11,PACA_IN_MCE(r13)
mtlr r4
rlwinm r10,r3,47-31,30,31
cmpwi cr1,r10,2
bltlr cr1 /* no state loss, return to idle caller with r3=SRR1 */
b idle_return_gpr_loss
#endif
EXC_COMMON_BEGIN(unrecoverable_mce)
/*
* We are going down. But there are chances that we might get hit by
* another MCE during panic path and we may run into unstable state
* with no way out. Hence, turn ME bit off while going down, so that
* when another MCE is hit during panic path, system will checkstop
* and hypervisor will get restarted cleanly by SP.
*/
BEGIN_FTR_SECTION
li r10,0 /* clear MSR_RI */
mtmsrd r10,1
bl disable_machine_check
END_FTR_SECTION_IFSET(CPU_FTR_HVMODE)
ld r10,PACAKMSR(r13)
li r3,MSR_ME
andc r10,r10,r3
mtmsrd r10
lhz r12,PACA_IN_MCE(r13)
subi r12,r12,1
sth r12,PACA_IN_MCE(r13)
/* Invoke machine_check_exception to print MCE event and panic. */
addi r3,r1,STACK_FRAME_OVERHEAD
bl machine_check_exception
/*
* We will not reach here. Even if we did, there is no way out.
* Call unrecoverable_exception and die.
*/
addi r3,r1,STACK_FRAME_OVERHEAD
bl unrecoverable_exception
b .
/**
* Interrupt 0x300 - Data Storage Interrupt (DSI).
* This is a synchronous interrupt generated due to a data access exception,
* e.g., a load orstore which does not have a valid page table entry with
* permissions. DAWR matches also fault here, as do RC updates, and minor misc
* errors e.g., copy/paste, AMO, certain invalid CI accesses, etc.
*
* Handling:
* - Hash MMU
* Go to do_hash_page first to see if the HPT can be filled from an entry in
* the Linux page table. Hash faults can hit in kernel mode in a fairly
* arbitrary state (e.g., interrupts disabled, locks held) when accessing
* "non-bolted" regions, e.g., vmalloc space. However these should always be
* backed by Linux page tables.
*
* If none is found, do a Linux page fault. Linux page faults can happen in
* kernel mode due to user copy operations of course.
*
* - Radix MMU
* The hardware loads from the Linux page table directly, so a fault goes
* immediately to Linux page fault.
*
* Conditions like DAWR match are handled on the way in to Linux page fault.
*/
INT_DEFINE_BEGIN(data_access)
IVEC=0x300
IDAR=1
IDSISR=1
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
IKVM_SKIP=1
IKVM_REAL=1
#endif
INT_DEFINE_END(data_access)
EXC_REAL_BEGIN(data_access, 0x300, 0x80)
GEN_INT_ENTRY data_access, virt=0
EXC_REAL_END(data_access, 0x300, 0x80)
EXC_VIRT_BEGIN(data_access, 0x4300, 0x80)
GEN_INT_ENTRY data_access, virt=1
EXC_VIRT_END(data_access, 0x4300, 0x80)
EXC_COMMON_BEGIN(data_access_common)
GEN_COMMON data_access
ld r4,_DAR(r1)
ld r5,_DSISR(r1)
BEGIN_MMU_FTR_SECTION
ld r6,_MSR(r1)
li r3,0x300
b do_hash_page /* Try to handle as hpte fault */
MMU_FTR_SECTION_ELSE
b handle_page_fault
ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX)
GEN_KVM data_access
/**
* Interrupt 0x380 - Data Segment Interrupt (DSLB).
* This is a synchronous interrupt in response to an MMU fault missing SLB
* entry for HPT, or an address outside RPT translation range.
*
* Handling:
* - HPT:
* This refills the SLB, or reports an access fault similarly to a bad page
* fault. When coming from user-mode, the SLB handler may access any kernel
* data, though it may itself take a DSLB. When coming from kernel mode,
* recursive faults must be avoided so access is restricted to the kernel
* image text/data, kernel stack, and any data allocated below
* ppc64_bolted_size (first segment). The kernel handler must avoid stomping
* on user-handler data structures.
*
* A dedicated save area EXSLB is used (XXX: but it actually need not be
* these days, we could use EXGEN).
*/
INT_DEFINE_BEGIN(data_access_slb)
IVEC=0x380
IAREA=PACA_EXSLB
IRECONCILE=0
IDAR=1
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
IKVM_SKIP=1
IKVM_REAL=1
#endif
INT_DEFINE_END(data_access_slb)
EXC_REAL_BEGIN(data_access_slb, 0x380, 0x80)
GEN_INT_ENTRY data_access_slb, virt=0
EXC_REAL_END(data_access_slb, 0x380, 0x80)
EXC_VIRT_BEGIN(data_access_slb, 0x4380, 0x80)
GEN_INT_ENTRY data_access_slb, virt=1
EXC_VIRT_END(data_access_slb, 0x4380, 0x80)
EXC_COMMON_BEGIN(data_access_slb_common)
GEN_COMMON data_access_slb
ld r4,_DAR(r1)
addi r3,r1,STACK_FRAME_OVERHEAD
BEGIN_MMU_FTR_SECTION
/* HPT case, do SLB fault */
bl do_slb_fault
cmpdi r3,0
bne- 1f
b fast_interrupt_return
1: /* Error case */
MMU_FTR_SECTION_ELSE
/* Radix case, access is outside page table range */
li r3,-EFAULT
ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX)
std r3,RESULT(r1)
RECONCILE_IRQ_STATE(r10, r11)
ld r4,_DAR(r1)
ld r5,RESULT(r1)
addi r3,r1,STACK_FRAME_OVERHEAD
bl do_bad_slb_fault
b interrupt_return
GEN_KVM data_access_slb
/**
* Interrupt 0x400 - Instruction Storage Interrupt (ISI).
* This is a synchronous interrupt in response to an MMU fault due to an
* instruction fetch.
*
* Handling:
* Similar to DSI, though in response to fetch. The faulting address is found
* in SRR0 (rather than DAR), and status in SRR1 (rather than DSISR).
*/
INT_DEFINE_BEGIN(instruction_access)
IVEC=0x400
IISIDE=1
IDAR=1
IDSISR=1
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
IKVM_REAL=1
#endif
INT_DEFINE_END(instruction_access)
EXC_REAL_BEGIN(instruction_access, 0x400, 0x80)
GEN_INT_ENTRY instruction_access, virt=0
EXC_REAL_END(instruction_access, 0x400, 0x80)
EXC_VIRT_BEGIN(instruction_access, 0x4400, 0x80)
GEN_INT_ENTRY instruction_access, virt=1
EXC_VIRT_END(instruction_access, 0x4400, 0x80)
EXC_COMMON_BEGIN(instruction_access_common)
GEN_COMMON instruction_access
ld r4,_DAR(r1)
ld r5,_DSISR(r1)
BEGIN_MMU_FTR_SECTION
ld r6,_MSR(r1)
li r3,0x400
b do_hash_page /* Try to handle as hpte fault */
MMU_FTR_SECTION_ELSE
b handle_page_fault
ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX)
GEN_KVM instruction_access
/**
* Interrupt 0x480 - Instruction Segment Interrupt (ISLB).
* This is a synchronous interrupt in response to an MMU fault due to an
* instruction fetch.
*
* Handling:
* Similar to DSLB, though in response to fetch. The faulting address is found
* in SRR0 (rather than DAR).
*/
INT_DEFINE_BEGIN(instruction_access_slb)
IVEC=0x480
IAREA=PACA_EXSLB
IRECONCILE=0
IISIDE=1
IDAR=1
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
IKVM_REAL=1
#endif
INT_DEFINE_END(instruction_access_slb)
EXC_REAL_BEGIN(instruction_access_slb, 0x480, 0x80)
GEN_INT_ENTRY instruction_access_slb, virt=0
EXC_REAL_END(instruction_access_slb, 0x480, 0x80)
EXC_VIRT_BEGIN(instruction_access_slb, 0x4480, 0x80)
GEN_INT_ENTRY instruction_access_slb, virt=1
EXC_VIRT_END(instruction_access_slb, 0x4480, 0x80)
EXC_COMMON_BEGIN(instruction_access_slb_common)
GEN_COMMON instruction_access_slb
ld r4,_DAR(r1)
addi r3,r1,STACK_FRAME_OVERHEAD
BEGIN_MMU_FTR_SECTION
/* HPT case, do SLB fault */
bl do_slb_fault
cmpdi r3,0
bne- 1f
b fast_interrupt_return
1: /* Error case */
MMU_FTR_SECTION_ELSE
/* Radix case, access is outside page table range */
li r3,-EFAULT
ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX)
std r3,RESULT(r1)
RECONCILE_IRQ_STATE(r10, r11)
ld r4,_DAR(r1)
ld r5,RESULT(r1)
addi r3,r1,STACK_FRAME_OVERHEAD
bl do_bad_slb_fault
b interrupt_return
GEN_KVM instruction_access_slb
/**
* Interrupt 0x500 - External Interrupt.
* This is an asynchronous maskable interrupt in response to an "external
* exception" from the interrupt controller or hypervisor (e.g., device
* interrupt). It is maskable in hardware by clearing MSR[EE], and
* soft-maskable with IRQS_DISABLED mask (i.e., local_irq_disable()).
*
* When running in HV mode, Linux sets up the LPCR[LPES] bit such that
* interrupts are delivered with HSRR registers, guests use SRRs, which
* reqiures IHSRR_IF_HVMODE.
*
* On bare metal POWER9 and later, Linux sets the LPCR[HVICE] bit such that
* external interrupts are delivered as Hypervisor Virtualization Interrupts
* rather than External Interrupts.
*
* Handling:
* This calls into Linux IRQ handler. NVGPRs are not saved to reduce overhead,
* because registers at the time of the interrupt are not so important as it is
* asynchronous.
*
* If soft masked, the masked handler will note the pending interrupt for
* replay, and clear MSR[EE] in the interrupted context.
*/
INT_DEFINE_BEGIN(hardware_interrupt)
IVEC=0x500
IHSRR_IF_HVMODE=1
IMASK=IRQS_DISABLED
IKVM_REAL=1
IKVM_VIRT=1
INT_DEFINE_END(hardware_interrupt)
EXC_REAL_BEGIN(hardware_interrupt, 0x500, 0x100)
GEN_INT_ENTRY hardware_interrupt, virt=0
EXC_REAL_END(hardware_interrupt, 0x500, 0x100)
EXC_VIRT_BEGIN(hardware_interrupt, 0x4500, 0x100)
GEN_INT_ENTRY hardware_interrupt, virt=1
EXC_VIRT_END(hardware_interrupt, 0x4500, 0x100)
EXC_COMMON_BEGIN(hardware_interrupt_common)
GEN_COMMON hardware_interrupt
FINISH_NAP
RUNLATCH_ON
addi r3,r1,STACK_FRAME_OVERHEAD
bl do_IRQ
b interrupt_return
GEN_KVM hardware_interrupt
/**
* Interrupt 0x600 - Alignment Interrupt
* This is a synchronous interrupt in response to data alignment fault.
*/
INT_DEFINE_BEGIN(alignment)
IVEC=0x600
IDAR=1
IDSISR=1
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
IKVM_REAL=1
#endif
INT_DEFINE_END(alignment)
EXC_REAL_BEGIN(alignment, 0x600, 0x100)
GEN_INT_ENTRY alignment, virt=0
EXC_REAL_END(alignment, 0x600, 0x100)
EXC_VIRT_BEGIN(alignment, 0x4600, 0x100)
GEN_INT_ENTRY alignment, virt=1
EXC_VIRT_END(alignment, 0x4600, 0x100)
EXC_COMMON_BEGIN(alignment_common)
GEN_COMMON alignment
addi r3,r1,STACK_FRAME_OVERHEAD
bl alignment_exception
REST_NVGPRS(r1) /* instruction emulation may change GPRs */
b interrupt_return
GEN_KVM alignment
/**
* Interrupt 0x700 - Program Interrupt (program check).
* This is a synchronous interrupt in response to various instruction faults:
* traps, privilege errors, TM errors, floating point exceptions.
*
* Handling:
* This interrupt may use the "emergency stack" in some cases when being taken
* from kernel context, which complicates handling.
*/
INT_DEFINE_BEGIN(program_check)
IVEC=0x700
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
IKVM_REAL=1
#endif
INT_DEFINE_END(program_check)
EXC_REAL_BEGIN(program_check, 0x700, 0x100)
GEN_INT_ENTRY program_check, virt=0
EXC_REAL_END(program_check, 0x700, 0x100)
EXC_VIRT_BEGIN(program_check, 0x4700, 0x100)
GEN_INT_ENTRY program_check, virt=1
EXC_VIRT_END(program_check, 0x4700, 0x100)
EXC_COMMON_BEGIN(program_check_common)
__GEN_COMMON_ENTRY program_check
/*
* It's possible to receive a TM Bad Thing type program check with
* userspace register values (in particular r1), but with SRR1 reporting
* that we came from the kernel. Normally that would confuse the bad
* stack logic, and we would report a bad kernel stack pointer. Instead
* we switch to the emergency stack if we're taking a TM Bad Thing from
* the kernel.
*/
andi. r10,r12,MSR_PR
bne 2f /* If userspace, go normal path */
andis. r10,r12,(SRR1_PROGTM)@h
bne 1f /* If TM, emergency */
cmpdi r1,-INT_FRAME_SIZE /* check if r1 is in userspace */
blt 2f /* normal path if not */
/* Use the emergency stack */
1: andi. r10,r12,MSR_PR /* Set CR0 correctly for label */
/* 3 in EXCEPTION_PROLOG_COMMON */
mr r10,r1 /* Save r1 */
ld r1,PACAEMERGSP(r13) /* Use emergency stack */
subi r1,r1,INT_FRAME_SIZE /* alloc stack frame */
__ISTACK(program_check)=0
__GEN_COMMON_BODY program_check
b 3f
2:
__ISTACK(program_check)=1
__GEN_COMMON_BODY program_check
3:
addi r3,r1,STACK_FRAME_OVERHEAD
bl program_check_exception
REST_NVGPRS(r1) /* instruction emulation may change GPRs */
b interrupt_return
GEN_KVM program_check
/*
* Interrupt 0x800 - Floating-Point Unavailable Interrupt.
* This is a synchronous interrupt in response to executing an fp instruction
* with MSR[FP]=0.
*
* Handling:
* This will load FP registers and enable the FP bit if coming from userspace,
* otherwise report a bad kernel use of FP.
*/
INT_DEFINE_BEGIN(fp_unavailable)
IVEC=0x800
IRECONCILE=0
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
IKVM_REAL=1
#endif
INT_DEFINE_END(fp_unavailable)
EXC_REAL_BEGIN(fp_unavailable, 0x800, 0x100)
GEN_INT_ENTRY fp_unavailable, virt=0
EXC_REAL_END(fp_unavailable, 0x800, 0x100)
EXC_VIRT_BEGIN(fp_unavailable, 0x4800, 0x100)
GEN_INT_ENTRY fp_unavailable, virt=1
EXC_VIRT_END(fp_unavailable, 0x4800, 0x100)
EXC_COMMON_BEGIN(fp_unavailable_common)
GEN_COMMON fp_unavailable
bne 1f /* if from user, just load it up */
RECONCILE_IRQ_STATE(r10, r11)
addi r3,r1,STACK_FRAME_OVERHEAD
bl kernel_fp_unavailable_exception
0: trap
EMIT_BUG_ENTRY 0b, __FILE__, __LINE__, 0
1:
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
BEGIN_FTR_SECTION
/* Test if 2 TM state bits are zero. If non-zero (ie. userspace was in
* transaction), go do TM stuff
*/
rldicl. r0, r12, (64-MSR_TS_LG), (64-2)
bne- 2f
END_FTR_SECTION_IFSET(CPU_FTR_TM)
#endif
bl load_up_fpu
b fast_interrupt_return
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2: /* User process was in a transaction */
RECONCILE_IRQ_STATE(r10, r11)
addi r3,r1,STACK_FRAME_OVERHEAD
bl fp_unavailable_tm
b interrupt_return
#endif
GEN_KVM fp_unavailable
/**
* Interrupt 0x900 - Decrementer Interrupt.
* This is an asynchronous interrupt in response to a decrementer exception
* (e.g., DEC has wrapped below zero). It is maskable in hardware by clearing
* MSR[EE], and soft-maskable with IRQS_DISABLED mask (i.e.,
* local_irq_disable()).
*
* Handling:
* This calls into Linux timer handler. NVGPRs are not saved (see 0x500).
*
* If soft masked, the masked handler will note the pending interrupt for
* replay, and bump the decrementer to a high value, leaving MSR[EE] enabled
* in the interrupted context.
* If PPC_WATCHDOG is configured, the soft masked handler will actually set
* things back up to run soft_nmi_interrupt as a regular interrupt handler
* on the emergency stack.
*/
INT_DEFINE_BEGIN(decrementer)
IVEC=0x900
IMASK=IRQS_DISABLED
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
IKVM_REAL=1
#endif
INT_DEFINE_END(decrementer)
EXC_REAL_BEGIN(decrementer, 0x900, 0x80)
GEN_INT_ENTRY decrementer, virt=0
EXC_REAL_END(decrementer, 0x900, 0x80)
EXC_VIRT_BEGIN(decrementer, 0x4900, 0x80)
GEN_INT_ENTRY decrementer, virt=1
EXC_VIRT_END(decrementer, 0x4900, 0x80)
EXC_COMMON_BEGIN(decrementer_common)
GEN_COMMON decrementer
FINISH_NAP
RUNLATCH_ON
addi r3,r1,STACK_FRAME_OVERHEAD
bl timer_interrupt
b interrupt_return
GEN_KVM decrementer
/**
* Interrupt 0x980 - Hypervisor Decrementer Interrupt.
* This is an asynchronous interrupt, similar to 0x900 but for the HDEC
* register.
*
* Handling:
* Linux does not use this outside KVM where it's used to keep a host timer
* while the guest is given control of DEC. It should normally be caught by
* the KVM test and routed there.
*/
INT_DEFINE_BEGIN(hdecrementer)
IVEC=0x980
IHSRR=1
ISTACK=0
IRECONCILE=0
IKVM_REAL=1
IKVM_VIRT=1
INT_DEFINE_END(hdecrementer)
EXC_REAL_BEGIN(hdecrementer, 0x980, 0x80)
GEN_INT_ENTRY hdecrementer, virt=0
EXC_REAL_END(hdecrementer, 0x980, 0x80)
EXC_VIRT_BEGIN(hdecrementer, 0x4980, 0x80)
GEN_INT_ENTRY hdecrementer, virt=1
EXC_VIRT_END(hdecrementer, 0x4980, 0x80)
EXC_COMMON_BEGIN(hdecrementer_common)
__GEN_COMMON_ENTRY hdecrementer
/*
* Hypervisor decrementer interrupts not caught by the KVM test
* shouldn't occur but are sometimes left pending on exit from a KVM
* guest. We don't need to do anything to clear them, as they are
* edge-triggered.
*
* Be careful to avoid touching the kernel stack.
*/
ld r10,PACA_EXGEN+EX_CTR(r13)
mtctr r10
mtcrf 0x80,r9
ld r9,PACA_EXGEN+EX_R9(r13)
ld r10,PACA_EXGEN+EX_R10(r13)
ld r11,PACA_EXGEN+EX_R11(r13)
ld r12,PACA_EXGEN+EX_R12(r13)
ld r13,PACA_EXGEN+EX_R13(r13)
HRFI_TO_KERNEL
GEN_KVM hdecrementer
/**
* Interrupt 0xa00 - Directed Privileged Doorbell Interrupt.
* This is an asynchronous interrupt in response to a msgsndp doorbell.
* It is maskable in hardware by clearing MSR[EE], and soft-maskable with
* IRQS_DISABLED mask (i.e., local_irq_disable()).
*
* Handling:
* Guests may use this for IPIs between threads in a core if the
* hypervisor supports it. NVGPRS are not saved (see 0x500).
*
* If soft masked, the masked handler will note the pending interrupt for
* replay, leaving MSR[EE] enabled in the interrupted context because the
* doorbells are edge triggered.
*/
INT_DEFINE_BEGIN(doorbell_super)
IVEC=0xa00
IMASK=IRQS_DISABLED
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
IKVM_REAL=1
#endif
INT_DEFINE_END(doorbell_super)
EXC_REAL_BEGIN(doorbell_super, 0xa00, 0x100)
GEN_INT_ENTRY doorbell_super, virt=0
EXC_REAL_END(doorbell_super, 0xa00, 0x100)
EXC_VIRT_BEGIN(doorbell_super, 0x4a00, 0x100)
GEN_INT_ENTRY doorbell_super, virt=1
EXC_VIRT_END(doorbell_super, 0x4a00, 0x100)
EXC_COMMON_BEGIN(doorbell_super_common)
GEN_COMMON doorbell_super
FINISH_NAP
RUNLATCH_ON
addi r3,r1,STACK_FRAME_OVERHEAD
#ifdef CONFIG_PPC_DOORBELL
bl doorbell_exception
#else
bl unknown_exception
#endif
b interrupt_return
GEN_KVM doorbell_super
EXC_REAL_NONE(0xb00, 0x100)
EXC_VIRT_NONE(0x4b00, 0x100)
/**
* Interrupt 0xc00 - System Call Interrupt (syscall, hcall).
* This is a synchronous interrupt invoked with the "sc" instruction. The
* system call is invoked with "sc 0" and does not alter the HV bit, so it
* is directed to the currently running OS. The hypercall is invoked with
* "sc 1" and it sets HV=1, so it elevates to hypervisor.
*
* In HPT, sc 1 always goes to 0xc00 real mode. In RADIX, sc 1 can go to
* 0x4c00 virtual mode.
*
* Handling:
* If the KVM test fires then it was due to a hypercall and is accordingly
* routed to KVM. Otherwise this executes a normal Linux system call.
*
* Call convention:
*
* syscall and hypercalls register conventions are documented in
* Documentation/powerpc/syscall64-abi.rst and
* Documentation/powerpc/papr_hcalls.rst respectively.
*
* The intersection of volatile registers that don't contain possible
* inputs is: cr0, xer, ctr. We may use these as scratch regs upon entry
* without saving, though xer is not a good idea to use, as hardware may
* interpret some bits so it may be costly to change them.
*/
INT_DEFINE_BEGIN(system_call)
IVEC=0xc00
IKVM_REAL=1
IKVM_VIRT=1
INT_DEFINE_END(system_call)
.macro SYSTEM_CALL virt
#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
/*
* There is a little bit of juggling to get syscall and hcall
* working well. Save r13 in ctr to avoid using SPRG scratch
* register.
*
* Userspace syscalls have already saved the PPR, hcalls must save
* it before setting HMT_MEDIUM.
*/
mtctr r13
GET_PACA(r13)
std r10,PACA_EXGEN+EX_R10(r13)
INTERRUPT_TO_KERNEL
KVMTEST system_call /* uses r10, branch to system_call_kvm */
mfctr r9
#else
mr r9,r13
GET_PACA(r13)
INTERRUPT_TO_KERNEL
#endif
#ifdef CONFIG_PPC_FAST_ENDIAN_SWITCH
BEGIN_FTR_SECTION
cmpdi r0,0x1ebe
beq- 1f
END_FTR_SECTION_IFSET(CPU_FTR_REAL_LE)
#endif
/* We reach here with PACA in r13, r13 in r9. */
mfspr r11,SPRN_SRR0
mfspr r12,SPRN_SRR1
HMT_MEDIUM
.if ! \virt
__LOAD_HANDLER(r10, system_call_common)
mtspr SPRN_SRR0,r10
ld r10,PACAKMSR(r13)
mtspr SPRN_SRR1,r10
RFI_TO_KERNEL
b . /* prevent speculative execution */
.else
li r10,MSR_RI
mtmsrd r10,1 /* Set RI (EE=0) */
#ifdef CONFIG_RELOCATABLE
__LOAD_HANDLER(r10, system_call_common)
mtctr r10
bctr
#else
b system_call_common
#endif
.endif
#ifdef CONFIG_PPC_FAST_ENDIAN_SWITCH
/* Fast LE/BE switch system call */
1: mfspr r12,SPRN_SRR1
xori r12,r12,MSR_LE
mtspr SPRN_SRR1,r12
mr r13,r9
RFI_TO_USER /* return to userspace */
b . /* prevent speculative execution */
#endif
.endm
EXC_REAL_BEGIN(system_call, 0xc00, 0x100)
SYSTEM_CALL 0
EXC_REAL_END(system_call, 0xc00, 0x100)
EXC_VIRT_BEGIN(system_call, 0x4c00, 0x100)
SYSTEM_CALL 1
EXC_VIRT_END(system_call, 0x4c00, 0x100)
#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
TRAMP_REAL_BEGIN(system_call_kvm)
/*
* This is a hcall, so register convention is as above, with these
* differences:
* r13 = PACA
* ctr = orig r13
* orig r10 saved in PACA
*/
/*
* Save the PPR (on systems that support it) before changing to
* HMT_MEDIUM. That allows the KVM code to save that value into the
* guest state (it is the guest's PPR value).
*/
BEGIN_FTR_SECTION
mfspr r10,SPRN_PPR
std r10,HSTATE_PPR(r13)
END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
HMT_MEDIUM
mfctr r10
SET_SCRATCH0(r10)
mfcr r10
std r12,HSTATE_SCRATCH0(r13)
sldi r12,r10,32
ori r12,r12,0xc00
#ifdef CONFIG_RELOCATABLE
/*
* Requires __LOAD_FAR_HANDLER beause kvmppc_interrupt lives
* outside the head section.
*/
__LOAD_FAR_HANDLER(r10, kvmppc_interrupt)
mtctr r10
ld r10,PACA_EXGEN+EX_R10(r13)
bctr
#else
ld r10,PACA_EXGEN+EX_R10(r13)
b kvmppc_interrupt
#endif
#endif
/**
* Interrupt 0xd00 - Trace Interrupt.
* This is a synchronous interrupt in response to instruction step or
* breakpoint faults.
*/
INT_DEFINE_BEGIN(single_step)
IVEC=0xd00
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
IKVM_REAL=1
#endif
INT_DEFINE_END(single_step)
EXC_REAL_BEGIN(single_step, 0xd00, 0x100)
GEN_INT_ENTRY single_step, virt=0
EXC_REAL_END(single_step, 0xd00, 0x100)
EXC_VIRT_BEGIN(single_step, 0x4d00, 0x100)
GEN_INT_ENTRY single_step, virt=1
EXC_VIRT_END(single_step, 0x4d00, 0x100)
EXC_COMMON_BEGIN(single_step_common)
GEN_COMMON single_step
addi r3,r1,STACK_FRAME_OVERHEAD
bl single_step_exception
b interrupt_return
GEN_KVM single_step
/**
* Interrupt 0xe00 - Hypervisor Data Storage Interrupt (HDSI).
* This is a synchronous interrupt in response to an MMU fault caused by a
* guest data access.
*
* Handling:
* This should always get routed to KVM. In radix MMU mode, this is caused
* by a guest nested radix access that can't be performed due to the
* partition scope page table. In hash mode, this can be caused by guests
* running with translation disabled (virtual real mode) or with VPM enabled.
* KVM will update the page table structures or disallow the access.
*/
INT_DEFINE_BEGIN(h_data_storage)
IVEC=0xe00
IHSRR=1
IDAR=1
IDSISR=1
IKVM_SKIP=1
IKVM_REAL=1
IKVM_VIRT=1
INT_DEFINE_END(h_data_storage)
EXC_REAL_BEGIN(h_data_storage, 0xe00, 0x20)
GEN_INT_ENTRY h_data_storage, virt=0, ool=1
EXC_REAL_END(h_data_storage, 0xe00, 0x20)
EXC_VIRT_BEGIN(h_data_storage, 0x4e00, 0x20)
GEN_INT_ENTRY h_data_storage, virt=1, ool=1
EXC_VIRT_END(h_data_storage, 0x4e00, 0x20)
EXC_COMMON_BEGIN(h_data_storage_common)
GEN_COMMON h_data_storage
addi r3,r1,STACK_FRAME_OVERHEAD
BEGIN_MMU_FTR_SECTION
ld r4,_DAR(r1)
li r5,SIGSEGV
bl bad_page_fault
MMU_FTR_SECTION_ELSE
bl unknown_exception
ALT_MMU_FTR_SECTION_END_IFSET(MMU_FTR_TYPE_RADIX)
b interrupt_return
GEN_KVM h_data_storage
/**
* Interrupt 0xe20 - Hypervisor Instruction Storage Interrupt (HISI).
* This is a synchronous interrupt in response to an MMU fault caused by a
* guest instruction fetch, similar to HDSI.
*/
INT_DEFINE_BEGIN(h_instr_storage)
IVEC=0xe20
IHSRR=1
IKVM_REAL=1
IKVM_VIRT=1
INT_DEFINE_END(h_instr_storage)
EXC_REAL_BEGIN(h_instr_storage, 0xe20, 0x20)
GEN_INT_ENTRY h_instr_storage, virt=0, ool=1
EXC_REAL_END(h_instr_storage, 0xe20, 0x20)
EXC_VIRT_BEGIN(h_instr_storage, 0x4e20, 0x20)
GEN_INT_ENTRY h_instr_storage, virt=1, ool=1
EXC_VIRT_END(h_instr_storage, 0x4e20, 0x20)
EXC_COMMON_BEGIN(h_instr_storage_common)
GEN_COMMON h_instr_storage
addi r3,r1,STACK_FRAME_OVERHEAD
bl unknown_exception
b interrupt_return
GEN_KVM h_instr_storage
/**
* Interrupt 0xe40 - Hypervisor Emulation Assistance Interrupt.
*/
INT_DEFINE_BEGIN(emulation_assist)
IVEC=0xe40
IHSRR=1
IKVM_REAL=1
IKVM_VIRT=1
INT_DEFINE_END(emulation_assist)
EXC_REAL_BEGIN(emulation_assist, 0xe40, 0x20)
GEN_INT_ENTRY emulation_assist, virt=0, ool=1
EXC_REAL_END(emulation_assist, 0xe40, 0x20)
EXC_VIRT_BEGIN(emulation_assist, 0x4e40, 0x20)
GEN_INT_ENTRY emulation_assist, virt=1, ool=1
EXC_VIRT_END(emulation_assist, 0x4e40, 0x20)
EXC_COMMON_BEGIN(emulation_assist_common)
GEN_COMMON emulation_assist
addi r3,r1,STACK_FRAME_OVERHEAD
bl emulation_assist_interrupt
REST_NVGPRS(r1) /* instruction emulation may change GPRs */
b interrupt_return
GEN_KVM emulation_assist
/**
* Interrupt 0xe60 - Hypervisor Maintenance Interrupt (HMI).
* This is an asynchronous interrupt caused by a Hypervisor Maintenance
* Exception. It is always taken in real mode but uses HSRR registers
* unlike SRESET and MCE.
*
* It is maskable in hardware by clearing MSR[EE], and partially soft-maskable
* with IRQS_DISABLED mask (i.e., local_irq_disable()).
*
* Handling:
* This is a special case, this is handled similarly to machine checks, with an
* initial real mode handler that is not soft-masked, which attempts to fix the
* problem. Then a regular handler which is soft-maskable and reports the
* problem.
*
* The emergency stack is used for the early real mode handler.
*
* XXX: unclear why MCE and HMI schemes could not be made common, e.g.,
* either use soft-masking for the MCE, or use irq_work for the HMI.
*
* KVM:
* Unlike MCE, this calls into KVM without calling the real mode handler
* first.
*/
INT_DEFINE_BEGIN(hmi_exception_early)
IVEC=0xe60
IHSRR=1
IREALMODE_COMMON=1
ISTACK=0
IRECONCILE=0
IKUAP=0 /* We don't touch AMR here, we never go to virtual mode */
IKVM_REAL=1
INT_DEFINE_END(hmi_exception_early)
INT_DEFINE_BEGIN(hmi_exception)
IVEC=0xe60
IHSRR=1
IMASK=IRQS_DISABLED
IKVM_REAL=1
INT_DEFINE_END(hmi_exception)
EXC_REAL_BEGIN(hmi_exception, 0xe60, 0x20)
GEN_INT_ENTRY hmi_exception_early, virt=0, ool=1
EXC_REAL_END(hmi_exception, 0xe60, 0x20)
EXC_VIRT_NONE(0x4e60, 0x20)
EXC_COMMON_BEGIN(hmi_exception_early_common)
__GEN_REALMODE_COMMON_ENTRY hmi_exception_early
mr r10,r1 /* Save r1 */
ld r1,PACAEMERGSP(r13) /* Use emergency stack for realmode */
subi r1,r1,INT_FRAME_SIZE /* alloc stack frame */
__GEN_COMMON_BODY hmi_exception_early
addi r3,r1,STACK_FRAME_OVERHEAD
bl hmi_exception_realmode
cmpdi cr0,r3,0
bne 1f
EXCEPTION_RESTORE_REGS hsrr=1
HRFI_TO_USER_OR_KERNEL
1:
/*
* Go to virtual mode and pull the HMI event information from
* firmware.
*/
EXCEPTION_RESTORE_REGS hsrr=1
GEN_INT_ENTRY hmi_exception, virt=0
GEN_KVM hmi_exception_early
EXC_COMMON_BEGIN(hmi_exception_common)
GEN_COMMON hmi_exception
FINISH_NAP
RUNLATCH_ON
addi r3,r1,STACK_FRAME_OVERHEAD
bl handle_hmi_exception
b interrupt_return
GEN_KVM hmi_exception
/**
* Interrupt 0xe80 - Directed Hypervisor Doorbell Interrupt.
* This is an asynchronous interrupt in response to a msgsnd doorbell.
* Similar to the 0xa00 doorbell but for host rather than guest.
*/
INT_DEFINE_BEGIN(h_doorbell)
IVEC=0xe80
IHSRR=1
IMASK=IRQS_DISABLED
IKVM_REAL=1
IKVM_VIRT=1
INT_DEFINE_END(h_doorbell)
EXC_REAL_BEGIN(h_doorbell, 0xe80, 0x20)
GEN_INT_ENTRY h_doorbell, virt=0, ool=1
EXC_REAL_END(h_doorbell, 0xe80, 0x20)
EXC_VIRT_BEGIN(h_doorbell, 0x4e80, 0x20)
GEN_INT_ENTRY h_doorbell, virt=1, ool=1
EXC_VIRT_END(h_doorbell, 0x4e80, 0x20)
EXC_COMMON_BEGIN(h_doorbell_common)
GEN_COMMON h_doorbell
FINISH_NAP
RUNLATCH_ON
addi r3,r1,STACK_FRAME_OVERHEAD
#ifdef CONFIG_PPC_DOORBELL
bl doorbell_exception
#else
bl unknown_exception
#endif
b interrupt_return
GEN_KVM h_doorbell
/**
* Interrupt 0xea0 - Hypervisor Virtualization Interrupt.
* This is an asynchronous interrupt in response to an "external exception".
* Similar to 0x500 but for host only.
*/
INT_DEFINE_BEGIN(h_virt_irq)
IVEC=0xea0
IHSRR=1
IMASK=IRQS_DISABLED
IKVM_REAL=1
IKVM_VIRT=1
INT_DEFINE_END(h_virt_irq)
EXC_REAL_BEGIN(h_virt_irq, 0xea0, 0x20)
GEN_INT_ENTRY h_virt_irq, virt=0, ool=1
EXC_REAL_END(h_virt_irq, 0xea0, 0x20)
EXC_VIRT_BEGIN(h_virt_irq, 0x4ea0, 0x20)
GEN_INT_ENTRY h_virt_irq, virt=1, ool=1
EXC_VIRT_END(h_virt_irq, 0x4ea0, 0x20)
EXC_COMMON_BEGIN(h_virt_irq_common)
GEN_COMMON h_virt_irq
FINISH_NAP
RUNLATCH_ON
addi r3,r1,STACK_FRAME_OVERHEAD
bl do_IRQ
b interrupt_return
GEN_KVM h_virt_irq
EXC_REAL_NONE(0xec0, 0x20)
EXC_VIRT_NONE(0x4ec0, 0x20)
EXC_REAL_NONE(0xee0, 0x20)
EXC_VIRT_NONE(0x4ee0, 0x20)
/*
* Interrupt 0xf00 - Performance Monitor Interrupt (PMI, PMU).
* This is an asynchronous interrupt in response to a PMU exception.
* It is maskable in hardware by clearing MSR[EE], and soft-maskable with
* IRQS_PMI_DISABLED mask (NOTE: NOT local_irq_disable()).
*
* Handling:
* This calls into the perf subsystem.
*
* Like the watchdog soft-nmi, it appears an NMI interrupt to Linux, in that it
* runs under local_irq_disable. However it may be soft-masked in
* powerpc-specific code.
*
* If soft masked, the masked handler will note the pending interrupt for
* replay, and clear MSR[EE] in the interrupted context.
*/
INT_DEFINE_BEGIN(performance_monitor)
IVEC=0xf00
IMASK=IRQS_PMI_DISABLED
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
IKVM_REAL=1
#endif
INT_DEFINE_END(performance_monitor)
EXC_REAL_BEGIN(performance_monitor, 0xf00, 0x20)
GEN_INT_ENTRY performance_monitor, virt=0, ool=1
EXC_REAL_END(performance_monitor, 0xf00, 0x20)
EXC_VIRT_BEGIN(performance_monitor, 0x4f00, 0x20)
GEN_INT_ENTRY performance_monitor, virt=1, ool=1
EXC_VIRT_END(performance_monitor, 0x4f00, 0x20)
EXC_COMMON_BEGIN(performance_monitor_common)
GEN_COMMON performance_monitor
FINISH_NAP
RUNLATCH_ON
addi r3,r1,STACK_FRAME_OVERHEAD
bl performance_monitor_exception
b interrupt_return
GEN_KVM performance_monitor
/**
* Interrupt 0xf20 - Vector Unavailable Interrupt.
* This is a synchronous interrupt in response to
* executing a vector (or altivec) instruction with MSR[VEC]=0.
* Similar to FP unavailable.
*/
INT_DEFINE_BEGIN(altivec_unavailable)
IVEC=0xf20
IRECONCILE=0
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
IKVM_REAL=1
#endif
INT_DEFINE_END(altivec_unavailable)
EXC_REAL_BEGIN(altivec_unavailable, 0xf20, 0x20)
GEN_INT_ENTRY altivec_unavailable, virt=0, ool=1
EXC_REAL_END(altivec_unavailable, 0xf20, 0x20)
EXC_VIRT_BEGIN(altivec_unavailable, 0x4f20, 0x20)
GEN_INT_ENTRY altivec_unavailable, virt=1, ool=1
EXC_VIRT_END(altivec_unavailable, 0x4f20, 0x20)
EXC_COMMON_BEGIN(altivec_unavailable_common)
GEN_COMMON altivec_unavailable
#ifdef CONFIG_ALTIVEC
BEGIN_FTR_SECTION
beq 1f
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
BEGIN_FTR_SECTION_NESTED(69)
/* Test if 2 TM state bits are zero. If non-zero (ie. userspace was in
* transaction), go do TM stuff
*/
rldicl. r0, r12, (64-MSR_TS_LG), (64-2)
bne- 2f
END_FTR_SECTION_NESTED(CPU_FTR_TM, CPU_FTR_TM, 69)
#endif
bl load_up_altivec
b fast_interrupt_return
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2: /* User process was in a transaction */
RECONCILE_IRQ_STATE(r10, r11)
addi r3,r1,STACK_FRAME_OVERHEAD
bl altivec_unavailable_tm
b interrupt_return
#endif
1:
END_FTR_SECTION_IFSET(CPU_FTR_ALTIVEC)
#endif
RECONCILE_IRQ_STATE(r10, r11)
addi r3,r1,STACK_FRAME_OVERHEAD
bl altivec_unavailable_exception
b interrupt_return
GEN_KVM altivec_unavailable
/**
* Interrupt 0xf40 - VSX Unavailable Interrupt.
* This is a synchronous interrupt in response to
* executing a VSX instruction with MSR[VSX]=0.
* Similar to FP unavailable.
*/
INT_DEFINE_BEGIN(vsx_unavailable)
IVEC=0xf40
IRECONCILE=0
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
IKVM_REAL=1
#endif
INT_DEFINE_END(vsx_unavailable)
EXC_REAL_BEGIN(vsx_unavailable, 0xf40, 0x20)
GEN_INT_ENTRY vsx_unavailable, virt=0, ool=1
EXC_REAL_END(vsx_unavailable, 0xf40, 0x20)
EXC_VIRT_BEGIN(vsx_unavailable, 0x4f40, 0x20)
GEN_INT_ENTRY vsx_unavailable, virt=1, ool=1
EXC_VIRT_END(vsx_unavailable, 0x4f40, 0x20)
EXC_COMMON_BEGIN(vsx_unavailable_common)
GEN_COMMON vsx_unavailable
#ifdef CONFIG_VSX
BEGIN_FTR_SECTION
beq 1f
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
BEGIN_FTR_SECTION_NESTED(69)
/* Test if 2 TM state bits are zero. If non-zero (ie. userspace was in
* transaction), go do TM stuff
*/
rldicl. r0, r12, (64-MSR_TS_LG), (64-2)
bne- 2f
END_FTR_SECTION_NESTED(CPU_FTR_TM, CPU_FTR_TM, 69)
#endif
b load_up_vsx
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2: /* User process was in a transaction */
RECONCILE_IRQ_STATE(r10, r11)
addi r3,r1,STACK_FRAME_OVERHEAD
bl vsx_unavailable_tm
b interrupt_return
#endif
1:
END_FTR_SECTION_IFSET(CPU_FTR_VSX)
#endif
RECONCILE_IRQ_STATE(r10, r11)
addi r3,r1,STACK_FRAME_OVERHEAD
bl vsx_unavailable_exception
b interrupt_return
GEN_KVM vsx_unavailable
/**
* Interrupt 0xf60 - Facility Unavailable Interrupt.
* This is a synchronous interrupt in response to
* executing an instruction without access to the facility that can be
* resolved by the OS (e.g., FSCR, MSR).
* Similar to FP unavailable.
*/
INT_DEFINE_BEGIN(facility_unavailable)
IVEC=0xf60
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
IKVM_REAL=1
#endif
INT_DEFINE_END(facility_unavailable)
EXC_REAL_BEGIN(facility_unavailable, 0xf60, 0x20)
GEN_INT_ENTRY facility_unavailable, virt=0, ool=1
EXC_REAL_END(facility_unavailable, 0xf60, 0x20)
EXC_VIRT_BEGIN(facility_unavailable, 0x4f60, 0x20)
GEN_INT_ENTRY facility_unavailable, virt=1, ool=1
EXC_VIRT_END(facility_unavailable, 0x4f60, 0x20)
EXC_COMMON_BEGIN(facility_unavailable_common)
GEN_COMMON facility_unavailable
addi r3,r1,STACK_FRAME_OVERHEAD
bl facility_unavailable_exception
REST_NVGPRS(r1) /* instruction emulation may change GPRs */
b interrupt_return
GEN_KVM facility_unavailable
/**
* Interrupt 0xf60 - Hypervisor Facility Unavailable Interrupt.
* This is a synchronous interrupt in response to
* executing an instruction without access to the facility that can only
* be resolved in HV mode (e.g., HFSCR).
* Similar to FP unavailable.
*/
INT_DEFINE_BEGIN(h_facility_unavailable)
IVEC=0xf80
IHSRR=1
IKVM_REAL=1
IKVM_VIRT=1
INT_DEFINE_END(h_facility_unavailable)
EXC_REAL_BEGIN(h_facility_unavailable, 0xf80, 0x20)
GEN_INT_ENTRY h_facility_unavailable, virt=0, ool=1
EXC_REAL_END(h_facility_unavailable, 0xf80, 0x20)
EXC_VIRT_BEGIN(h_facility_unavailable, 0x4f80, 0x20)
GEN_INT_ENTRY h_facility_unavailable, virt=1, ool=1
EXC_VIRT_END(h_facility_unavailable, 0x4f80, 0x20)
EXC_COMMON_BEGIN(h_facility_unavailable_common)
GEN_COMMON h_facility_unavailable
addi r3,r1,STACK_FRAME_OVERHEAD
bl facility_unavailable_exception
REST_NVGPRS(r1) /* XXX Shouldn't be necessary in practice */
b interrupt_return
GEN_KVM h_facility_unavailable
EXC_REAL_NONE(0xfa0, 0x20)
EXC_VIRT_NONE(0x4fa0, 0x20)
EXC_REAL_NONE(0xfc0, 0x20)
EXC_VIRT_NONE(0x4fc0, 0x20)
EXC_REAL_NONE(0xfe0, 0x20)
EXC_VIRT_NONE(0x4fe0, 0x20)
EXC_REAL_NONE(0x1000, 0x100)
EXC_VIRT_NONE(0x5000, 0x100)
EXC_REAL_NONE(0x1100, 0x100)
EXC_VIRT_NONE(0x5100, 0x100)
#ifdef CONFIG_CBE_RAS
INT_DEFINE_BEGIN(cbe_system_error)
IVEC=0x1200
IHSRR=1
IKVM_SKIP=1
IKVM_REAL=1
INT_DEFINE_END(cbe_system_error)
EXC_REAL_BEGIN(cbe_system_error, 0x1200, 0x100)
GEN_INT_ENTRY cbe_system_error, virt=0
EXC_REAL_END(cbe_system_error, 0x1200, 0x100)
EXC_VIRT_NONE(0x5200, 0x100)
EXC_COMMON_BEGIN(cbe_system_error_common)
GEN_COMMON cbe_system_error
addi r3,r1,STACK_FRAME_OVERHEAD
bl cbe_system_error_exception
b interrupt_return
GEN_KVM cbe_system_error
#else /* CONFIG_CBE_RAS */
EXC_REAL_NONE(0x1200, 0x100)
EXC_VIRT_NONE(0x5200, 0x100)
#endif
INT_DEFINE_BEGIN(instruction_breakpoint)
IVEC=0x1300
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
IKVM_SKIP=1
IKVM_REAL=1
#endif
INT_DEFINE_END(instruction_breakpoint)
EXC_REAL_BEGIN(instruction_breakpoint, 0x1300, 0x100)
GEN_INT_ENTRY instruction_breakpoint, virt=0
EXC_REAL_END(instruction_breakpoint, 0x1300, 0x100)
EXC_VIRT_BEGIN(instruction_breakpoint, 0x5300, 0x100)
GEN_INT_ENTRY instruction_breakpoint, virt=1
EXC_VIRT_END(instruction_breakpoint, 0x5300, 0x100)
EXC_COMMON_BEGIN(instruction_breakpoint_common)
GEN_COMMON instruction_breakpoint
addi r3,r1,STACK_FRAME_OVERHEAD
bl instruction_breakpoint_exception
b interrupt_return
GEN_KVM instruction_breakpoint
EXC_REAL_NONE(0x1400, 0x100)
EXC_VIRT_NONE(0x5400, 0x100)
/**
* Interrupt 0x1500 - Soft Patch Interrupt
*
* Handling:
* This is an implementation specific interrupt which can be used for a
* range of exceptions.
*
* This interrupt handler is unique in that it runs the denormal assist
* code even for guests (and even in guest context) without going to KVM,
* for speed. POWER9 does not raise denorm exceptions, so this special case
* could be phased out in future to reduce special cases.
*/
INT_DEFINE_BEGIN(denorm_exception)
IVEC=0x1500
IHSRR=1
IBRANCH_COMMON=0
IKVM_REAL=1
INT_DEFINE_END(denorm_exception)
EXC_REAL_BEGIN(denorm_exception, 0x1500, 0x100)
GEN_INT_ENTRY denorm_exception, virt=0
#ifdef CONFIG_PPC_DENORMALISATION
andis. r10,r12,(HSRR1_DENORM)@h /* denorm? */
bne+ denorm_assist
#endif
GEN_BRANCH_TO_COMMON denorm_exception, virt=0
EXC_REAL_END(denorm_exception, 0x1500, 0x100)
#ifdef CONFIG_PPC_DENORMALISATION
EXC_VIRT_BEGIN(denorm_exception, 0x5500, 0x100)
GEN_INT_ENTRY denorm_exception, virt=1
andis. r10,r12,(HSRR1_DENORM)@h /* denorm? */
bne+ denorm_assist
GEN_BRANCH_TO_COMMON denorm_exception, virt=1
EXC_VIRT_END(denorm_exception, 0x5500, 0x100)
#else
EXC_VIRT_NONE(0x5500, 0x100)
#endif
#ifdef CONFIG_PPC_DENORMALISATION
TRAMP_REAL_BEGIN(denorm_assist)
BEGIN_FTR_SECTION
/*
* To denormalise we need to move a copy of the register to itself.
* For POWER6 do that here for all FP regs.
*/
mfmsr r10
ori r10,r10,(MSR_FP|MSR_FE0|MSR_FE1)
xori r10,r10,(MSR_FE0|MSR_FE1)
mtmsrd r10
sync
.Lreg=0
.rept 32
fmr .Lreg,.Lreg
.Lreg=.Lreg+1
.endr
FTR_SECTION_ELSE
/*
* To denormalise we need to move a copy of the register to itself.
* For POWER7 do that here for the first 32 VSX registers only.
*/
mfmsr r10
oris r10,r10,MSR_VSX@h
mtmsrd r10
sync
.Lreg=0
.rept 32
XVCPSGNDP(.Lreg,.Lreg,.Lreg)
.Lreg=.Lreg+1
.endr
ALT_FTR_SECTION_END_IFCLR(CPU_FTR_ARCH_206)
BEGIN_FTR_SECTION
b denorm_done
END_FTR_SECTION_IFCLR(CPU_FTR_ARCH_207S)
/*
* To denormalise we need to move a copy of the register to itself.
* For POWER8 we need to do that for all 64 VSX registers
*/
.Lreg=32
.rept 32
XVCPSGNDP(.Lreg,.Lreg,.Lreg)
.Lreg=.Lreg+1
.endr
denorm_done:
mfspr r11,SPRN_HSRR0
subi r11,r11,4
mtspr SPRN_HSRR0,r11
mtcrf 0x80,r9
ld r9,PACA_EXGEN+EX_R9(r13)
BEGIN_FTR_SECTION
ld r10,PACA_EXGEN+EX_PPR(r13)
mtspr SPRN_PPR,r10
END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
BEGIN_FTR_SECTION
ld r10,PACA_EXGEN+EX_CFAR(r13)
mtspr SPRN_CFAR,r10
END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
ld r10,PACA_EXGEN+EX_R10(r13)
ld r11,PACA_EXGEN+EX_R11(r13)
ld r12,PACA_EXGEN+EX_R12(r13)
ld r13,PACA_EXGEN+EX_R13(r13)
HRFI_TO_UNKNOWN
b .
#endif
EXC_COMMON_BEGIN(denorm_exception_common)
GEN_COMMON denorm_exception
addi r3,r1,STACK_FRAME_OVERHEAD
bl unknown_exception
b interrupt_return
GEN_KVM denorm_exception
#ifdef CONFIG_CBE_RAS
INT_DEFINE_BEGIN(cbe_maintenance)
IVEC=0x1600
IHSRR=1
IKVM_SKIP=1
IKVM_REAL=1
INT_DEFINE_END(cbe_maintenance)
EXC_REAL_BEGIN(cbe_maintenance, 0x1600, 0x100)
GEN_INT_ENTRY cbe_maintenance, virt=0
EXC_REAL_END(cbe_maintenance, 0x1600, 0x100)
EXC_VIRT_NONE(0x5600, 0x100)
EXC_COMMON_BEGIN(cbe_maintenance_common)
GEN_COMMON cbe_maintenance
addi r3,r1,STACK_FRAME_OVERHEAD
bl cbe_maintenance_exception
b interrupt_return
GEN_KVM cbe_maintenance
#else /* CONFIG_CBE_RAS */
EXC_REAL_NONE(0x1600, 0x100)
EXC_VIRT_NONE(0x5600, 0x100)
#endif
INT_DEFINE_BEGIN(altivec_assist)
IVEC=0x1700
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
IKVM_REAL=1
#endif
INT_DEFINE_END(altivec_assist)
EXC_REAL_BEGIN(altivec_assist, 0x1700, 0x100)
GEN_INT_ENTRY altivec_assist, virt=0
EXC_REAL_END(altivec_assist, 0x1700, 0x100)
EXC_VIRT_BEGIN(altivec_assist, 0x5700, 0x100)
GEN_INT_ENTRY altivec_assist, virt=1
EXC_VIRT_END(altivec_assist, 0x5700, 0x100)
EXC_COMMON_BEGIN(altivec_assist_common)
GEN_COMMON altivec_assist
addi r3,r1,STACK_FRAME_OVERHEAD
#ifdef CONFIG_ALTIVEC
bl altivec_assist_exception
REST_NVGPRS(r1) /* instruction emulation may change GPRs */
#else
bl unknown_exception
#endif
b interrupt_return
GEN_KVM altivec_assist
#ifdef CONFIG_CBE_RAS
INT_DEFINE_BEGIN(cbe_thermal)
IVEC=0x1800
IHSRR=1
IKVM_SKIP=1
IKVM_REAL=1
INT_DEFINE_END(cbe_thermal)
EXC_REAL_BEGIN(cbe_thermal, 0x1800, 0x100)
GEN_INT_ENTRY cbe_thermal, virt=0
EXC_REAL_END(cbe_thermal, 0x1800, 0x100)
EXC_VIRT_NONE(0x5800, 0x100)
EXC_COMMON_BEGIN(cbe_thermal_common)
GEN_COMMON cbe_thermal
addi r3,r1,STACK_FRAME_OVERHEAD
bl cbe_thermal_exception
b interrupt_return
GEN_KVM cbe_thermal
#else /* CONFIG_CBE_RAS */
EXC_REAL_NONE(0x1800, 0x100)
EXC_VIRT_NONE(0x5800, 0x100)
#endif
#ifdef CONFIG_PPC_WATCHDOG
INT_DEFINE_BEGIN(soft_nmi)
IVEC=0x900
ISTACK=0
IRECONCILE=0 /* Soft-NMI may fire under local_irq_disable */
INT_DEFINE_END(soft_nmi)
/*
* Branch to soft_nmi_interrupt using the emergency stack. The emergency
* stack is one that is usable by maskable interrupts so long as MSR_EE
* remains off. It is used for recovery when something has corrupted the
* normal kernel stack, for example. The "soft NMI" must not use the process
* stack because we want irq disabled sections to avoid touching the stack
* at all (other than PMU interrupts), so use the emergency stack for this,
* and run it entirely with interrupts hard disabled.
*/
EXC_COMMON_BEGIN(soft_nmi_common)
mfspr r11,SPRN_SRR0
mr r10,r1
ld r1,PACAEMERGSP(r13)
subi r1,r1,INT_FRAME_SIZE
__GEN_COMMON_BODY soft_nmi
/*
* Set IRQS_ALL_DISABLED and save PACAIRQHAPPENED (see
* system_reset_common)
*/
li r10,IRQS_ALL_DISABLED
stb r10,PACAIRQSOFTMASK(r13)
lbz r10,PACAIRQHAPPENED(r13)
std r10,RESULT(r1)
ori r10,r10,PACA_IRQ_HARD_DIS
stb r10,PACAIRQHAPPENED(r13)
addi r3,r1,STACK_FRAME_OVERHEAD
bl soft_nmi_interrupt
/* Clear MSR_RI before setting SRR0 and SRR1. */
li r9,0
mtmsrd r9,1
/*
* Restore soft mask settings.
*/
ld r10,RESULT(r1)
stb r10,PACAIRQHAPPENED(r13)
ld r10,SOFTE(r1)
stb r10,PACAIRQSOFTMASK(r13)
kuap_restore_amr r9, r10
EXCEPTION_RESTORE_REGS hsrr=0
RFI_TO_KERNEL
#endif /* CONFIG_PPC_WATCHDOG */
/*
* An interrupt came in while soft-disabled. We set paca->irq_happened, then:
* - If it was a decrementer interrupt, we bump the dec to max and and return.
* - If it was a doorbell we return immediately since doorbells are edge
* triggered and won't automatically refire.
* - If it was a HMI we return immediately since we handled it in realmode
* and it won't refire.
* - Else it is one of PACA_IRQ_MUST_HARD_MASK, so hard disable and return.
* This is called with r10 containing the value to OR to the paca field.
*/
.macro MASKED_INTERRUPT hsrr=0
.if \hsrr
masked_Hinterrupt:
.else
masked_interrupt:
.endif
lbz r11,PACAIRQHAPPENED(r13)
or r11,r11,r10
stb r11,PACAIRQHAPPENED(r13)
cmpwi r10,PACA_IRQ_DEC
bne 1f
lis r10,0x7fff
ori r10,r10,0xffff
mtspr SPRN_DEC,r10
#ifdef CONFIG_PPC_WATCHDOG
b soft_nmi_common
#else
b 2f
#endif
1: andi. r10,r10,PACA_IRQ_MUST_HARD_MASK
beq 2f
xori r12,r12,MSR_EE /* clear MSR_EE */
.if \hsrr
mtspr SPRN_HSRR1,r12
.else
mtspr SPRN_SRR1,r12
.endif
ori r11,r11,PACA_IRQ_HARD_DIS
stb r11,PACAIRQHAPPENED(r13)
2: /* done */
ld r10,PACA_EXGEN+EX_CTR(r13)
mtctr r10
mtcrf 0x80,r9
std r1,PACAR1(r13)
ld r9,PACA_EXGEN+EX_R9(r13)
ld r10,PACA_EXGEN+EX_R10(r13)
ld r11,PACA_EXGEN+EX_R11(r13)
ld r12,PACA_EXGEN+EX_R12(r13)
ld r13,PACA_EXGEN+EX_R13(r13)
/* May return to masked low address where r13 is not set up */
.if \hsrr
HRFI_TO_KERNEL
.else
RFI_TO_KERNEL
.endif
b .
.endm
TRAMP_REAL_BEGIN(stf_barrier_fallback)
std r9,PACA_EXRFI+EX_R9(r13)
std r10,PACA_EXRFI+EX_R10(r13)
sync
ld r9,PACA_EXRFI+EX_R9(r13)
ld r10,PACA_EXRFI+EX_R10(r13)
ori 31,31,0
.rept 14
b 1f
1:
.endr
blr
TRAMP_REAL_BEGIN(rfi_flush_fallback)
SET_SCRATCH0(r13);
GET_PACA(r13);
std r1,PACA_EXRFI+EX_R12(r13)
ld r1,PACAKSAVE(r13)
std r9,PACA_EXRFI+EX_R9(r13)
std r10,PACA_EXRFI+EX_R10(r13)
std r11,PACA_EXRFI+EX_R11(r13)
mfctr r9
ld r10,PACA_RFI_FLUSH_FALLBACK_AREA(r13)
ld r11,PACA_L1D_FLUSH_SIZE(r13)
srdi r11,r11,(7 + 3) /* 128 byte lines, unrolled 8x */
mtctr r11
DCBT_BOOK3S_STOP_ALL_STREAM_IDS(r11) /* Stop prefetch streams */
/* order ld/st prior to dcbt stop all streams with flushing */
sync
/*
* The load adresses are at staggered offsets within cachelines,
* which suits some pipelines better (on others it should not
* hurt).
*/
1:
ld r11,(0x80 + 8)*0(r10)
ld r11,(0x80 + 8)*1(r10)
ld r11,(0x80 + 8)*2(r10)
ld r11,(0x80 + 8)*3(r10)
ld r11,(0x80 + 8)*4(r10)
ld r11,(0x80 + 8)*5(r10)
ld r11,(0x80 + 8)*6(r10)
ld r11,(0x80 + 8)*7(r10)
addi r10,r10,0x80*8
bdnz 1b
mtctr r9
ld r9,PACA_EXRFI+EX_R9(r13)
ld r10,PACA_EXRFI+EX_R10(r13)
ld r11,PACA_EXRFI+EX_R11(r13)
ld r1,PACA_EXRFI+EX_R12(r13)
GET_SCRATCH0(r13);
rfid
TRAMP_REAL_BEGIN(hrfi_flush_fallback)
SET_SCRATCH0(r13);
GET_PACA(r13);
std r1,PACA_EXRFI+EX_R12(r13)
ld r1,PACAKSAVE(r13)
std r9,PACA_EXRFI+EX_R9(r13)
std r10,PACA_EXRFI+EX_R10(r13)
std r11,PACA_EXRFI+EX_R11(r13)
mfctr r9
ld r10,PACA_RFI_FLUSH_FALLBACK_AREA(r13)
ld r11,PACA_L1D_FLUSH_SIZE(r13)
srdi r11,r11,(7 + 3) /* 128 byte lines, unrolled 8x */
mtctr r11
DCBT_BOOK3S_STOP_ALL_STREAM_IDS(r11) /* Stop prefetch streams */
/* order ld/st prior to dcbt stop all streams with flushing */
sync
/*
* The load adresses are at staggered offsets within cachelines,
* which suits some pipelines better (on others it should not
* hurt).
*/
1:
ld r11,(0x80 + 8)*0(r10)
ld r11,(0x80 + 8)*1(r10)
ld r11,(0x80 + 8)*2(r10)
ld r11,(0x80 + 8)*3(r10)
ld r11,(0x80 + 8)*4(r10)
ld r11,(0x80 + 8)*5(r10)
ld r11,(0x80 + 8)*6(r10)
ld r11,(0x80 + 8)*7(r10)
addi r10,r10,0x80*8
bdnz 1b
mtctr r9
ld r9,PACA_EXRFI+EX_R9(r13)
ld r10,PACA_EXRFI+EX_R10(r13)
ld r11,PACA_EXRFI+EX_R11(r13)
ld r1,PACA_EXRFI+EX_R12(r13)
GET_SCRATCH0(r13);
hrfid
TRAMP_REAL_BEGIN(rfscv_flush_fallback)
/* system call volatile */
mr r7,r13
GET_PACA(r13);
mr r8,r1
ld r1,PACAKSAVE(r13)
mfctr r9
ld r10,PACA_RFI_FLUSH_FALLBACK_AREA(r13)
ld r11,PACA_L1D_FLUSH_SIZE(r13)
srdi r11,r11,(7 + 3) /* 128 byte lines, unrolled 8x */
mtctr r11
DCBT_BOOK3S_STOP_ALL_STREAM_IDS(r11) /* Stop prefetch streams */
/* order ld/st prior to dcbt stop all streams with flushing */
sync
/*
* The load adresses are at staggered offsets within cachelines,
* which suits some pipelines better (on others it should not
* hurt).
*/
1:
ld r11,(0x80 + 8)*0(r10)
ld r11,(0x80 + 8)*1(r10)
ld r11,(0x80 + 8)*2(r10)
ld r11,(0x80 + 8)*3(r10)
ld r11,(0x80 + 8)*4(r10)
ld r11,(0x80 + 8)*5(r10)
ld r11,(0x80 + 8)*6(r10)
ld r11,(0x80 + 8)*7(r10)
addi r10,r10,0x80*8
bdnz 1b
mtctr r9
li r9,0
li r10,0
li r11,0
mr r1,r8
mr r13,r7
RFSCV
USE_TEXT_SECTION()
MASKED_INTERRUPT
MASKED_INTERRUPT hsrr=1
#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
kvmppc_skip_interrupt:
/*
* Here all GPRs are unchanged from when the interrupt happened
* except for r13, which is saved in SPRG_SCRATCH0.
*/
mfspr r13, SPRN_SRR0
addi r13, r13, 4
mtspr SPRN_SRR0, r13
GET_SCRATCH0(r13)
RFI_TO_KERNEL
b .
kvmppc_skip_Hinterrupt:
/*
* Here all GPRs are unchanged from when the interrupt happened
* except for r13, which is saved in SPRG_SCRATCH0.
*/
mfspr r13, SPRN_HSRR0
addi r13, r13, 4
mtspr SPRN_HSRR0, r13
GET_SCRATCH0(r13)
HRFI_TO_KERNEL
b .
#endif
/*
* Relocation-on interrupts: A subset of the interrupts can be delivered
* with IR=1/DR=1, if AIL==2 and MSR.HV won't be changed by delivering
* it. Addresses are the same as the original interrupt addresses, but
* offset by 0xc000000000004000.
* It's impossible to receive interrupts below 0x300 via this mechanism.
* KVM: None of these traps are from the guest ; anything that escalated
* to HV=1 from HV=0 is delivered via real mode handlers.
*/
/*
* This uses the standard macro, since the original 0x300 vector
* only has extra guff for STAB-based processors -- which never
* come here.
*/
EXC_COMMON_BEGIN(ppc64_runlatch_on_trampoline)
b __ppc64_runlatch_on
USE_FIXED_SECTION(virt_trampolines)
/*
* All code below __end_interrupts is treated as soft-masked. If
* any code runs here with MSR[EE]=1, it must then cope with pending
* soft interrupt being raised (i.e., by ensuring it is replayed).
*
* The __end_interrupts marker must be past the out-of-line (OOL)
* handlers, so that they are copied to real address 0x100 when running
* a relocatable kernel. This ensures they can be reached from the short
* trampoline handlers (like 0x4f00, 0x4f20, etc.) which branch
* directly, without using LOAD_HANDLER().
*/
.align 7
.globl __end_interrupts
__end_interrupts:
DEFINE_FIXED_SYMBOL(__end_interrupts)
#ifdef CONFIG_PPC_970_NAP
/*
* Called by exception entry code if _TLF_NAPPING was set, this clears
* the NAPPING flag, and redirects the exception exit to
* power4_fixup_nap_return.
*/
.globl power4_fixup_nap
EXC_COMMON_BEGIN(power4_fixup_nap)
andc r9,r9,r10
std r9,TI_LOCAL_FLAGS(r11)
LOAD_REG_ADDR(r10, power4_idle_nap_return)
std r10,_NIP(r1)
blr
power4_idle_nap_return:
blr
#endif
CLOSE_FIXED_SECTION(real_vectors);
CLOSE_FIXED_SECTION(real_trampolines);
CLOSE_FIXED_SECTION(virt_vectors);
CLOSE_FIXED_SECTION(virt_trampolines);
USE_TEXT_SECTION()
/* MSR[RI] should be clear because this uses SRR[01] */
enable_machine_check:
mflr r0
bcl 20,31,$+4
0: mflr r3
addi r3,r3,(1f - 0b)
mtspr SPRN_SRR0,r3
mfmsr r3
ori r3,r3,MSR_ME
mtspr SPRN_SRR1,r3
RFI_TO_KERNEL
1: mtlr r0
blr
/* MSR[RI] should be clear because this uses SRR[01] */
disable_machine_check:
mflr r0
bcl 20,31,$+4
0: mflr r3
addi r3,r3,(1f - 0b)
mtspr SPRN_SRR0,r3
mfmsr r3
li r4,MSR_ME
andc r3,r3,r4
mtspr SPRN_SRR1,r3
RFI_TO_KERNEL
1: mtlr r0
blr
/*
* Hash table stuff
*/
.balign IFETCH_ALIGN_BYTES
do_hash_page:
#ifdef CONFIG_PPC_BOOK3S_64
lis r0,(DSISR_BAD_FAULT_64S | DSISR_DABRMATCH | DSISR_KEYFAULT)@h
ori r0,r0,DSISR_BAD_FAULT_64S@l
and. r0,r5,r0 /* weird error? */
bne- handle_page_fault /* if not, try to insert a HPTE */
ld r11, PACA_THREAD_INFO(r13)
lwz r0,TI_PREEMPT(r11) /* If we're in an "NMI" */
andis. r0,r0,NMI_MASK@h /* (i.e. an irq when soft-disabled) */
bne 77f /* then don't call hash_page now */
/*
* r3 contains the trap number
* r4 contains the faulting address
* r5 contains dsisr
* r6 msr
*
* at return r3 = 0 for success, 1 for page fault, negative for error
*/
bl __hash_page /* build HPTE if possible */
cmpdi r3,0 /* see if __hash_page succeeded */
/* Success */
beq interrupt_return /* Return from exception on success */
/* Error */
blt- 13f
/* Reload DAR/DSISR into r4/r5 for the DABR check below */
ld r4,_DAR(r1)
ld r5,_DSISR(r1)
#endif /* CONFIG_PPC_BOOK3S_64 */
/* Here we have a page fault that hash_page can't handle. */
handle_page_fault:
11: andis. r0,r5,DSISR_DABRMATCH@h
bne- handle_dabr_fault
addi r3,r1,STACK_FRAME_OVERHEAD
bl do_page_fault
cmpdi r3,0
beq+ interrupt_return
mr r5,r3
addi r3,r1,STACK_FRAME_OVERHEAD
ld r4,_DAR(r1)
bl bad_page_fault
b interrupt_return
/* We have a data breakpoint exception - handle it */
handle_dabr_fault:
ld r4,_DAR(r1)
ld r5,_DSISR(r1)
addi r3,r1,STACK_FRAME_OVERHEAD
bl do_break
/*
* do_break() may have changed the NV GPRS while handling a breakpoint.
* If so, we need to restore them with their updated values.
*/
REST_NVGPRS(r1)
b interrupt_return
#ifdef CONFIG_PPC_BOOK3S_64
/* We have a page fault that hash_page could handle but HV refused
* the PTE insertion
*/
13: mr r5,r3
addi r3,r1,STACK_FRAME_OVERHEAD
ld r4,_DAR(r1)
bl low_hash_fault
b interrupt_return
#endif
/*
* We come here as a result of a DSI at a point where we don't want
* to call hash_page, such as when we are accessing memory (possibly
* user memory) inside a PMU interrupt that occurred while interrupts
* were soft-disabled. We want to invoke the exception handler for
* the access, or panic if there isn't a handler.
*/
77: addi r3,r1,STACK_FRAME_OVERHEAD
li r5,SIGSEGV
bl bad_page_fault
b interrupt_return