linux/drivers/power/supply/sbs-battery.c
Paul Kocialkowski 7f93e1fa03 power: supply: sbs-battery: Correct supply status with current draw
The status reported directly by the battery controller is not always
reliable and should be corrected based on the current draw information.

This implements such a correction with a dedicated function, called
where the supply status is retrieved.

Signed-off-by: Paul Kocialkowski <contact@paulk.fr>
Signed-off-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
2017-05-01 12:45:43 +02:00

954 lines
24 KiB
C

/*
* Gas Gauge driver for SBS Compliant Batteries
*
* Copyright (c) 2010, NVIDIA Corporation.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/err.h>
#include <linux/power_supply.h>
#include <linux/i2c.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/gpio/consumer.h>
#include <linux/of.h>
#include <linux/stat.h>
#include <linux/power/sbs-battery.h>
enum {
REG_MANUFACTURER_DATA,
REG_TEMPERATURE,
REG_VOLTAGE,
REG_CURRENT,
REG_CAPACITY,
REG_TIME_TO_EMPTY,
REG_TIME_TO_FULL,
REG_STATUS,
REG_CAPACITY_LEVEL,
REG_CYCLE_COUNT,
REG_SERIAL_NUMBER,
REG_REMAINING_CAPACITY,
REG_REMAINING_CAPACITY_CHARGE,
REG_FULL_CHARGE_CAPACITY,
REG_FULL_CHARGE_CAPACITY_CHARGE,
REG_DESIGN_CAPACITY,
REG_DESIGN_CAPACITY_CHARGE,
REG_DESIGN_VOLTAGE_MIN,
REG_DESIGN_VOLTAGE_MAX,
REG_MANUFACTURER,
REG_MODEL_NAME,
};
/* Battery Mode defines */
#define BATTERY_MODE_OFFSET 0x03
#define BATTERY_MODE_MASK 0x8000
enum sbs_battery_mode {
BATTERY_MODE_AMPS,
BATTERY_MODE_WATTS
};
/* manufacturer access defines */
#define MANUFACTURER_ACCESS_STATUS 0x0006
#define MANUFACTURER_ACCESS_SLEEP 0x0011
/* battery status value bits */
#define BATTERY_INITIALIZED 0x80
#define BATTERY_DISCHARGING 0x40
#define BATTERY_FULL_CHARGED 0x20
#define BATTERY_FULL_DISCHARGED 0x10
/* min_value and max_value are only valid for numerical data */
#define SBS_DATA(_psp, _addr, _min_value, _max_value) { \
.psp = _psp, \
.addr = _addr, \
.min_value = _min_value, \
.max_value = _max_value, \
}
static const struct chip_data {
enum power_supply_property psp;
u8 addr;
int min_value;
int max_value;
} sbs_data[] = {
[REG_MANUFACTURER_DATA] =
SBS_DATA(POWER_SUPPLY_PROP_PRESENT, 0x00, 0, 65535),
[REG_TEMPERATURE] =
SBS_DATA(POWER_SUPPLY_PROP_TEMP, 0x08, 0, 65535),
[REG_VOLTAGE] =
SBS_DATA(POWER_SUPPLY_PROP_VOLTAGE_NOW, 0x09, 0, 20000),
[REG_CURRENT] =
SBS_DATA(POWER_SUPPLY_PROP_CURRENT_NOW, 0x0A, -32768, 32767),
[REG_CAPACITY] =
SBS_DATA(POWER_SUPPLY_PROP_CAPACITY, 0x0D, 0, 100),
[REG_REMAINING_CAPACITY] =
SBS_DATA(POWER_SUPPLY_PROP_ENERGY_NOW, 0x0F, 0, 65535),
[REG_REMAINING_CAPACITY_CHARGE] =
SBS_DATA(POWER_SUPPLY_PROP_CHARGE_NOW, 0x0F, 0, 65535),
[REG_FULL_CHARGE_CAPACITY] =
SBS_DATA(POWER_SUPPLY_PROP_ENERGY_FULL, 0x10, 0, 65535),
[REG_FULL_CHARGE_CAPACITY_CHARGE] =
SBS_DATA(POWER_SUPPLY_PROP_CHARGE_FULL, 0x10, 0, 65535),
[REG_TIME_TO_EMPTY] =
SBS_DATA(POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG, 0x12, 0, 65535),
[REG_TIME_TO_FULL] =
SBS_DATA(POWER_SUPPLY_PROP_TIME_TO_FULL_AVG, 0x13, 0, 65535),
[REG_STATUS] =
SBS_DATA(POWER_SUPPLY_PROP_STATUS, 0x16, 0, 65535),
[REG_CAPACITY_LEVEL] =
SBS_DATA(POWER_SUPPLY_PROP_CAPACITY_LEVEL, 0x16, 0, 65535),
[REG_CYCLE_COUNT] =
SBS_DATA(POWER_SUPPLY_PROP_CYCLE_COUNT, 0x17, 0, 65535),
[REG_DESIGN_CAPACITY] =
SBS_DATA(POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN, 0x18, 0, 65535),
[REG_DESIGN_CAPACITY_CHARGE] =
SBS_DATA(POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, 0x18, 0, 65535),
[REG_DESIGN_VOLTAGE_MIN] =
SBS_DATA(POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN, 0x19, 0, 65535),
[REG_DESIGN_VOLTAGE_MAX] =
SBS_DATA(POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN, 0x19, 0, 65535),
[REG_SERIAL_NUMBER] =
SBS_DATA(POWER_SUPPLY_PROP_SERIAL_NUMBER, 0x1C, 0, 65535),
/* Properties of type `const char *' */
[REG_MANUFACTURER] =
SBS_DATA(POWER_SUPPLY_PROP_MANUFACTURER, 0x20, 0, 65535),
[REG_MODEL_NAME] =
SBS_DATA(POWER_SUPPLY_PROP_MODEL_NAME, 0x21, 0, 65535)
};
static enum power_supply_property sbs_properties[] = {
POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_CAPACITY_LEVEL,
POWER_SUPPLY_PROP_HEALTH,
POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_TECHNOLOGY,
POWER_SUPPLY_PROP_CYCLE_COUNT,
POWER_SUPPLY_PROP_VOLTAGE_NOW,
POWER_SUPPLY_PROP_CURRENT_NOW,
POWER_SUPPLY_PROP_CAPACITY,
POWER_SUPPLY_PROP_TEMP,
POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
POWER_SUPPLY_PROP_TIME_TO_FULL_AVG,
POWER_SUPPLY_PROP_SERIAL_NUMBER,
POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
POWER_SUPPLY_PROP_ENERGY_NOW,
POWER_SUPPLY_PROP_ENERGY_FULL,
POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
POWER_SUPPLY_PROP_CHARGE_NOW,
POWER_SUPPLY_PROP_CHARGE_FULL,
POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
/* Properties of type `const char *' */
POWER_SUPPLY_PROP_MANUFACTURER,
POWER_SUPPLY_PROP_MODEL_NAME
};
struct sbs_info {
struct i2c_client *client;
struct power_supply *power_supply;
bool is_present;
struct gpio_desc *gpio_detect;
bool enable_detection;
int last_state;
int poll_time;
u32 i2c_retry_count;
u32 poll_retry_count;
struct delayed_work work;
};
static char model_name[I2C_SMBUS_BLOCK_MAX + 1];
static char manufacturer[I2C_SMBUS_BLOCK_MAX + 1];
static bool force_load;
static int sbs_read_word_data(struct i2c_client *client, u8 address)
{
struct sbs_info *chip = i2c_get_clientdata(client);
s32 ret = 0;
int retries = 1;
retries = chip->i2c_retry_count;
while (retries > 0) {
ret = i2c_smbus_read_word_data(client, address);
if (ret >= 0)
break;
retries--;
}
if (ret < 0) {
dev_dbg(&client->dev,
"%s: i2c read at address 0x%x failed\n",
__func__, address);
return ret;
}
return le16_to_cpu(ret);
}
static int sbs_read_string_data(struct i2c_client *client, u8 address,
char *values)
{
struct sbs_info *chip = i2c_get_clientdata(client);
s32 ret = 0, block_length = 0;
int retries_length = 1, retries_block = 1;
u8 block_buffer[I2C_SMBUS_BLOCK_MAX + 1];
retries_length = chip->i2c_retry_count;
retries_block = chip->i2c_retry_count;
/* Adapter needs to support these two functions */
if (!i2c_check_functionality(client->adapter,
I2C_FUNC_SMBUS_BYTE_DATA |
I2C_FUNC_SMBUS_I2C_BLOCK)){
return -ENODEV;
}
/* Get the length of block data */
while (retries_length > 0) {
ret = i2c_smbus_read_byte_data(client, address);
if (ret >= 0)
break;
retries_length--;
}
if (ret < 0) {
dev_dbg(&client->dev,
"%s: i2c read at address 0x%x failed\n",
__func__, address);
return ret;
}
/* block_length does not include NULL terminator */
block_length = ret;
if (block_length > I2C_SMBUS_BLOCK_MAX) {
dev_err(&client->dev,
"%s: Returned block_length is longer than 0x%x\n",
__func__, I2C_SMBUS_BLOCK_MAX);
return -EINVAL;
}
/* Get the block data */
while (retries_block > 0) {
ret = i2c_smbus_read_i2c_block_data(
client, address,
block_length + 1, block_buffer);
if (ret >= 0)
break;
retries_block--;
}
if (ret < 0) {
dev_dbg(&client->dev,
"%s: i2c read at address 0x%x failed\n",
__func__, address);
return ret;
}
/* block_buffer[0] == block_length */
memcpy(values, block_buffer + 1, block_length);
values[block_length] = '\0';
return le16_to_cpu(ret);
}
static int sbs_write_word_data(struct i2c_client *client, u8 address,
u16 value)
{
struct sbs_info *chip = i2c_get_clientdata(client);
s32 ret = 0;
int retries = 1;
retries = chip->i2c_retry_count;
while (retries > 0) {
ret = i2c_smbus_write_word_data(client, address,
le16_to_cpu(value));
if (ret >= 0)
break;
retries--;
}
if (ret < 0) {
dev_dbg(&client->dev,
"%s: i2c write to address 0x%x failed\n",
__func__, address);
return ret;
}
return 0;
}
static int sbs_status_correct(struct i2c_client *client, int *intval)
{
int ret;
ret = sbs_read_word_data(client, sbs_data[REG_CURRENT].addr);
if (ret < 0)
return ret;
ret = (s16)ret;
/* Not drawing current means full (cannot be not charging) */
if (ret == 0)
*intval = POWER_SUPPLY_STATUS_FULL;
if (*intval == POWER_SUPPLY_STATUS_FULL) {
/* Drawing or providing current when full */
if (ret > 0)
*intval = POWER_SUPPLY_STATUS_CHARGING;
else if (ret < 0)
*intval = POWER_SUPPLY_STATUS_DISCHARGING;
}
return 0;
}
static int sbs_get_battery_presence_and_health(
struct i2c_client *client, enum power_supply_property psp,
union power_supply_propval *val)
{
s32 ret;
struct sbs_info *chip = i2c_get_clientdata(client);
if (psp == POWER_SUPPLY_PROP_PRESENT && chip->gpio_detect) {
ret = gpiod_get_value_cansleep(chip->gpio_detect);
if (ret < 0)
return ret;
val->intval = ret;
chip->is_present = val->intval;
return ret;
}
/*
* Write to ManufacturerAccess with ManufacturerAccess command
* and then read the status. Do not check for error on the write
* since not all batteries implement write access to this command,
* while others mandate it.
*/
sbs_write_word_data(client, sbs_data[REG_MANUFACTURER_DATA].addr,
MANUFACTURER_ACCESS_STATUS);
ret = sbs_read_word_data(client, sbs_data[REG_MANUFACTURER_DATA].addr);
if (ret < 0) {
if (psp == POWER_SUPPLY_PROP_PRESENT)
val->intval = 0; /* battery removed */
return ret;
}
if (ret < sbs_data[REG_MANUFACTURER_DATA].min_value ||
ret > sbs_data[REG_MANUFACTURER_DATA].max_value) {
val->intval = 0;
return 0;
}
/* Mask the upper nibble of 2nd byte and
* lower byte of response then
* shift the result by 8 to get status*/
ret &= 0x0F00;
ret >>= 8;
if (psp == POWER_SUPPLY_PROP_PRESENT) {
if (ret == 0x0F)
/* battery removed */
val->intval = 0;
else
val->intval = 1;
} else if (psp == POWER_SUPPLY_PROP_HEALTH) {
if (ret == 0x09)
val->intval = POWER_SUPPLY_HEALTH_UNSPEC_FAILURE;
else if (ret == 0x0B)
val->intval = POWER_SUPPLY_HEALTH_OVERHEAT;
else if (ret == 0x0C)
val->intval = POWER_SUPPLY_HEALTH_DEAD;
else
val->intval = POWER_SUPPLY_HEALTH_GOOD;
}
return 0;
}
static int sbs_get_battery_property(struct i2c_client *client,
int reg_offset, enum power_supply_property psp,
union power_supply_propval *val)
{
struct sbs_info *chip = i2c_get_clientdata(client);
s32 ret;
ret = sbs_read_word_data(client, sbs_data[reg_offset].addr);
if (ret < 0)
return ret;
/* returned values are 16 bit */
if (sbs_data[reg_offset].min_value < 0)
ret = (s16)ret;
if (ret >= sbs_data[reg_offset].min_value &&
ret <= sbs_data[reg_offset].max_value) {
val->intval = ret;
if (psp == POWER_SUPPLY_PROP_CAPACITY_LEVEL) {
if (!(ret & BATTERY_INITIALIZED))
val->intval =
POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
else if (ret & BATTERY_FULL_CHARGED)
val->intval =
POWER_SUPPLY_CAPACITY_LEVEL_FULL;
else if (ret & BATTERY_FULL_DISCHARGED)
val->intval =
POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
else
val->intval =
POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
return 0;
} else if (psp != POWER_SUPPLY_PROP_STATUS) {
return 0;
}
if (ret & BATTERY_FULL_CHARGED)
val->intval = POWER_SUPPLY_STATUS_FULL;
else if (ret & BATTERY_DISCHARGING)
val->intval = POWER_SUPPLY_STATUS_DISCHARGING;
else
val->intval = POWER_SUPPLY_STATUS_CHARGING;
sbs_status_correct(client, &val->intval);
if (chip->poll_time == 0)
chip->last_state = val->intval;
else if (chip->last_state != val->intval) {
cancel_delayed_work_sync(&chip->work);
power_supply_changed(chip->power_supply);
chip->poll_time = 0;
}
} else {
if (psp == POWER_SUPPLY_PROP_STATUS)
val->intval = POWER_SUPPLY_STATUS_UNKNOWN;
else
val->intval = 0;
}
return 0;
}
static int sbs_get_battery_string_property(struct i2c_client *client,
int reg_offset, enum power_supply_property psp, char *val)
{
s32 ret;
ret = sbs_read_string_data(client, sbs_data[reg_offset].addr, val);
if (ret < 0)
return ret;
return 0;
}
static void sbs_unit_adjustment(struct i2c_client *client,
enum power_supply_property psp, union power_supply_propval *val)
{
#define BASE_UNIT_CONVERSION 1000
#define BATTERY_MODE_CAP_MULT_WATT (10 * BASE_UNIT_CONVERSION)
#define TIME_UNIT_CONVERSION 60
#define TEMP_KELVIN_TO_CELSIUS 2731
switch (psp) {
case POWER_SUPPLY_PROP_ENERGY_NOW:
case POWER_SUPPLY_PROP_ENERGY_FULL:
case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
/* sbs provides energy in units of 10mWh.
* Convert to µWh
*/
val->intval *= BATTERY_MODE_CAP_MULT_WATT;
break;
case POWER_SUPPLY_PROP_VOLTAGE_NOW:
case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
case POWER_SUPPLY_PROP_CURRENT_NOW:
case POWER_SUPPLY_PROP_CHARGE_NOW:
case POWER_SUPPLY_PROP_CHARGE_FULL:
case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
val->intval *= BASE_UNIT_CONVERSION;
break;
case POWER_SUPPLY_PROP_TEMP:
/* sbs provides battery temperature in 0.1K
* so convert it to 0.1°C
*/
val->intval -= TEMP_KELVIN_TO_CELSIUS;
break;
case POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG:
case POWER_SUPPLY_PROP_TIME_TO_FULL_AVG:
/* sbs provides time to empty and time to full in minutes.
* Convert to seconds
*/
val->intval *= TIME_UNIT_CONVERSION;
break;
default:
dev_dbg(&client->dev,
"%s: no need for unit conversion %d\n", __func__, psp);
}
}
static enum sbs_battery_mode sbs_set_battery_mode(struct i2c_client *client,
enum sbs_battery_mode mode)
{
int ret, original_val;
original_val = sbs_read_word_data(client, BATTERY_MODE_OFFSET);
if (original_val < 0)
return original_val;
if ((original_val & BATTERY_MODE_MASK) == mode)
return mode;
if (mode == BATTERY_MODE_AMPS)
ret = original_val & ~BATTERY_MODE_MASK;
else
ret = original_val | BATTERY_MODE_MASK;
ret = sbs_write_word_data(client, BATTERY_MODE_OFFSET, ret);
if (ret < 0)
return ret;
return original_val & BATTERY_MODE_MASK;
}
static int sbs_get_battery_capacity(struct i2c_client *client,
int reg_offset, enum power_supply_property psp,
union power_supply_propval *val)
{
s32 ret;
enum sbs_battery_mode mode = BATTERY_MODE_WATTS;
if (power_supply_is_amp_property(psp))
mode = BATTERY_MODE_AMPS;
mode = sbs_set_battery_mode(client, mode);
if (mode < 0)
return mode;
ret = sbs_read_word_data(client, sbs_data[reg_offset].addr);
if (ret < 0)
return ret;
if (psp == POWER_SUPPLY_PROP_CAPACITY) {
/* sbs spec says that this can be >100 %
* even if max value is 100 % */
val->intval = min(ret, 100);
} else
val->intval = ret;
ret = sbs_set_battery_mode(client, mode);
if (ret < 0)
return ret;
return 0;
}
static char sbs_serial[5];
static int sbs_get_battery_serial_number(struct i2c_client *client,
union power_supply_propval *val)
{
int ret;
ret = sbs_read_word_data(client, sbs_data[REG_SERIAL_NUMBER].addr);
if (ret < 0)
return ret;
ret = sprintf(sbs_serial, "%04x", ret);
val->strval = sbs_serial;
return 0;
}
static int sbs_get_property_index(struct i2c_client *client,
enum power_supply_property psp)
{
int count;
for (count = 0; count < ARRAY_SIZE(sbs_data); count++)
if (psp == sbs_data[count].psp)
return count;
dev_warn(&client->dev,
"%s: Invalid Property - %d\n", __func__, psp);
return -EINVAL;
}
static int sbs_get_property(struct power_supply *psy,
enum power_supply_property psp,
union power_supply_propval *val)
{
int ret = 0;
struct sbs_info *chip = power_supply_get_drvdata(psy);
struct i2c_client *client = chip->client;
switch (psp) {
case POWER_SUPPLY_PROP_PRESENT:
case POWER_SUPPLY_PROP_HEALTH:
ret = sbs_get_battery_presence_and_health(client, psp, val);
if (psp == POWER_SUPPLY_PROP_PRESENT)
return 0;
break;
case POWER_SUPPLY_PROP_TECHNOLOGY:
val->intval = POWER_SUPPLY_TECHNOLOGY_LION;
goto done; /* don't trigger power_supply_changed()! */
case POWER_SUPPLY_PROP_ENERGY_NOW:
case POWER_SUPPLY_PROP_ENERGY_FULL:
case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
case POWER_SUPPLY_PROP_CHARGE_NOW:
case POWER_SUPPLY_PROP_CHARGE_FULL:
case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
case POWER_SUPPLY_PROP_CAPACITY:
ret = sbs_get_property_index(client, psp);
if (ret < 0)
break;
ret = sbs_get_battery_capacity(client, ret, psp, val);
break;
case POWER_SUPPLY_PROP_SERIAL_NUMBER:
ret = sbs_get_battery_serial_number(client, val);
break;
case POWER_SUPPLY_PROP_STATUS:
case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
case POWER_SUPPLY_PROP_CYCLE_COUNT:
case POWER_SUPPLY_PROP_VOLTAGE_NOW:
case POWER_SUPPLY_PROP_CURRENT_NOW:
case POWER_SUPPLY_PROP_TEMP:
case POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG:
case POWER_SUPPLY_PROP_TIME_TO_FULL_AVG:
case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
ret = sbs_get_property_index(client, psp);
if (ret < 0)
break;
ret = sbs_get_battery_property(client, ret, psp, val);
break;
case POWER_SUPPLY_PROP_MODEL_NAME:
ret = sbs_get_property_index(client, psp);
if (ret < 0)
break;
ret = sbs_get_battery_string_property(client, ret, psp,
model_name);
val->strval = model_name;
break;
case POWER_SUPPLY_PROP_MANUFACTURER:
ret = sbs_get_property_index(client, psp);
if (ret < 0)
break;
ret = sbs_get_battery_string_property(client, ret, psp,
manufacturer);
val->strval = manufacturer;
break;
default:
dev_err(&client->dev,
"%s: INVALID property\n", __func__);
return -EINVAL;
}
if (!chip->enable_detection)
goto done;
if (!chip->gpio_detect &&
chip->is_present != (ret >= 0)) {
chip->is_present = (ret >= 0);
power_supply_changed(chip->power_supply);
}
done:
if (!ret) {
/* Convert units to match requirements for power supply class */
sbs_unit_adjustment(client, psp, val);
}
dev_dbg(&client->dev,
"%s: property = %d, value = %x\n", __func__, psp, val->intval);
if (ret && chip->is_present)
return ret;
/* battery not present, so return NODATA for properties */
if (ret)
return -ENODATA;
return 0;
}
static irqreturn_t sbs_irq(int irq, void *devid)
{
struct sbs_info *chip = devid;
struct power_supply *battery = chip->power_supply;
int ret;
ret = gpiod_get_value_cansleep(chip->gpio_detect);
if (ret < 0)
return ret;
chip->is_present = ret;
power_supply_changed(battery);
return IRQ_HANDLED;
}
static void sbs_external_power_changed(struct power_supply *psy)
{
struct sbs_info *chip = power_supply_get_drvdata(psy);
/* cancel outstanding work */
cancel_delayed_work_sync(&chip->work);
schedule_delayed_work(&chip->work, HZ);
chip->poll_time = chip->poll_retry_count;
}
static void sbs_delayed_work(struct work_struct *work)
{
struct sbs_info *chip;
s32 ret;
chip = container_of(work, struct sbs_info, work.work);
ret = sbs_read_word_data(chip->client, sbs_data[REG_STATUS].addr);
/* if the read failed, give up on this work */
if (ret < 0) {
chip->poll_time = 0;
return;
}
if (ret & BATTERY_FULL_CHARGED)
ret = POWER_SUPPLY_STATUS_FULL;
else if (ret & BATTERY_DISCHARGING)
ret = POWER_SUPPLY_STATUS_DISCHARGING;
else
ret = POWER_SUPPLY_STATUS_CHARGING;
sbs_status_correct(chip->client, &ret);
if (chip->last_state != ret) {
chip->poll_time = 0;
power_supply_changed(chip->power_supply);
return;
}
if (chip->poll_time > 0) {
schedule_delayed_work(&chip->work, HZ);
chip->poll_time--;
return;
}
}
static const struct power_supply_desc sbs_default_desc = {
.type = POWER_SUPPLY_TYPE_BATTERY,
.properties = sbs_properties,
.num_properties = ARRAY_SIZE(sbs_properties),
.get_property = sbs_get_property,
.external_power_changed = sbs_external_power_changed,
};
static int sbs_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct sbs_info *chip;
struct power_supply_desc *sbs_desc;
struct sbs_platform_data *pdata = client->dev.platform_data;
struct power_supply_config psy_cfg = {};
int rc;
int irq;
sbs_desc = devm_kmemdup(&client->dev, &sbs_default_desc,
sizeof(*sbs_desc), GFP_KERNEL);
if (!sbs_desc)
return -ENOMEM;
sbs_desc->name = devm_kasprintf(&client->dev, GFP_KERNEL, "sbs-%s",
dev_name(&client->dev));
if (!sbs_desc->name)
return -ENOMEM;
chip = devm_kzalloc(&client->dev, sizeof(struct sbs_info), GFP_KERNEL);
if (!chip)
return -ENOMEM;
chip->client = client;
chip->enable_detection = false;
psy_cfg.of_node = client->dev.of_node;
psy_cfg.drv_data = chip;
chip->last_state = POWER_SUPPLY_STATUS_UNKNOWN;
/* use pdata if available, fall back to DT properties,
* or hardcoded defaults if not
*/
rc = of_property_read_u32(client->dev.of_node, "sbs,i2c-retry-count",
&chip->i2c_retry_count);
if (rc)
chip->i2c_retry_count = 0;
rc = of_property_read_u32(client->dev.of_node, "sbs,poll-retry-count",
&chip->poll_retry_count);
if (rc)
chip->poll_retry_count = 0;
if (pdata) {
chip->poll_retry_count = pdata->poll_retry_count;
chip->i2c_retry_count = pdata->i2c_retry_count;
}
chip->i2c_retry_count = chip->i2c_retry_count + 1;
chip->gpio_detect = devm_gpiod_get_optional(&client->dev,
"sbs,battery-detect", GPIOD_IN);
if (IS_ERR(chip->gpio_detect)) {
dev_err(&client->dev, "Failed to get gpio: %ld\n",
PTR_ERR(chip->gpio_detect));
return PTR_ERR(chip->gpio_detect);
}
i2c_set_clientdata(client, chip);
if (!chip->gpio_detect)
goto skip_gpio;
irq = gpiod_to_irq(chip->gpio_detect);
if (irq <= 0) {
dev_warn(&client->dev, "Failed to get gpio as irq: %d\n", irq);
goto skip_gpio;
}
rc = devm_request_threaded_irq(&client->dev, irq, NULL, sbs_irq,
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
dev_name(&client->dev), chip);
if (rc) {
dev_warn(&client->dev, "Failed to request irq: %d\n", rc);
goto skip_gpio;
}
skip_gpio:
/*
* Before we register, we might need to make sure we can actually talk
* to the battery.
*/
if (!(force_load || chip->gpio_detect)) {
rc = sbs_read_word_data(client, sbs_data[REG_STATUS].addr);
if (rc < 0) {
dev_err(&client->dev, "%s: Failed to get device status\n",
__func__);
goto exit_psupply;
}
}
chip->power_supply = devm_power_supply_register(&client->dev, sbs_desc,
&psy_cfg);
if (IS_ERR(chip->power_supply)) {
dev_err(&client->dev,
"%s: Failed to register power supply\n", __func__);
rc = PTR_ERR(chip->power_supply);
goto exit_psupply;
}
dev_info(&client->dev,
"%s: battery gas gauge device registered\n", client->name);
INIT_DELAYED_WORK(&chip->work, sbs_delayed_work);
chip->enable_detection = true;
return 0;
exit_psupply:
return rc;
}
static int sbs_remove(struct i2c_client *client)
{
struct sbs_info *chip = i2c_get_clientdata(client);
cancel_delayed_work_sync(&chip->work);
return 0;
}
#if defined CONFIG_PM_SLEEP
static int sbs_suspend(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct sbs_info *chip = i2c_get_clientdata(client);
if (chip->poll_time > 0)
cancel_delayed_work_sync(&chip->work);
/*
* Write to manufacturer access with sleep command.
* Support is manufacturer dependend, so ignore errors.
*/
sbs_write_word_data(client, sbs_data[REG_MANUFACTURER_DATA].addr,
MANUFACTURER_ACCESS_SLEEP);
return 0;
}
static SIMPLE_DEV_PM_OPS(sbs_pm_ops, sbs_suspend, NULL);
#define SBS_PM_OPS (&sbs_pm_ops)
#else
#define SBS_PM_OPS NULL
#endif
static const struct i2c_device_id sbs_id[] = {
{ "bq20z75", 0 },
{ "sbs-battery", 1 },
{}
};
MODULE_DEVICE_TABLE(i2c, sbs_id);
static const struct of_device_id sbs_dt_ids[] = {
{ .compatible = "sbs,sbs-battery" },
{ .compatible = "ti,bq20z75" },
{ }
};
MODULE_DEVICE_TABLE(of, sbs_dt_ids);
static struct i2c_driver sbs_battery_driver = {
.probe = sbs_probe,
.remove = sbs_remove,
.id_table = sbs_id,
.driver = {
.name = "sbs-battery",
.of_match_table = sbs_dt_ids,
.pm = SBS_PM_OPS,
},
};
module_i2c_driver(sbs_battery_driver);
MODULE_DESCRIPTION("SBS battery monitor driver");
MODULE_LICENSE("GPL");
module_param(force_load, bool, S_IRUSR | S_IRGRP | S_IROTH);
MODULE_PARM_DESC(force_load,
"Attempt to load the driver even if no battery is connected");