linux/arch/powerpc/kvm/book3s_paired_singles.c
Rickard Strandqvist a0499cf746 arch: powerpc: kvm: book3s_paired_singles.c: Remove unused function
Remove the function inst_set_field() that is not used anywhere.

This was partially found by using a static code analysis program called cppcheck.

Signed-off-by: Rickard Strandqvist <rickard_strandqvist@spectrumdigital.se>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-12-17 13:13:29 +01:00

1272 lines
31 KiB
C

/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Copyright Novell Inc 2010
*
* Authors: Alexander Graf <agraf@suse.de>
*/
#include <asm/kvm.h>
#include <asm/kvm_ppc.h>
#include <asm/disassemble.h>
#include <asm/kvm_book3s.h>
#include <asm/kvm_fpu.h>
#include <asm/reg.h>
#include <asm/cacheflush.h>
#include <asm/switch_to.h>
#include <linux/vmalloc.h>
/* #define DEBUG */
#ifdef DEBUG
#define dprintk printk
#else
#define dprintk(...) do { } while(0);
#endif
#define OP_LFS 48
#define OP_LFSU 49
#define OP_LFD 50
#define OP_LFDU 51
#define OP_STFS 52
#define OP_STFSU 53
#define OP_STFD 54
#define OP_STFDU 55
#define OP_PSQ_L 56
#define OP_PSQ_LU 57
#define OP_PSQ_ST 60
#define OP_PSQ_STU 61
#define OP_31_LFSX 535
#define OP_31_LFSUX 567
#define OP_31_LFDX 599
#define OP_31_LFDUX 631
#define OP_31_STFSX 663
#define OP_31_STFSUX 695
#define OP_31_STFX 727
#define OP_31_STFUX 759
#define OP_31_LWIZX 887
#define OP_31_STFIWX 983
#define OP_59_FADDS 21
#define OP_59_FSUBS 20
#define OP_59_FSQRTS 22
#define OP_59_FDIVS 18
#define OP_59_FRES 24
#define OP_59_FMULS 25
#define OP_59_FRSQRTES 26
#define OP_59_FMSUBS 28
#define OP_59_FMADDS 29
#define OP_59_FNMSUBS 30
#define OP_59_FNMADDS 31
#define OP_63_FCMPU 0
#define OP_63_FCPSGN 8
#define OP_63_FRSP 12
#define OP_63_FCTIW 14
#define OP_63_FCTIWZ 15
#define OP_63_FDIV 18
#define OP_63_FADD 21
#define OP_63_FSQRT 22
#define OP_63_FSEL 23
#define OP_63_FRE 24
#define OP_63_FMUL 25
#define OP_63_FRSQRTE 26
#define OP_63_FMSUB 28
#define OP_63_FMADD 29
#define OP_63_FNMSUB 30
#define OP_63_FNMADD 31
#define OP_63_FCMPO 32
#define OP_63_MTFSB1 38 // XXX
#define OP_63_FSUB 20
#define OP_63_FNEG 40
#define OP_63_MCRFS 64
#define OP_63_MTFSB0 70
#define OP_63_FMR 72
#define OP_63_MTFSFI 134
#define OP_63_FABS 264
#define OP_63_MFFS 583
#define OP_63_MTFSF 711
#define OP_4X_PS_CMPU0 0
#define OP_4X_PSQ_LX 6
#define OP_4XW_PSQ_STX 7
#define OP_4A_PS_SUM0 10
#define OP_4A_PS_SUM1 11
#define OP_4A_PS_MULS0 12
#define OP_4A_PS_MULS1 13
#define OP_4A_PS_MADDS0 14
#define OP_4A_PS_MADDS1 15
#define OP_4A_PS_DIV 18
#define OP_4A_PS_SUB 20
#define OP_4A_PS_ADD 21
#define OP_4A_PS_SEL 23
#define OP_4A_PS_RES 24
#define OP_4A_PS_MUL 25
#define OP_4A_PS_RSQRTE 26
#define OP_4A_PS_MSUB 28
#define OP_4A_PS_MADD 29
#define OP_4A_PS_NMSUB 30
#define OP_4A_PS_NMADD 31
#define OP_4X_PS_CMPO0 32
#define OP_4X_PSQ_LUX 38
#define OP_4XW_PSQ_STUX 39
#define OP_4X_PS_NEG 40
#define OP_4X_PS_CMPU1 64
#define OP_4X_PS_MR 72
#define OP_4X_PS_CMPO1 96
#define OP_4X_PS_NABS 136
#define OP_4X_PS_ABS 264
#define OP_4X_PS_MERGE00 528
#define OP_4X_PS_MERGE01 560
#define OP_4X_PS_MERGE10 592
#define OP_4X_PS_MERGE11 624
#define SCALAR_NONE 0
#define SCALAR_HIGH (1 << 0)
#define SCALAR_LOW (1 << 1)
#define SCALAR_NO_PS0 (1 << 2)
#define SCALAR_NO_PS1 (1 << 3)
#define GQR_ST_TYPE_MASK 0x00000007
#define GQR_ST_TYPE_SHIFT 0
#define GQR_ST_SCALE_MASK 0x00003f00
#define GQR_ST_SCALE_SHIFT 8
#define GQR_LD_TYPE_MASK 0x00070000
#define GQR_LD_TYPE_SHIFT 16
#define GQR_LD_SCALE_MASK 0x3f000000
#define GQR_LD_SCALE_SHIFT 24
#define GQR_QUANTIZE_FLOAT 0
#define GQR_QUANTIZE_U8 4
#define GQR_QUANTIZE_U16 5
#define GQR_QUANTIZE_S8 6
#define GQR_QUANTIZE_S16 7
#define FPU_LS_SINGLE 0
#define FPU_LS_DOUBLE 1
#define FPU_LS_SINGLE_LOW 2
static inline void kvmppc_sync_qpr(struct kvm_vcpu *vcpu, int rt)
{
kvm_cvt_df(&VCPU_FPR(vcpu, rt), &vcpu->arch.qpr[rt]);
}
static void kvmppc_inject_pf(struct kvm_vcpu *vcpu, ulong eaddr, bool is_store)
{
u32 dsisr;
u64 msr = kvmppc_get_msr(vcpu);
msr = kvmppc_set_field(msr, 33, 36, 0);
msr = kvmppc_set_field(msr, 42, 47, 0);
kvmppc_set_msr(vcpu, msr);
kvmppc_set_dar(vcpu, eaddr);
/* Page Fault */
dsisr = kvmppc_set_field(0, 33, 33, 1);
if (is_store)
dsisr = kvmppc_set_field(dsisr, 38, 38, 1);
kvmppc_set_dsisr(vcpu, dsisr);
kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_DATA_STORAGE);
}
static int kvmppc_emulate_fpr_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
int rs, ulong addr, int ls_type)
{
int emulated = EMULATE_FAIL;
int r;
char tmp[8];
int len = sizeof(u32);
if (ls_type == FPU_LS_DOUBLE)
len = sizeof(u64);
/* read from memory */
r = kvmppc_ld(vcpu, &addr, len, tmp, true);
vcpu->arch.paddr_accessed = addr;
if (r < 0) {
kvmppc_inject_pf(vcpu, addr, false);
goto done_load;
} else if (r == EMULATE_DO_MMIO) {
emulated = kvmppc_handle_load(run, vcpu, KVM_MMIO_REG_FPR | rs,
len, 1);
goto done_load;
}
emulated = EMULATE_DONE;
/* put in registers */
switch (ls_type) {
case FPU_LS_SINGLE:
kvm_cvt_fd((u32*)tmp, &VCPU_FPR(vcpu, rs));
vcpu->arch.qpr[rs] = *((u32*)tmp);
break;
case FPU_LS_DOUBLE:
VCPU_FPR(vcpu, rs) = *((u64*)tmp);
break;
}
dprintk(KERN_INFO "KVM: FPR_LD [0x%llx] at 0x%lx (%d)\n", *(u64*)tmp,
addr, len);
done_load:
return emulated;
}
static int kvmppc_emulate_fpr_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
int rs, ulong addr, int ls_type)
{
int emulated = EMULATE_FAIL;
int r;
char tmp[8];
u64 val;
int len;
switch (ls_type) {
case FPU_LS_SINGLE:
kvm_cvt_df(&VCPU_FPR(vcpu, rs), (u32*)tmp);
val = *((u32*)tmp);
len = sizeof(u32);
break;
case FPU_LS_SINGLE_LOW:
*((u32*)tmp) = VCPU_FPR(vcpu, rs);
val = VCPU_FPR(vcpu, rs) & 0xffffffff;
len = sizeof(u32);
break;
case FPU_LS_DOUBLE:
*((u64*)tmp) = VCPU_FPR(vcpu, rs);
val = VCPU_FPR(vcpu, rs);
len = sizeof(u64);
break;
default:
val = 0;
len = 0;
}
r = kvmppc_st(vcpu, &addr, len, tmp, true);
vcpu->arch.paddr_accessed = addr;
if (r < 0) {
kvmppc_inject_pf(vcpu, addr, true);
} else if (r == EMULATE_DO_MMIO) {
emulated = kvmppc_handle_store(run, vcpu, val, len, 1);
} else {
emulated = EMULATE_DONE;
}
dprintk(KERN_INFO "KVM: FPR_ST [0x%llx] at 0x%lx (%d)\n",
val, addr, len);
return emulated;
}
static int kvmppc_emulate_psq_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
int rs, ulong addr, bool w, int i)
{
int emulated = EMULATE_FAIL;
int r;
float one = 1.0;
u32 tmp[2];
/* read from memory */
if (w) {
r = kvmppc_ld(vcpu, &addr, sizeof(u32), tmp, true);
memcpy(&tmp[1], &one, sizeof(u32));
} else {
r = kvmppc_ld(vcpu, &addr, sizeof(u32) * 2, tmp, true);
}
vcpu->arch.paddr_accessed = addr;
if (r < 0) {
kvmppc_inject_pf(vcpu, addr, false);
goto done_load;
} else if ((r == EMULATE_DO_MMIO) && w) {
emulated = kvmppc_handle_load(run, vcpu, KVM_MMIO_REG_FPR | rs,
4, 1);
vcpu->arch.qpr[rs] = tmp[1];
goto done_load;
} else if (r == EMULATE_DO_MMIO) {
emulated = kvmppc_handle_load(run, vcpu, KVM_MMIO_REG_FQPR | rs,
8, 1);
goto done_load;
}
emulated = EMULATE_DONE;
/* put in registers */
kvm_cvt_fd(&tmp[0], &VCPU_FPR(vcpu, rs));
vcpu->arch.qpr[rs] = tmp[1];
dprintk(KERN_INFO "KVM: PSQ_LD [0x%x, 0x%x] at 0x%lx (%d)\n", tmp[0],
tmp[1], addr, w ? 4 : 8);
done_load:
return emulated;
}
static int kvmppc_emulate_psq_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
int rs, ulong addr, bool w, int i)
{
int emulated = EMULATE_FAIL;
int r;
u32 tmp[2];
int len = w ? sizeof(u32) : sizeof(u64);
kvm_cvt_df(&VCPU_FPR(vcpu, rs), &tmp[0]);
tmp[1] = vcpu->arch.qpr[rs];
r = kvmppc_st(vcpu, &addr, len, tmp, true);
vcpu->arch.paddr_accessed = addr;
if (r < 0) {
kvmppc_inject_pf(vcpu, addr, true);
} else if ((r == EMULATE_DO_MMIO) && w) {
emulated = kvmppc_handle_store(run, vcpu, tmp[0], 4, 1);
} else if (r == EMULATE_DO_MMIO) {
u64 val = ((u64)tmp[0] << 32) | tmp[1];
emulated = kvmppc_handle_store(run, vcpu, val, 8, 1);
} else {
emulated = EMULATE_DONE;
}
dprintk(KERN_INFO "KVM: PSQ_ST [0x%x, 0x%x] at 0x%lx (%d)\n",
tmp[0], tmp[1], addr, len);
return emulated;
}
/*
* Cuts out inst bits with ordering according to spec.
* That means the leftmost bit is zero. All given bits are included.
*/
static inline u32 inst_get_field(u32 inst, int msb, int lsb)
{
return kvmppc_get_field(inst, msb + 32, lsb + 32);
}
bool kvmppc_inst_is_paired_single(struct kvm_vcpu *vcpu, u32 inst)
{
if (!(vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE))
return false;
switch (get_op(inst)) {
case OP_PSQ_L:
case OP_PSQ_LU:
case OP_PSQ_ST:
case OP_PSQ_STU:
case OP_LFS:
case OP_LFSU:
case OP_LFD:
case OP_LFDU:
case OP_STFS:
case OP_STFSU:
case OP_STFD:
case OP_STFDU:
return true;
case 4:
/* X form */
switch (inst_get_field(inst, 21, 30)) {
case OP_4X_PS_CMPU0:
case OP_4X_PSQ_LX:
case OP_4X_PS_CMPO0:
case OP_4X_PSQ_LUX:
case OP_4X_PS_NEG:
case OP_4X_PS_CMPU1:
case OP_4X_PS_MR:
case OP_4X_PS_CMPO1:
case OP_4X_PS_NABS:
case OP_4X_PS_ABS:
case OP_4X_PS_MERGE00:
case OP_4X_PS_MERGE01:
case OP_4X_PS_MERGE10:
case OP_4X_PS_MERGE11:
return true;
}
/* XW form */
switch (inst_get_field(inst, 25, 30)) {
case OP_4XW_PSQ_STX:
case OP_4XW_PSQ_STUX:
return true;
}
/* A form */
switch (inst_get_field(inst, 26, 30)) {
case OP_4A_PS_SUM1:
case OP_4A_PS_SUM0:
case OP_4A_PS_MULS0:
case OP_4A_PS_MULS1:
case OP_4A_PS_MADDS0:
case OP_4A_PS_MADDS1:
case OP_4A_PS_DIV:
case OP_4A_PS_SUB:
case OP_4A_PS_ADD:
case OP_4A_PS_SEL:
case OP_4A_PS_RES:
case OP_4A_PS_MUL:
case OP_4A_PS_RSQRTE:
case OP_4A_PS_MSUB:
case OP_4A_PS_MADD:
case OP_4A_PS_NMSUB:
case OP_4A_PS_NMADD:
return true;
}
break;
case 59:
switch (inst_get_field(inst, 21, 30)) {
case OP_59_FADDS:
case OP_59_FSUBS:
case OP_59_FDIVS:
case OP_59_FRES:
case OP_59_FRSQRTES:
return true;
}
switch (inst_get_field(inst, 26, 30)) {
case OP_59_FMULS:
case OP_59_FMSUBS:
case OP_59_FMADDS:
case OP_59_FNMSUBS:
case OP_59_FNMADDS:
return true;
}
break;
case 63:
switch (inst_get_field(inst, 21, 30)) {
case OP_63_MTFSB0:
case OP_63_MTFSB1:
case OP_63_MTFSF:
case OP_63_MTFSFI:
case OP_63_MCRFS:
case OP_63_MFFS:
case OP_63_FCMPU:
case OP_63_FCMPO:
case OP_63_FNEG:
case OP_63_FMR:
case OP_63_FABS:
case OP_63_FRSP:
case OP_63_FDIV:
case OP_63_FADD:
case OP_63_FSUB:
case OP_63_FCTIW:
case OP_63_FCTIWZ:
case OP_63_FRSQRTE:
case OP_63_FCPSGN:
return true;
}
switch (inst_get_field(inst, 26, 30)) {
case OP_63_FMUL:
case OP_63_FSEL:
case OP_63_FMSUB:
case OP_63_FMADD:
case OP_63_FNMSUB:
case OP_63_FNMADD:
return true;
}
break;
case 31:
switch (inst_get_field(inst, 21, 30)) {
case OP_31_LFSX:
case OP_31_LFSUX:
case OP_31_LFDX:
case OP_31_LFDUX:
case OP_31_STFSX:
case OP_31_STFSUX:
case OP_31_STFX:
case OP_31_STFUX:
case OP_31_STFIWX:
return true;
}
break;
}
return false;
}
static int get_d_signext(u32 inst)
{
int d = inst & 0x8ff;
if (d & 0x800)
return -(d & 0x7ff);
return (d & 0x7ff);
}
static int kvmppc_ps_three_in(struct kvm_vcpu *vcpu, bool rc,
int reg_out, int reg_in1, int reg_in2,
int reg_in3, int scalar,
void (*func)(u64 *fpscr,
u32 *dst, u32 *src1,
u32 *src2, u32 *src3))
{
u32 *qpr = vcpu->arch.qpr;
u32 ps0_out;
u32 ps0_in1, ps0_in2, ps0_in3;
u32 ps1_in1, ps1_in2, ps1_in3;
/* RC */
WARN_ON(rc);
/* PS0 */
kvm_cvt_df(&VCPU_FPR(vcpu, reg_in1), &ps0_in1);
kvm_cvt_df(&VCPU_FPR(vcpu, reg_in2), &ps0_in2);
kvm_cvt_df(&VCPU_FPR(vcpu, reg_in3), &ps0_in3);
if (scalar & SCALAR_LOW)
ps0_in2 = qpr[reg_in2];
func(&vcpu->arch.fp.fpscr, &ps0_out, &ps0_in1, &ps0_in2, &ps0_in3);
dprintk(KERN_INFO "PS3 ps0 -> f(0x%x, 0x%x, 0x%x) = 0x%x\n",
ps0_in1, ps0_in2, ps0_in3, ps0_out);
if (!(scalar & SCALAR_NO_PS0))
kvm_cvt_fd(&ps0_out, &VCPU_FPR(vcpu, reg_out));
/* PS1 */
ps1_in1 = qpr[reg_in1];
ps1_in2 = qpr[reg_in2];
ps1_in3 = qpr[reg_in3];
if (scalar & SCALAR_HIGH)
ps1_in2 = ps0_in2;
if (!(scalar & SCALAR_NO_PS1))
func(&vcpu->arch.fp.fpscr, &qpr[reg_out], &ps1_in1, &ps1_in2, &ps1_in3);
dprintk(KERN_INFO "PS3 ps1 -> f(0x%x, 0x%x, 0x%x) = 0x%x\n",
ps1_in1, ps1_in2, ps1_in3, qpr[reg_out]);
return EMULATE_DONE;
}
static int kvmppc_ps_two_in(struct kvm_vcpu *vcpu, bool rc,
int reg_out, int reg_in1, int reg_in2,
int scalar,
void (*func)(u64 *fpscr,
u32 *dst, u32 *src1,
u32 *src2))
{
u32 *qpr = vcpu->arch.qpr;
u32 ps0_out;
u32 ps0_in1, ps0_in2;
u32 ps1_out;
u32 ps1_in1, ps1_in2;
/* RC */
WARN_ON(rc);
/* PS0 */
kvm_cvt_df(&VCPU_FPR(vcpu, reg_in1), &ps0_in1);
if (scalar & SCALAR_LOW)
ps0_in2 = qpr[reg_in2];
else
kvm_cvt_df(&VCPU_FPR(vcpu, reg_in2), &ps0_in2);
func(&vcpu->arch.fp.fpscr, &ps0_out, &ps0_in1, &ps0_in2);
if (!(scalar & SCALAR_NO_PS0)) {
dprintk(KERN_INFO "PS2 ps0 -> f(0x%x, 0x%x) = 0x%x\n",
ps0_in1, ps0_in2, ps0_out);
kvm_cvt_fd(&ps0_out, &VCPU_FPR(vcpu, reg_out));
}
/* PS1 */
ps1_in1 = qpr[reg_in1];
ps1_in2 = qpr[reg_in2];
if (scalar & SCALAR_HIGH)
ps1_in2 = ps0_in2;
func(&vcpu->arch.fp.fpscr, &ps1_out, &ps1_in1, &ps1_in2);
if (!(scalar & SCALAR_NO_PS1)) {
qpr[reg_out] = ps1_out;
dprintk(KERN_INFO "PS2 ps1 -> f(0x%x, 0x%x) = 0x%x\n",
ps1_in1, ps1_in2, qpr[reg_out]);
}
return EMULATE_DONE;
}
static int kvmppc_ps_one_in(struct kvm_vcpu *vcpu, bool rc,
int reg_out, int reg_in,
void (*func)(u64 *t,
u32 *dst, u32 *src1))
{
u32 *qpr = vcpu->arch.qpr;
u32 ps0_out, ps0_in;
u32 ps1_in;
/* RC */
WARN_ON(rc);
/* PS0 */
kvm_cvt_df(&VCPU_FPR(vcpu, reg_in), &ps0_in);
func(&vcpu->arch.fp.fpscr, &ps0_out, &ps0_in);
dprintk(KERN_INFO "PS1 ps0 -> f(0x%x) = 0x%x\n",
ps0_in, ps0_out);
kvm_cvt_fd(&ps0_out, &VCPU_FPR(vcpu, reg_out));
/* PS1 */
ps1_in = qpr[reg_in];
func(&vcpu->arch.fp.fpscr, &qpr[reg_out], &ps1_in);
dprintk(KERN_INFO "PS1 ps1 -> f(0x%x) = 0x%x\n",
ps1_in, qpr[reg_out]);
return EMULATE_DONE;
}
int kvmppc_emulate_paired_single(struct kvm_run *run, struct kvm_vcpu *vcpu)
{
u32 inst;
enum emulation_result emulated = EMULATE_DONE;
int ax_rd, ax_ra, ax_rb, ax_rc;
short full_d;
u64 *fpr_d, *fpr_a, *fpr_b, *fpr_c;
bool rcomp;
u32 cr;
#ifdef DEBUG
int i;
#endif
emulated = kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst);
if (emulated != EMULATE_DONE)
return emulated;
ax_rd = inst_get_field(inst, 6, 10);
ax_ra = inst_get_field(inst, 11, 15);
ax_rb = inst_get_field(inst, 16, 20);
ax_rc = inst_get_field(inst, 21, 25);
full_d = inst_get_field(inst, 16, 31);
fpr_d = &VCPU_FPR(vcpu, ax_rd);
fpr_a = &VCPU_FPR(vcpu, ax_ra);
fpr_b = &VCPU_FPR(vcpu, ax_rb);
fpr_c = &VCPU_FPR(vcpu, ax_rc);
rcomp = (inst & 1) ? true : false;
cr = kvmppc_get_cr(vcpu);
if (!kvmppc_inst_is_paired_single(vcpu, inst))
return EMULATE_FAIL;
if (!(kvmppc_get_msr(vcpu) & MSR_FP)) {
kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL);
return EMULATE_AGAIN;
}
kvmppc_giveup_ext(vcpu, MSR_FP);
preempt_disable();
enable_kernel_fp();
/* Do we need to clear FE0 / FE1 here? Don't think so. */
#ifdef DEBUG
for (i = 0; i < ARRAY_SIZE(vcpu->arch.fp.fpr); i++) {
u32 f;
kvm_cvt_df(&VCPU_FPR(vcpu, i), &f);
dprintk(KERN_INFO "FPR[%d] = 0x%x / 0x%llx QPR[%d] = 0x%x\n",
i, f, VCPU_FPR(vcpu, i), i, vcpu->arch.qpr[i]);
}
#endif
switch (get_op(inst)) {
case OP_PSQ_L:
{
ulong addr = ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0;
bool w = inst_get_field(inst, 16, 16) ? true : false;
int i = inst_get_field(inst, 17, 19);
addr += get_d_signext(inst);
emulated = kvmppc_emulate_psq_load(run, vcpu, ax_rd, addr, w, i);
break;
}
case OP_PSQ_LU:
{
ulong addr = kvmppc_get_gpr(vcpu, ax_ra);
bool w = inst_get_field(inst, 16, 16) ? true : false;
int i = inst_get_field(inst, 17, 19);
addr += get_d_signext(inst);
emulated = kvmppc_emulate_psq_load(run, vcpu, ax_rd, addr, w, i);
if (emulated == EMULATE_DONE)
kvmppc_set_gpr(vcpu, ax_ra, addr);
break;
}
case OP_PSQ_ST:
{
ulong addr = ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0;
bool w = inst_get_field(inst, 16, 16) ? true : false;
int i = inst_get_field(inst, 17, 19);
addr += get_d_signext(inst);
emulated = kvmppc_emulate_psq_store(run, vcpu, ax_rd, addr, w, i);
break;
}
case OP_PSQ_STU:
{
ulong addr = kvmppc_get_gpr(vcpu, ax_ra);
bool w = inst_get_field(inst, 16, 16) ? true : false;
int i = inst_get_field(inst, 17, 19);
addr += get_d_signext(inst);
emulated = kvmppc_emulate_psq_store(run, vcpu, ax_rd, addr, w, i);
if (emulated == EMULATE_DONE)
kvmppc_set_gpr(vcpu, ax_ra, addr);
break;
}
case 4:
/* X form */
switch (inst_get_field(inst, 21, 30)) {
case OP_4X_PS_CMPU0:
/* XXX */
emulated = EMULATE_FAIL;
break;
case OP_4X_PSQ_LX:
{
ulong addr = ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0;
bool w = inst_get_field(inst, 21, 21) ? true : false;
int i = inst_get_field(inst, 22, 24);
addr += kvmppc_get_gpr(vcpu, ax_rb);
emulated = kvmppc_emulate_psq_load(run, vcpu, ax_rd, addr, w, i);
break;
}
case OP_4X_PS_CMPO0:
/* XXX */
emulated = EMULATE_FAIL;
break;
case OP_4X_PSQ_LUX:
{
ulong addr = kvmppc_get_gpr(vcpu, ax_ra);
bool w = inst_get_field(inst, 21, 21) ? true : false;
int i = inst_get_field(inst, 22, 24);
addr += kvmppc_get_gpr(vcpu, ax_rb);
emulated = kvmppc_emulate_psq_load(run, vcpu, ax_rd, addr, w, i);
if (emulated == EMULATE_DONE)
kvmppc_set_gpr(vcpu, ax_ra, addr);
break;
}
case OP_4X_PS_NEG:
VCPU_FPR(vcpu, ax_rd) = VCPU_FPR(vcpu, ax_rb);
VCPU_FPR(vcpu, ax_rd) ^= 0x8000000000000000ULL;
vcpu->arch.qpr[ax_rd] = vcpu->arch.qpr[ax_rb];
vcpu->arch.qpr[ax_rd] ^= 0x80000000;
break;
case OP_4X_PS_CMPU1:
/* XXX */
emulated = EMULATE_FAIL;
break;
case OP_4X_PS_MR:
WARN_ON(rcomp);
VCPU_FPR(vcpu, ax_rd) = VCPU_FPR(vcpu, ax_rb);
vcpu->arch.qpr[ax_rd] = vcpu->arch.qpr[ax_rb];
break;
case OP_4X_PS_CMPO1:
/* XXX */
emulated = EMULATE_FAIL;
break;
case OP_4X_PS_NABS:
WARN_ON(rcomp);
VCPU_FPR(vcpu, ax_rd) = VCPU_FPR(vcpu, ax_rb);
VCPU_FPR(vcpu, ax_rd) |= 0x8000000000000000ULL;
vcpu->arch.qpr[ax_rd] = vcpu->arch.qpr[ax_rb];
vcpu->arch.qpr[ax_rd] |= 0x80000000;
break;
case OP_4X_PS_ABS:
WARN_ON(rcomp);
VCPU_FPR(vcpu, ax_rd) = VCPU_FPR(vcpu, ax_rb);
VCPU_FPR(vcpu, ax_rd) &= ~0x8000000000000000ULL;
vcpu->arch.qpr[ax_rd] = vcpu->arch.qpr[ax_rb];
vcpu->arch.qpr[ax_rd] &= ~0x80000000;
break;
case OP_4X_PS_MERGE00:
WARN_ON(rcomp);
VCPU_FPR(vcpu, ax_rd) = VCPU_FPR(vcpu, ax_ra);
/* vcpu->arch.qpr[ax_rd] = VCPU_FPR(vcpu, ax_rb); */
kvm_cvt_df(&VCPU_FPR(vcpu, ax_rb),
&vcpu->arch.qpr[ax_rd]);
break;
case OP_4X_PS_MERGE01:
WARN_ON(rcomp);
VCPU_FPR(vcpu, ax_rd) = VCPU_FPR(vcpu, ax_ra);
vcpu->arch.qpr[ax_rd] = vcpu->arch.qpr[ax_rb];
break;
case OP_4X_PS_MERGE10:
WARN_ON(rcomp);
/* VCPU_FPR(vcpu, ax_rd) = vcpu->arch.qpr[ax_ra]; */
kvm_cvt_fd(&vcpu->arch.qpr[ax_ra],
&VCPU_FPR(vcpu, ax_rd));
/* vcpu->arch.qpr[ax_rd] = VCPU_FPR(vcpu, ax_rb); */
kvm_cvt_df(&VCPU_FPR(vcpu, ax_rb),
&vcpu->arch.qpr[ax_rd]);
break;
case OP_4X_PS_MERGE11:
WARN_ON(rcomp);
/* VCPU_FPR(vcpu, ax_rd) = vcpu->arch.qpr[ax_ra]; */
kvm_cvt_fd(&vcpu->arch.qpr[ax_ra],
&VCPU_FPR(vcpu, ax_rd));
vcpu->arch.qpr[ax_rd] = vcpu->arch.qpr[ax_rb];
break;
}
/* XW form */
switch (inst_get_field(inst, 25, 30)) {
case OP_4XW_PSQ_STX:
{
ulong addr = ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0;
bool w = inst_get_field(inst, 21, 21) ? true : false;
int i = inst_get_field(inst, 22, 24);
addr += kvmppc_get_gpr(vcpu, ax_rb);
emulated = kvmppc_emulate_psq_store(run, vcpu, ax_rd, addr, w, i);
break;
}
case OP_4XW_PSQ_STUX:
{
ulong addr = kvmppc_get_gpr(vcpu, ax_ra);
bool w = inst_get_field(inst, 21, 21) ? true : false;
int i = inst_get_field(inst, 22, 24);
addr += kvmppc_get_gpr(vcpu, ax_rb);
emulated = kvmppc_emulate_psq_store(run, vcpu, ax_rd, addr, w, i);
if (emulated == EMULATE_DONE)
kvmppc_set_gpr(vcpu, ax_ra, addr);
break;
}
}
/* A form */
switch (inst_get_field(inst, 26, 30)) {
case OP_4A_PS_SUM1:
emulated = kvmppc_ps_two_in(vcpu, rcomp, ax_rd,
ax_rb, ax_ra, SCALAR_NO_PS0 | SCALAR_HIGH, fps_fadds);
VCPU_FPR(vcpu, ax_rd) = VCPU_FPR(vcpu, ax_rc);
break;
case OP_4A_PS_SUM0:
emulated = kvmppc_ps_two_in(vcpu, rcomp, ax_rd,
ax_ra, ax_rb, SCALAR_NO_PS1 | SCALAR_LOW, fps_fadds);
vcpu->arch.qpr[ax_rd] = vcpu->arch.qpr[ax_rc];
break;
case OP_4A_PS_MULS0:
emulated = kvmppc_ps_two_in(vcpu, rcomp, ax_rd,
ax_ra, ax_rc, SCALAR_HIGH, fps_fmuls);
break;
case OP_4A_PS_MULS1:
emulated = kvmppc_ps_two_in(vcpu, rcomp, ax_rd,
ax_ra, ax_rc, SCALAR_LOW, fps_fmuls);
break;
case OP_4A_PS_MADDS0:
emulated = kvmppc_ps_three_in(vcpu, rcomp, ax_rd,
ax_ra, ax_rc, ax_rb, SCALAR_HIGH, fps_fmadds);
break;
case OP_4A_PS_MADDS1:
emulated = kvmppc_ps_three_in(vcpu, rcomp, ax_rd,
ax_ra, ax_rc, ax_rb, SCALAR_LOW, fps_fmadds);
break;
case OP_4A_PS_DIV:
emulated = kvmppc_ps_two_in(vcpu, rcomp, ax_rd,
ax_ra, ax_rb, SCALAR_NONE, fps_fdivs);
break;
case OP_4A_PS_SUB:
emulated = kvmppc_ps_two_in(vcpu, rcomp, ax_rd,
ax_ra, ax_rb, SCALAR_NONE, fps_fsubs);
break;
case OP_4A_PS_ADD:
emulated = kvmppc_ps_two_in(vcpu, rcomp, ax_rd,
ax_ra, ax_rb, SCALAR_NONE, fps_fadds);
break;
case OP_4A_PS_SEL:
emulated = kvmppc_ps_three_in(vcpu, rcomp, ax_rd,
ax_ra, ax_rc, ax_rb, SCALAR_NONE, fps_fsel);
break;
case OP_4A_PS_RES:
emulated = kvmppc_ps_one_in(vcpu, rcomp, ax_rd,
ax_rb, fps_fres);
break;
case OP_4A_PS_MUL:
emulated = kvmppc_ps_two_in(vcpu, rcomp, ax_rd,
ax_ra, ax_rc, SCALAR_NONE, fps_fmuls);
break;
case OP_4A_PS_RSQRTE:
emulated = kvmppc_ps_one_in(vcpu, rcomp, ax_rd,
ax_rb, fps_frsqrte);
break;
case OP_4A_PS_MSUB:
emulated = kvmppc_ps_three_in(vcpu, rcomp, ax_rd,
ax_ra, ax_rc, ax_rb, SCALAR_NONE, fps_fmsubs);
break;
case OP_4A_PS_MADD:
emulated = kvmppc_ps_three_in(vcpu, rcomp, ax_rd,
ax_ra, ax_rc, ax_rb, SCALAR_NONE, fps_fmadds);
break;
case OP_4A_PS_NMSUB:
emulated = kvmppc_ps_three_in(vcpu, rcomp, ax_rd,
ax_ra, ax_rc, ax_rb, SCALAR_NONE, fps_fnmsubs);
break;
case OP_4A_PS_NMADD:
emulated = kvmppc_ps_three_in(vcpu, rcomp, ax_rd,
ax_ra, ax_rc, ax_rb, SCALAR_NONE, fps_fnmadds);
break;
}
break;
/* Real FPU operations */
case OP_LFS:
{
ulong addr = (ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0) + full_d;
emulated = kvmppc_emulate_fpr_load(run, vcpu, ax_rd, addr,
FPU_LS_SINGLE);
break;
}
case OP_LFSU:
{
ulong addr = kvmppc_get_gpr(vcpu, ax_ra) + full_d;
emulated = kvmppc_emulate_fpr_load(run, vcpu, ax_rd, addr,
FPU_LS_SINGLE);
if (emulated == EMULATE_DONE)
kvmppc_set_gpr(vcpu, ax_ra, addr);
break;
}
case OP_LFD:
{
ulong addr = (ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0) + full_d;
emulated = kvmppc_emulate_fpr_load(run, vcpu, ax_rd, addr,
FPU_LS_DOUBLE);
break;
}
case OP_LFDU:
{
ulong addr = kvmppc_get_gpr(vcpu, ax_ra) + full_d;
emulated = kvmppc_emulate_fpr_load(run, vcpu, ax_rd, addr,
FPU_LS_DOUBLE);
if (emulated == EMULATE_DONE)
kvmppc_set_gpr(vcpu, ax_ra, addr);
break;
}
case OP_STFS:
{
ulong addr = (ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0) + full_d;
emulated = kvmppc_emulate_fpr_store(run, vcpu, ax_rd, addr,
FPU_LS_SINGLE);
break;
}
case OP_STFSU:
{
ulong addr = kvmppc_get_gpr(vcpu, ax_ra) + full_d;
emulated = kvmppc_emulate_fpr_store(run, vcpu, ax_rd, addr,
FPU_LS_SINGLE);
if (emulated == EMULATE_DONE)
kvmppc_set_gpr(vcpu, ax_ra, addr);
break;
}
case OP_STFD:
{
ulong addr = (ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0) + full_d;
emulated = kvmppc_emulate_fpr_store(run, vcpu, ax_rd, addr,
FPU_LS_DOUBLE);
break;
}
case OP_STFDU:
{
ulong addr = kvmppc_get_gpr(vcpu, ax_ra) + full_d;
emulated = kvmppc_emulate_fpr_store(run, vcpu, ax_rd, addr,
FPU_LS_DOUBLE);
if (emulated == EMULATE_DONE)
kvmppc_set_gpr(vcpu, ax_ra, addr);
break;
}
case 31:
switch (inst_get_field(inst, 21, 30)) {
case OP_31_LFSX:
{
ulong addr = ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0;
addr += kvmppc_get_gpr(vcpu, ax_rb);
emulated = kvmppc_emulate_fpr_load(run, vcpu, ax_rd,
addr, FPU_LS_SINGLE);
break;
}
case OP_31_LFSUX:
{
ulong addr = kvmppc_get_gpr(vcpu, ax_ra) +
kvmppc_get_gpr(vcpu, ax_rb);
emulated = kvmppc_emulate_fpr_load(run, vcpu, ax_rd,
addr, FPU_LS_SINGLE);
if (emulated == EMULATE_DONE)
kvmppc_set_gpr(vcpu, ax_ra, addr);
break;
}
case OP_31_LFDX:
{
ulong addr = (ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0) +
kvmppc_get_gpr(vcpu, ax_rb);
emulated = kvmppc_emulate_fpr_load(run, vcpu, ax_rd,
addr, FPU_LS_DOUBLE);
break;
}
case OP_31_LFDUX:
{
ulong addr = kvmppc_get_gpr(vcpu, ax_ra) +
kvmppc_get_gpr(vcpu, ax_rb);
emulated = kvmppc_emulate_fpr_load(run, vcpu, ax_rd,
addr, FPU_LS_DOUBLE);
if (emulated == EMULATE_DONE)
kvmppc_set_gpr(vcpu, ax_ra, addr);
break;
}
case OP_31_STFSX:
{
ulong addr = (ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0) +
kvmppc_get_gpr(vcpu, ax_rb);
emulated = kvmppc_emulate_fpr_store(run, vcpu, ax_rd,
addr, FPU_LS_SINGLE);
break;
}
case OP_31_STFSUX:
{
ulong addr = kvmppc_get_gpr(vcpu, ax_ra) +
kvmppc_get_gpr(vcpu, ax_rb);
emulated = kvmppc_emulate_fpr_store(run, vcpu, ax_rd,
addr, FPU_LS_SINGLE);
if (emulated == EMULATE_DONE)
kvmppc_set_gpr(vcpu, ax_ra, addr);
break;
}
case OP_31_STFX:
{
ulong addr = (ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0) +
kvmppc_get_gpr(vcpu, ax_rb);
emulated = kvmppc_emulate_fpr_store(run, vcpu, ax_rd,
addr, FPU_LS_DOUBLE);
break;
}
case OP_31_STFUX:
{
ulong addr = kvmppc_get_gpr(vcpu, ax_ra) +
kvmppc_get_gpr(vcpu, ax_rb);
emulated = kvmppc_emulate_fpr_store(run, vcpu, ax_rd,
addr, FPU_LS_DOUBLE);
if (emulated == EMULATE_DONE)
kvmppc_set_gpr(vcpu, ax_ra, addr);
break;
}
case OP_31_STFIWX:
{
ulong addr = (ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0) +
kvmppc_get_gpr(vcpu, ax_rb);
emulated = kvmppc_emulate_fpr_store(run, vcpu, ax_rd,
addr,
FPU_LS_SINGLE_LOW);
break;
}
break;
}
break;
case 59:
switch (inst_get_field(inst, 21, 30)) {
case OP_59_FADDS:
fpd_fadds(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_b);
kvmppc_sync_qpr(vcpu, ax_rd);
break;
case OP_59_FSUBS:
fpd_fsubs(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_b);
kvmppc_sync_qpr(vcpu, ax_rd);
break;
case OP_59_FDIVS:
fpd_fdivs(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_b);
kvmppc_sync_qpr(vcpu, ax_rd);
break;
case OP_59_FRES:
fpd_fres(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_b);
kvmppc_sync_qpr(vcpu, ax_rd);
break;
case OP_59_FRSQRTES:
fpd_frsqrtes(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_b);
kvmppc_sync_qpr(vcpu, ax_rd);
break;
}
switch (inst_get_field(inst, 26, 30)) {
case OP_59_FMULS:
fpd_fmuls(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_c);
kvmppc_sync_qpr(vcpu, ax_rd);
break;
case OP_59_FMSUBS:
fpd_fmsubs(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_c, fpr_b);
kvmppc_sync_qpr(vcpu, ax_rd);
break;
case OP_59_FMADDS:
fpd_fmadds(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_c, fpr_b);
kvmppc_sync_qpr(vcpu, ax_rd);
break;
case OP_59_FNMSUBS:
fpd_fnmsubs(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_c, fpr_b);
kvmppc_sync_qpr(vcpu, ax_rd);
break;
case OP_59_FNMADDS:
fpd_fnmadds(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_c, fpr_b);
kvmppc_sync_qpr(vcpu, ax_rd);
break;
}
break;
case 63:
switch (inst_get_field(inst, 21, 30)) {
case OP_63_MTFSB0:
case OP_63_MTFSB1:
case OP_63_MCRFS:
case OP_63_MTFSFI:
/* XXX need to implement */
break;
case OP_63_MFFS:
/* XXX missing CR */
*fpr_d = vcpu->arch.fp.fpscr;
break;
case OP_63_MTFSF:
/* XXX missing fm bits */
/* XXX missing CR */
vcpu->arch.fp.fpscr = *fpr_b;
break;
case OP_63_FCMPU:
{
u32 tmp_cr;
u32 cr0_mask = 0xf0000000;
u32 cr_shift = inst_get_field(inst, 6, 8) * 4;
fpd_fcmpu(&vcpu->arch.fp.fpscr, &tmp_cr, fpr_a, fpr_b);
cr &= ~(cr0_mask >> cr_shift);
cr |= (cr & cr0_mask) >> cr_shift;
break;
}
case OP_63_FCMPO:
{
u32 tmp_cr;
u32 cr0_mask = 0xf0000000;
u32 cr_shift = inst_get_field(inst, 6, 8) * 4;
fpd_fcmpo(&vcpu->arch.fp.fpscr, &tmp_cr, fpr_a, fpr_b);
cr &= ~(cr0_mask >> cr_shift);
cr |= (cr & cr0_mask) >> cr_shift;
break;
}
case OP_63_FNEG:
fpd_fneg(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_b);
break;
case OP_63_FMR:
*fpr_d = *fpr_b;
break;
case OP_63_FABS:
fpd_fabs(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_b);
break;
case OP_63_FCPSGN:
fpd_fcpsgn(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_b);
break;
case OP_63_FDIV:
fpd_fdiv(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_b);
break;
case OP_63_FADD:
fpd_fadd(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_b);
break;
case OP_63_FSUB:
fpd_fsub(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_b);
break;
case OP_63_FCTIW:
fpd_fctiw(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_b);
break;
case OP_63_FCTIWZ:
fpd_fctiwz(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_b);
break;
case OP_63_FRSP:
fpd_frsp(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_b);
kvmppc_sync_qpr(vcpu, ax_rd);
break;
case OP_63_FRSQRTE:
{
double one = 1.0f;
/* fD = sqrt(fB) */
fpd_fsqrt(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_b);
/* fD = 1.0f / fD */
fpd_fdiv(&vcpu->arch.fp.fpscr, &cr, fpr_d, (u64*)&one, fpr_d);
break;
}
}
switch (inst_get_field(inst, 26, 30)) {
case OP_63_FMUL:
fpd_fmul(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_c);
break;
case OP_63_FSEL:
fpd_fsel(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_c, fpr_b);
break;
case OP_63_FMSUB:
fpd_fmsub(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_c, fpr_b);
break;
case OP_63_FMADD:
fpd_fmadd(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_c, fpr_b);
break;
case OP_63_FNMSUB:
fpd_fnmsub(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_c, fpr_b);
break;
case OP_63_FNMADD:
fpd_fnmadd(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_c, fpr_b);
break;
}
break;
}
#ifdef DEBUG
for (i = 0; i < ARRAY_SIZE(vcpu->arch.fp.fpr); i++) {
u32 f;
kvm_cvt_df(&VCPU_FPR(vcpu, i), &f);
dprintk(KERN_INFO "FPR[%d] = 0x%x\n", i, f);
}
#endif
if (rcomp)
kvmppc_set_cr(vcpu, cr);
preempt_enable();
return emulated;
}