mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-18 09:44:18 +08:00
4db8e5ea6b
Use the system wide safe value from the new API for safer decisions Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: Christoffer Dall <christoffer.dall@linaro.org> Cc: kvmarm@lists.cs.columbia.edu Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com> Acked-by: Christoffer Dall <christoffer.dall@linaro.org> Tested-by: Dave Martin <Dave.Martin@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
1762 lines
49 KiB
C
1762 lines
49 KiB
C
/*
|
|
* Copyright (C) 2012,2013 - ARM Ltd
|
|
* Author: Marc Zyngier <marc.zyngier@arm.com>
|
|
*
|
|
* Derived from arch/arm/kvm/coproc.c:
|
|
* Copyright (C) 2012 - Virtual Open Systems and Columbia University
|
|
* Authors: Rusty Russell <rusty@rustcorp.com.au>
|
|
* Christoffer Dall <c.dall@virtualopensystems.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License, version 2, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/uaccess.h>
|
|
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/cputype.h>
|
|
#include <asm/debug-monitors.h>
|
|
#include <asm/esr.h>
|
|
#include <asm/kvm_arm.h>
|
|
#include <asm/kvm_coproc.h>
|
|
#include <asm/kvm_emulate.h>
|
|
#include <asm/kvm_host.h>
|
|
#include <asm/kvm_mmu.h>
|
|
|
|
#include <trace/events/kvm.h>
|
|
|
|
#include "sys_regs.h"
|
|
|
|
#include "trace.h"
|
|
|
|
/*
|
|
* All of this file is extremly similar to the ARM coproc.c, but the
|
|
* types are different. My gut feeling is that it should be pretty
|
|
* easy to merge, but that would be an ABI breakage -- again. VFP
|
|
* would also need to be abstracted.
|
|
*
|
|
* For AArch32, we only take care of what is being trapped. Anything
|
|
* that has to do with init and userspace access has to go via the
|
|
* 64bit interface.
|
|
*/
|
|
|
|
/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
|
|
static u32 cache_levels;
|
|
|
|
/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
|
|
#define CSSELR_MAX 12
|
|
|
|
/* Which cache CCSIDR represents depends on CSSELR value. */
|
|
static u32 get_ccsidr(u32 csselr)
|
|
{
|
|
u32 ccsidr;
|
|
|
|
/* Make sure noone else changes CSSELR during this! */
|
|
local_irq_disable();
|
|
/* Put value into CSSELR */
|
|
asm volatile("msr csselr_el1, %x0" : : "r" (csselr));
|
|
isb();
|
|
/* Read result out of CCSIDR */
|
|
asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr));
|
|
local_irq_enable();
|
|
|
|
return ccsidr;
|
|
}
|
|
|
|
/*
|
|
* See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
|
|
*/
|
|
static bool access_dcsw(struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
if (!p->is_write)
|
|
return read_from_write_only(vcpu, p);
|
|
|
|
kvm_set_way_flush(vcpu);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Generic accessor for VM registers. Only called as long as HCR_TVM
|
|
* is set. If the guest enables the MMU, we stop trapping the VM
|
|
* sys_regs and leave it in complete control of the caches.
|
|
*/
|
|
static bool access_vm_reg(struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
unsigned long val;
|
|
bool was_enabled = vcpu_has_cache_enabled(vcpu);
|
|
|
|
BUG_ON(!p->is_write);
|
|
|
|
val = *vcpu_reg(vcpu, p->Rt);
|
|
if (!p->is_aarch32) {
|
|
vcpu_sys_reg(vcpu, r->reg) = val;
|
|
} else {
|
|
if (!p->is_32bit)
|
|
vcpu_cp15_64_high(vcpu, r->reg) = val >> 32;
|
|
vcpu_cp15_64_low(vcpu, r->reg) = val & 0xffffffffUL;
|
|
}
|
|
|
|
kvm_toggle_cache(vcpu, was_enabled);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Trap handler for the GICv3 SGI generation system register.
|
|
* Forward the request to the VGIC emulation.
|
|
* The cp15_64 code makes sure this automatically works
|
|
* for both AArch64 and AArch32 accesses.
|
|
*/
|
|
static bool access_gic_sgi(struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
u64 val;
|
|
|
|
if (!p->is_write)
|
|
return read_from_write_only(vcpu, p);
|
|
|
|
val = *vcpu_reg(vcpu, p->Rt);
|
|
vgic_v3_dispatch_sgi(vcpu, val);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool trap_raz_wi(struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
if (p->is_write)
|
|
return ignore_write(vcpu, p);
|
|
else
|
|
return read_zero(vcpu, p);
|
|
}
|
|
|
|
static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
if (p->is_write) {
|
|
return ignore_write(vcpu, p);
|
|
} else {
|
|
*vcpu_reg(vcpu, p->Rt) = (1 << 3);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
if (p->is_write) {
|
|
return ignore_write(vcpu, p);
|
|
} else {
|
|
u32 val;
|
|
asm volatile("mrs %0, dbgauthstatus_el1" : "=r" (val));
|
|
*vcpu_reg(vcpu, p->Rt) = val;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We want to avoid world-switching all the DBG registers all the
|
|
* time:
|
|
*
|
|
* - If we've touched any debug register, it is likely that we're
|
|
* going to touch more of them. It then makes sense to disable the
|
|
* traps and start doing the save/restore dance
|
|
* - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
|
|
* then mandatory to save/restore the registers, as the guest
|
|
* depends on them.
|
|
*
|
|
* For this, we use a DIRTY bit, indicating the guest has modified the
|
|
* debug registers, used as follow:
|
|
*
|
|
* On guest entry:
|
|
* - If the dirty bit is set (because we're coming back from trapping),
|
|
* disable the traps, save host registers, restore guest registers.
|
|
* - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
|
|
* set the dirty bit, disable the traps, save host registers,
|
|
* restore guest registers.
|
|
* - Otherwise, enable the traps
|
|
*
|
|
* On guest exit:
|
|
* - If the dirty bit is set, save guest registers, restore host
|
|
* registers and clear the dirty bit. This ensure that the host can
|
|
* now use the debug registers.
|
|
*/
|
|
static bool trap_debug_regs(struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
if (p->is_write) {
|
|
vcpu_sys_reg(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt);
|
|
vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
|
|
} else {
|
|
*vcpu_reg(vcpu, p->Rt) = vcpu_sys_reg(vcpu, r->reg);
|
|
}
|
|
|
|
trace_trap_reg(__func__, r->reg, p->is_write, *vcpu_reg(vcpu, p->Rt));
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* reg_to_dbg/dbg_to_reg
|
|
*
|
|
* A 32 bit write to a debug register leave top bits alone
|
|
* A 32 bit read from a debug register only returns the bottom bits
|
|
*
|
|
* All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
|
|
* hyp.S code switches between host and guest values in future.
|
|
*/
|
|
static inline void reg_to_dbg(struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_params *p,
|
|
u64 *dbg_reg)
|
|
{
|
|
u64 val = *vcpu_reg(vcpu, p->Rt);
|
|
|
|
if (p->is_32bit) {
|
|
val &= 0xffffffffUL;
|
|
val |= ((*dbg_reg >> 32) << 32);
|
|
}
|
|
|
|
*dbg_reg = val;
|
|
vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
|
|
}
|
|
|
|
static inline void dbg_to_reg(struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_params *p,
|
|
u64 *dbg_reg)
|
|
{
|
|
u64 val = *dbg_reg;
|
|
|
|
if (p->is_32bit)
|
|
val &= 0xffffffffUL;
|
|
|
|
*vcpu_reg(vcpu, p->Rt) = val;
|
|
}
|
|
|
|
static inline bool trap_bvr(struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_params *p,
|
|
const struct sys_reg_desc *rd)
|
|
{
|
|
u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
|
|
|
|
if (p->is_write)
|
|
reg_to_dbg(vcpu, p, dbg_reg);
|
|
else
|
|
dbg_to_reg(vcpu, p, dbg_reg);
|
|
|
|
trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
|
|
|
|
return true;
|
|
}
|
|
|
|
static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
|
|
const struct kvm_one_reg *reg, void __user *uaddr)
|
|
{
|
|
__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
|
|
|
|
if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
|
|
const struct kvm_one_reg *reg, void __user *uaddr)
|
|
{
|
|
__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
|
|
|
|
if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
static inline void reset_bvr(struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_desc *rd)
|
|
{
|
|
vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
|
|
}
|
|
|
|
static inline bool trap_bcr(struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_params *p,
|
|
const struct sys_reg_desc *rd)
|
|
{
|
|
u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
|
|
|
|
if (p->is_write)
|
|
reg_to_dbg(vcpu, p, dbg_reg);
|
|
else
|
|
dbg_to_reg(vcpu, p, dbg_reg);
|
|
|
|
trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
|
|
|
|
return true;
|
|
}
|
|
|
|
static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
|
|
const struct kvm_one_reg *reg, void __user *uaddr)
|
|
{
|
|
__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
|
|
|
|
if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
|
|
const struct kvm_one_reg *reg, void __user *uaddr)
|
|
{
|
|
__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
|
|
|
|
if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
static inline void reset_bcr(struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_desc *rd)
|
|
{
|
|
vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
|
|
}
|
|
|
|
static inline bool trap_wvr(struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_params *p,
|
|
const struct sys_reg_desc *rd)
|
|
{
|
|
u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
|
|
|
|
if (p->is_write)
|
|
reg_to_dbg(vcpu, p, dbg_reg);
|
|
else
|
|
dbg_to_reg(vcpu, p, dbg_reg);
|
|
|
|
trace_trap_reg(__func__, rd->reg, p->is_write,
|
|
vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
|
|
|
|
return true;
|
|
}
|
|
|
|
static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
|
|
const struct kvm_one_reg *reg, void __user *uaddr)
|
|
{
|
|
__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
|
|
|
|
if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
|
|
const struct kvm_one_reg *reg, void __user *uaddr)
|
|
{
|
|
__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
|
|
|
|
if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
static inline void reset_wvr(struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_desc *rd)
|
|
{
|
|
vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
|
|
}
|
|
|
|
static inline bool trap_wcr(struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_params *p,
|
|
const struct sys_reg_desc *rd)
|
|
{
|
|
u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
|
|
|
|
if (p->is_write)
|
|
reg_to_dbg(vcpu, p, dbg_reg);
|
|
else
|
|
dbg_to_reg(vcpu, p, dbg_reg);
|
|
|
|
trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
|
|
|
|
return true;
|
|
}
|
|
|
|
static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
|
|
const struct kvm_one_reg *reg, void __user *uaddr)
|
|
{
|
|
__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
|
|
|
|
if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
|
|
const struct kvm_one_reg *reg, void __user *uaddr)
|
|
{
|
|
__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
|
|
|
|
if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
static inline void reset_wcr(struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_desc *rd)
|
|
{
|
|
vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
|
|
}
|
|
|
|
static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
|
|
{
|
|
u64 amair;
|
|
|
|
asm volatile("mrs %0, amair_el1\n" : "=r" (amair));
|
|
vcpu_sys_reg(vcpu, AMAIR_EL1) = amair;
|
|
}
|
|
|
|
static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
|
|
{
|
|
u64 mpidr;
|
|
|
|
/*
|
|
* Map the vcpu_id into the first three affinity level fields of
|
|
* the MPIDR. We limit the number of VCPUs in level 0 due to a
|
|
* limitation to 16 CPUs in that level in the ICC_SGIxR registers
|
|
* of the GICv3 to be able to address each CPU directly when
|
|
* sending IPIs.
|
|
*/
|
|
mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
|
|
mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
|
|
mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
|
|
vcpu_sys_reg(vcpu, MPIDR_EL1) = (1ULL << 31) | mpidr;
|
|
}
|
|
|
|
/* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
|
|
#define DBG_BCR_BVR_WCR_WVR_EL1(n) \
|
|
/* DBGBVRn_EL1 */ \
|
|
{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100), \
|
|
trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr }, \
|
|
/* DBGBCRn_EL1 */ \
|
|
{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101), \
|
|
trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr }, \
|
|
/* DBGWVRn_EL1 */ \
|
|
{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110), \
|
|
trap_wvr, reset_wvr, n, 0, get_wvr, set_wvr }, \
|
|
/* DBGWCRn_EL1 */ \
|
|
{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111), \
|
|
trap_wcr, reset_wcr, n, 0, get_wcr, set_wcr }
|
|
|
|
/*
|
|
* Architected system registers.
|
|
* Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
|
|
*
|
|
* We could trap ID_DFR0 and tell the guest we don't support performance
|
|
* monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
|
|
* NAKed, so it will read the PMCR anyway.
|
|
*
|
|
* Therefore we tell the guest we have 0 counters. Unfortunately, we
|
|
* must always support PMCCNTR (the cycle counter): we just RAZ/WI for
|
|
* all PM registers, which doesn't crash the guest kernel at least.
|
|
*
|
|
* Debug handling: We do trap most, if not all debug related system
|
|
* registers. The implementation is good enough to ensure that a guest
|
|
* can use these with minimal performance degradation. The drawback is
|
|
* that we don't implement any of the external debug, none of the
|
|
* OSlock protocol. This should be revisited if we ever encounter a
|
|
* more demanding guest...
|
|
*/
|
|
static const struct sys_reg_desc sys_reg_descs[] = {
|
|
/* DC ISW */
|
|
{ Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
|
|
access_dcsw },
|
|
/* DC CSW */
|
|
{ Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
|
|
access_dcsw },
|
|
/* DC CISW */
|
|
{ Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
|
|
access_dcsw },
|
|
|
|
DBG_BCR_BVR_WCR_WVR_EL1(0),
|
|
DBG_BCR_BVR_WCR_WVR_EL1(1),
|
|
/* MDCCINT_EL1 */
|
|
{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
|
|
trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
|
|
/* MDSCR_EL1 */
|
|
{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
|
|
trap_debug_regs, reset_val, MDSCR_EL1, 0 },
|
|
DBG_BCR_BVR_WCR_WVR_EL1(2),
|
|
DBG_BCR_BVR_WCR_WVR_EL1(3),
|
|
DBG_BCR_BVR_WCR_WVR_EL1(4),
|
|
DBG_BCR_BVR_WCR_WVR_EL1(5),
|
|
DBG_BCR_BVR_WCR_WVR_EL1(6),
|
|
DBG_BCR_BVR_WCR_WVR_EL1(7),
|
|
DBG_BCR_BVR_WCR_WVR_EL1(8),
|
|
DBG_BCR_BVR_WCR_WVR_EL1(9),
|
|
DBG_BCR_BVR_WCR_WVR_EL1(10),
|
|
DBG_BCR_BVR_WCR_WVR_EL1(11),
|
|
DBG_BCR_BVR_WCR_WVR_EL1(12),
|
|
DBG_BCR_BVR_WCR_WVR_EL1(13),
|
|
DBG_BCR_BVR_WCR_WVR_EL1(14),
|
|
DBG_BCR_BVR_WCR_WVR_EL1(15),
|
|
|
|
/* MDRAR_EL1 */
|
|
{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
|
|
trap_raz_wi },
|
|
/* OSLAR_EL1 */
|
|
{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
|
|
trap_raz_wi },
|
|
/* OSLSR_EL1 */
|
|
{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
|
|
trap_oslsr_el1 },
|
|
/* OSDLR_EL1 */
|
|
{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
|
|
trap_raz_wi },
|
|
/* DBGPRCR_EL1 */
|
|
{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
|
|
trap_raz_wi },
|
|
/* DBGCLAIMSET_EL1 */
|
|
{ Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
|
|
trap_raz_wi },
|
|
/* DBGCLAIMCLR_EL1 */
|
|
{ Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
|
|
trap_raz_wi },
|
|
/* DBGAUTHSTATUS_EL1 */
|
|
{ Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
|
|
trap_dbgauthstatus_el1 },
|
|
|
|
/* MDCCSR_EL1 */
|
|
{ Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
|
|
trap_raz_wi },
|
|
/* DBGDTR_EL0 */
|
|
{ Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
|
|
trap_raz_wi },
|
|
/* DBGDTR[TR]X_EL0 */
|
|
{ Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
|
|
trap_raz_wi },
|
|
|
|
/* DBGVCR32_EL2 */
|
|
{ Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
|
|
NULL, reset_val, DBGVCR32_EL2, 0 },
|
|
|
|
/* MPIDR_EL1 */
|
|
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
|
|
NULL, reset_mpidr, MPIDR_EL1 },
|
|
/* SCTLR_EL1 */
|
|
{ Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
|
|
access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
|
|
/* CPACR_EL1 */
|
|
{ Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
|
|
NULL, reset_val, CPACR_EL1, 0 },
|
|
/* TTBR0_EL1 */
|
|
{ Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
|
|
access_vm_reg, reset_unknown, TTBR0_EL1 },
|
|
/* TTBR1_EL1 */
|
|
{ Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
|
|
access_vm_reg, reset_unknown, TTBR1_EL1 },
|
|
/* TCR_EL1 */
|
|
{ Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
|
|
access_vm_reg, reset_val, TCR_EL1, 0 },
|
|
|
|
/* AFSR0_EL1 */
|
|
{ Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
|
|
access_vm_reg, reset_unknown, AFSR0_EL1 },
|
|
/* AFSR1_EL1 */
|
|
{ Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
|
|
access_vm_reg, reset_unknown, AFSR1_EL1 },
|
|
/* ESR_EL1 */
|
|
{ Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
|
|
access_vm_reg, reset_unknown, ESR_EL1 },
|
|
/* FAR_EL1 */
|
|
{ Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
|
|
access_vm_reg, reset_unknown, FAR_EL1 },
|
|
/* PAR_EL1 */
|
|
{ Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
|
|
NULL, reset_unknown, PAR_EL1 },
|
|
|
|
/* PMINTENSET_EL1 */
|
|
{ Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
|
|
trap_raz_wi },
|
|
/* PMINTENCLR_EL1 */
|
|
{ Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
|
|
trap_raz_wi },
|
|
|
|
/* MAIR_EL1 */
|
|
{ Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
|
|
access_vm_reg, reset_unknown, MAIR_EL1 },
|
|
/* AMAIR_EL1 */
|
|
{ Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
|
|
access_vm_reg, reset_amair_el1, AMAIR_EL1 },
|
|
|
|
/* VBAR_EL1 */
|
|
{ Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
|
|
NULL, reset_val, VBAR_EL1, 0 },
|
|
|
|
/* ICC_SGI1R_EL1 */
|
|
{ Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1011), Op2(0b101),
|
|
access_gic_sgi },
|
|
/* ICC_SRE_EL1 */
|
|
{ Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1100), Op2(0b101),
|
|
trap_raz_wi },
|
|
|
|
/* CONTEXTIDR_EL1 */
|
|
{ Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
|
|
access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
|
|
/* TPIDR_EL1 */
|
|
{ Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
|
|
NULL, reset_unknown, TPIDR_EL1 },
|
|
|
|
/* CNTKCTL_EL1 */
|
|
{ Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
|
|
NULL, reset_val, CNTKCTL_EL1, 0},
|
|
|
|
/* CSSELR_EL1 */
|
|
{ Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
|
|
NULL, reset_unknown, CSSELR_EL1 },
|
|
|
|
/* PMCR_EL0 */
|
|
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
|
|
trap_raz_wi },
|
|
/* PMCNTENSET_EL0 */
|
|
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
|
|
trap_raz_wi },
|
|
/* PMCNTENCLR_EL0 */
|
|
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
|
|
trap_raz_wi },
|
|
/* PMOVSCLR_EL0 */
|
|
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
|
|
trap_raz_wi },
|
|
/* PMSWINC_EL0 */
|
|
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
|
|
trap_raz_wi },
|
|
/* PMSELR_EL0 */
|
|
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
|
|
trap_raz_wi },
|
|
/* PMCEID0_EL0 */
|
|
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
|
|
trap_raz_wi },
|
|
/* PMCEID1_EL0 */
|
|
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
|
|
trap_raz_wi },
|
|
/* PMCCNTR_EL0 */
|
|
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
|
|
trap_raz_wi },
|
|
/* PMXEVTYPER_EL0 */
|
|
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
|
|
trap_raz_wi },
|
|
/* PMXEVCNTR_EL0 */
|
|
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
|
|
trap_raz_wi },
|
|
/* PMUSERENR_EL0 */
|
|
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
|
|
trap_raz_wi },
|
|
/* PMOVSSET_EL0 */
|
|
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
|
|
trap_raz_wi },
|
|
|
|
/* TPIDR_EL0 */
|
|
{ Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
|
|
NULL, reset_unknown, TPIDR_EL0 },
|
|
/* TPIDRRO_EL0 */
|
|
{ Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
|
|
NULL, reset_unknown, TPIDRRO_EL0 },
|
|
|
|
/* DACR32_EL2 */
|
|
{ Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
|
|
NULL, reset_unknown, DACR32_EL2 },
|
|
/* IFSR32_EL2 */
|
|
{ Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
|
|
NULL, reset_unknown, IFSR32_EL2 },
|
|
/* FPEXC32_EL2 */
|
|
{ Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
|
|
NULL, reset_val, FPEXC32_EL2, 0x70 },
|
|
};
|
|
|
|
static bool trap_dbgidr(struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
if (p->is_write) {
|
|
return ignore_write(vcpu, p);
|
|
} else {
|
|
u64 dfr = read_system_reg(SYS_ID_AA64DFR0_EL1);
|
|
u64 pfr = read_system_reg(SYS_ID_AA64PFR0_EL1);
|
|
u32 el3 = !!cpuid_feature_extract_field(pfr, ID_AA64PFR0_EL3_SHIFT);
|
|
|
|
*vcpu_reg(vcpu, p->Rt) = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
|
|
(((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
|
|
(((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20) |
|
|
(6 << 16) | (el3 << 14) | (el3 << 12));
|
|
return true;
|
|
}
|
|
}
|
|
|
|
static bool trap_debug32(struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
if (p->is_write) {
|
|
vcpu_cp14(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt);
|
|
vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
|
|
} else {
|
|
*vcpu_reg(vcpu, p->Rt) = vcpu_cp14(vcpu, r->reg);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* AArch32 debug register mappings
|
|
*
|
|
* AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
|
|
* AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
|
|
*
|
|
* All control registers and watchpoint value registers are mapped to
|
|
* the lower 32 bits of their AArch64 equivalents. We share the trap
|
|
* handlers with the above AArch64 code which checks what mode the
|
|
* system is in.
|
|
*/
|
|
|
|
static inline bool trap_xvr(struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_params *p,
|
|
const struct sys_reg_desc *rd)
|
|
{
|
|
u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
|
|
|
|
if (p->is_write) {
|
|
u64 val = *dbg_reg;
|
|
|
|
val &= 0xffffffffUL;
|
|
val |= *vcpu_reg(vcpu, p->Rt) << 32;
|
|
*dbg_reg = val;
|
|
|
|
vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
|
|
} else {
|
|
*vcpu_reg(vcpu, p->Rt) = *dbg_reg >> 32;
|
|
}
|
|
|
|
trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
|
|
|
|
return true;
|
|
}
|
|
|
|
#define DBG_BCR_BVR_WCR_WVR(n) \
|
|
/* DBGBVRn */ \
|
|
{ Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
|
|
/* DBGBCRn */ \
|
|
{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
|
|
/* DBGWVRn */ \
|
|
{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
|
|
/* DBGWCRn */ \
|
|
{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
|
|
|
|
#define DBGBXVR(n) \
|
|
{ Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
|
|
|
|
/*
|
|
* Trapped cp14 registers. We generally ignore most of the external
|
|
* debug, on the principle that they don't really make sense to a
|
|
* guest. Revisit this one day, would this principle change.
|
|
*/
|
|
static const struct sys_reg_desc cp14_regs[] = {
|
|
/* DBGIDR */
|
|
{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
|
|
/* DBGDTRRXext */
|
|
{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
|
|
|
|
DBG_BCR_BVR_WCR_WVR(0),
|
|
/* DBGDSCRint */
|
|
{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
|
|
DBG_BCR_BVR_WCR_WVR(1),
|
|
/* DBGDCCINT */
|
|
{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
|
|
/* DBGDSCRext */
|
|
{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
|
|
DBG_BCR_BVR_WCR_WVR(2),
|
|
/* DBGDTR[RT]Xint */
|
|
{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
|
|
/* DBGDTR[RT]Xext */
|
|
{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
|
|
DBG_BCR_BVR_WCR_WVR(3),
|
|
DBG_BCR_BVR_WCR_WVR(4),
|
|
DBG_BCR_BVR_WCR_WVR(5),
|
|
/* DBGWFAR */
|
|
{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
|
|
/* DBGOSECCR */
|
|
{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
|
|
DBG_BCR_BVR_WCR_WVR(6),
|
|
/* DBGVCR */
|
|
{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
|
|
DBG_BCR_BVR_WCR_WVR(7),
|
|
DBG_BCR_BVR_WCR_WVR(8),
|
|
DBG_BCR_BVR_WCR_WVR(9),
|
|
DBG_BCR_BVR_WCR_WVR(10),
|
|
DBG_BCR_BVR_WCR_WVR(11),
|
|
DBG_BCR_BVR_WCR_WVR(12),
|
|
DBG_BCR_BVR_WCR_WVR(13),
|
|
DBG_BCR_BVR_WCR_WVR(14),
|
|
DBG_BCR_BVR_WCR_WVR(15),
|
|
|
|
/* DBGDRAR (32bit) */
|
|
{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
|
|
|
|
DBGBXVR(0),
|
|
/* DBGOSLAR */
|
|
{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
|
|
DBGBXVR(1),
|
|
/* DBGOSLSR */
|
|
{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
|
|
DBGBXVR(2),
|
|
DBGBXVR(3),
|
|
/* DBGOSDLR */
|
|
{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
|
|
DBGBXVR(4),
|
|
/* DBGPRCR */
|
|
{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
|
|
DBGBXVR(5),
|
|
DBGBXVR(6),
|
|
DBGBXVR(7),
|
|
DBGBXVR(8),
|
|
DBGBXVR(9),
|
|
DBGBXVR(10),
|
|
DBGBXVR(11),
|
|
DBGBXVR(12),
|
|
DBGBXVR(13),
|
|
DBGBXVR(14),
|
|
DBGBXVR(15),
|
|
|
|
/* DBGDSAR (32bit) */
|
|
{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
|
|
|
|
/* DBGDEVID2 */
|
|
{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
|
|
/* DBGDEVID1 */
|
|
{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
|
|
/* DBGDEVID */
|
|
{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
|
|
/* DBGCLAIMSET */
|
|
{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
|
|
/* DBGCLAIMCLR */
|
|
{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
|
|
/* DBGAUTHSTATUS */
|
|
{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
|
|
};
|
|
|
|
/* Trapped cp14 64bit registers */
|
|
static const struct sys_reg_desc cp14_64_regs[] = {
|
|
/* DBGDRAR (64bit) */
|
|
{ Op1( 0), CRm( 1), .access = trap_raz_wi },
|
|
|
|
/* DBGDSAR (64bit) */
|
|
{ Op1( 0), CRm( 2), .access = trap_raz_wi },
|
|
};
|
|
|
|
/*
|
|
* Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
|
|
* depending on the way they are accessed (as a 32bit or a 64bit
|
|
* register).
|
|
*/
|
|
static const struct sys_reg_desc cp15_regs[] = {
|
|
{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
|
|
|
|
{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
|
|
{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
|
|
{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
|
|
{ Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
|
|
{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
|
|
{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
|
|
{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
|
|
{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
|
|
{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
|
|
{ Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
|
|
{ Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
|
|
|
|
/*
|
|
* DC{C,I,CI}SW operations:
|
|
*/
|
|
{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
|
|
{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
|
|
{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
|
|
|
|
/* PMU */
|
|
{ Op1( 0), CRn( 9), CRm(12), Op2( 0), trap_raz_wi },
|
|
{ Op1( 0), CRn( 9), CRm(12), Op2( 1), trap_raz_wi },
|
|
{ Op1( 0), CRn( 9), CRm(12), Op2( 2), trap_raz_wi },
|
|
{ Op1( 0), CRn( 9), CRm(12), Op2( 3), trap_raz_wi },
|
|
{ Op1( 0), CRn( 9), CRm(12), Op2( 5), trap_raz_wi },
|
|
{ Op1( 0), CRn( 9), CRm(12), Op2( 6), trap_raz_wi },
|
|
{ Op1( 0), CRn( 9), CRm(12), Op2( 7), trap_raz_wi },
|
|
{ Op1( 0), CRn( 9), CRm(13), Op2( 0), trap_raz_wi },
|
|
{ Op1( 0), CRn( 9), CRm(13), Op2( 1), trap_raz_wi },
|
|
{ Op1( 0), CRn( 9), CRm(13), Op2( 2), trap_raz_wi },
|
|
{ Op1( 0), CRn( 9), CRm(14), Op2( 0), trap_raz_wi },
|
|
{ Op1( 0), CRn( 9), CRm(14), Op2( 1), trap_raz_wi },
|
|
{ Op1( 0), CRn( 9), CRm(14), Op2( 2), trap_raz_wi },
|
|
|
|
{ Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
|
|
{ Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
|
|
{ Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
|
|
{ Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
|
|
|
|
/* ICC_SRE */
|
|
{ Op1( 0), CRn(12), CRm(12), Op2( 5), trap_raz_wi },
|
|
|
|
{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
|
|
};
|
|
|
|
static const struct sys_reg_desc cp15_64_regs[] = {
|
|
{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
|
|
{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
|
|
{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
|
|
};
|
|
|
|
/* Target specific emulation tables */
|
|
static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
|
|
|
|
void kvm_register_target_sys_reg_table(unsigned int target,
|
|
struct kvm_sys_reg_target_table *table)
|
|
{
|
|
target_tables[target] = table;
|
|
}
|
|
|
|
/* Get specific register table for this target. */
|
|
static const struct sys_reg_desc *get_target_table(unsigned target,
|
|
bool mode_is_64,
|
|
size_t *num)
|
|
{
|
|
struct kvm_sys_reg_target_table *table;
|
|
|
|
table = target_tables[target];
|
|
if (mode_is_64) {
|
|
*num = table->table64.num;
|
|
return table->table64.table;
|
|
} else {
|
|
*num = table->table32.num;
|
|
return table->table32.table;
|
|
}
|
|
}
|
|
|
|
static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
|
|
const struct sys_reg_desc table[],
|
|
unsigned int num)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < num; i++) {
|
|
const struct sys_reg_desc *r = &table[i];
|
|
|
|
if (params->Op0 != r->Op0)
|
|
continue;
|
|
if (params->Op1 != r->Op1)
|
|
continue;
|
|
if (params->CRn != r->CRn)
|
|
continue;
|
|
if (params->CRm != r->CRm)
|
|
continue;
|
|
if (params->Op2 != r->Op2)
|
|
continue;
|
|
|
|
return r;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
|
|
{
|
|
kvm_inject_undefined(vcpu);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* emulate_cp -- tries to match a sys_reg access in a handling table, and
|
|
* call the corresponding trap handler.
|
|
*
|
|
* @params: pointer to the descriptor of the access
|
|
* @table: array of trap descriptors
|
|
* @num: size of the trap descriptor array
|
|
*
|
|
* Return 0 if the access has been handled, and -1 if not.
|
|
*/
|
|
static int emulate_cp(struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_params *params,
|
|
const struct sys_reg_desc *table,
|
|
size_t num)
|
|
{
|
|
const struct sys_reg_desc *r;
|
|
|
|
if (!table)
|
|
return -1; /* Not handled */
|
|
|
|
r = find_reg(params, table, num);
|
|
|
|
if (r) {
|
|
/*
|
|
* Not having an accessor means that we have
|
|
* configured a trap that we don't know how to
|
|
* handle. This certainly qualifies as a gross bug
|
|
* that should be fixed right away.
|
|
*/
|
|
BUG_ON(!r->access);
|
|
|
|
if (likely(r->access(vcpu, params, r))) {
|
|
/* Skip instruction, since it was emulated */
|
|
kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
|
|
}
|
|
|
|
/* Handled */
|
|
return 0;
|
|
}
|
|
|
|
/* Not handled */
|
|
return -1;
|
|
}
|
|
|
|
static void unhandled_cp_access(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *params)
|
|
{
|
|
u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
|
|
int cp;
|
|
|
|
switch(hsr_ec) {
|
|
case ESR_ELx_EC_CP15_32:
|
|
case ESR_ELx_EC_CP15_64:
|
|
cp = 15;
|
|
break;
|
|
case ESR_ELx_EC_CP14_MR:
|
|
case ESR_ELx_EC_CP14_64:
|
|
cp = 14;
|
|
break;
|
|
default:
|
|
WARN_ON((cp = -1));
|
|
}
|
|
|
|
kvm_err("Unsupported guest CP%d access at: %08lx\n",
|
|
cp, *vcpu_pc(vcpu));
|
|
print_sys_reg_instr(params);
|
|
kvm_inject_undefined(vcpu);
|
|
}
|
|
|
|
/**
|
|
* kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP15 access
|
|
* @vcpu: The VCPU pointer
|
|
* @run: The kvm_run struct
|
|
*/
|
|
static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_desc *global,
|
|
size_t nr_global,
|
|
const struct sys_reg_desc *target_specific,
|
|
size_t nr_specific)
|
|
{
|
|
struct sys_reg_params params;
|
|
u32 hsr = kvm_vcpu_get_hsr(vcpu);
|
|
int Rt2 = (hsr >> 10) & 0xf;
|
|
|
|
params.is_aarch32 = true;
|
|
params.is_32bit = false;
|
|
params.CRm = (hsr >> 1) & 0xf;
|
|
params.Rt = (hsr >> 5) & 0xf;
|
|
params.is_write = ((hsr & 1) == 0);
|
|
|
|
params.Op0 = 0;
|
|
params.Op1 = (hsr >> 16) & 0xf;
|
|
params.Op2 = 0;
|
|
params.CRn = 0;
|
|
|
|
/*
|
|
* Massive hack here. Store Rt2 in the top 32bits so we only
|
|
* have one register to deal with. As we use the same trap
|
|
* backends between AArch32 and AArch64, we get away with it.
|
|
*/
|
|
if (params.is_write) {
|
|
u64 val = *vcpu_reg(vcpu, params.Rt);
|
|
val &= 0xffffffff;
|
|
val |= *vcpu_reg(vcpu, Rt2) << 32;
|
|
*vcpu_reg(vcpu, params.Rt) = val;
|
|
}
|
|
|
|
if (!emulate_cp(vcpu, ¶ms, target_specific, nr_specific))
|
|
goto out;
|
|
if (!emulate_cp(vcpu, ¶ms, global, nr_global))
|
|
goto out;
|
|
|
|
unhandled_cp_access(vcpu, ¶ms);
|
|
|
|
out:
|
|
/* Do the opposite hack for the read side */
|
|
if (!params.is_write) {
|
|
u64 val = *vcpu_reg(vcpu, params.Rt);
|
|
val >>= 32;
|
|
*vcpu_reg(vcpu, Rt2) = val;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
|
|
* @vcpu: The VCPU pointer
|
|
* @run: The kvm_run struct
|
|
*/
|
|
static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_desc *global,
|
|
size_t nr_global,
|
|
const struct sys_reg_desc *target_specific,
|
|
size_t nr_specific)
|
|
{
|
|
struct sys_reg_params params;
|
|
u32 hsr = kvm_vcpu_get_hsr(vcpu);
|
|
|
|
params.is_aarch32 = true;
|
|
params.is_32bit = true;
|
|
params.CRm = (hsr >> 1) & 0xf;
|
|
params.Rt = (hsr >> 5) & 0xf;
|
|
params.is_write = ((hsr & 1) == 0);
|
|
params.CRn = (hsr >> 10) & 0xf;
|
|
params.Op0 = 0;
|
|
params.Op1 = (hsr >> 14) & 0x7;
|
|
params.Op2 = (hsr >> 17) & 0x7;
|
|
|
|
if (!emulate_cp(vcpu, ¶ms, target_specific, nr_specific))
|
|
return 1;
|
|
if (!emulate_cp(vcpu, ¶ms, global, nr_global))
|
|
return 1;
|
|
|
|
unhandled_cp_access(vcpu, ¶ms);
|
|
return 1;
|
|
}
|
|
|
|
int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
|
|
{
|
|
const struct sys_reg_desc *target_specific;
|
|
size_t num;
|
|
|
|
target_specific = get_target_table(vcpu->arch.target, false, &num);
|
|
return kvm_handle_cp_64(vcpu,
|
|
cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
|
|
target_specific, num);
|
|
}
|
|
|
|
int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
|
|
{
|
|
const struct sys_reg_desc *target_specific;
|
|
size_t num;
|
|
|
|
target_specific = get_target_table(vcpu->arch.target, false, &num);
|
|
return kvm_handle_cp_32(vcpu,
|
|
cp15_regs, ARRAY_SIZE(cp15_regs),
|
|
target_specific, num);
|
|
}
|
|
|
|
int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
|
|
{
|
|
return kvm_handle_cp_64(vcpu,
|
|
cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
|
|
NULL, 0);
|
|
}
|
|
|
|
int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
|
|
{
|
|
return kvm_handle_cp_32(vcpu,
|
|
cp14_regs, ARRAY_SIZE(cp14_regs),
|
|
NULL, 0);
|
|
}
|
|
|
|
static int emulate_sys_reg(struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_params *params)
|
|
{
|
|
size_t num;
|
|
const struct sys_reg_desc *table, *r;
|
|
|
|
table = get_target_table(vcpu->arch.target, true, &num);
|
|
|
|
/* Search target-specific then generic table. */
|
|
r = find_reg(params, table, num);
|
|
if (!r)
|
|
r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
|
|
|
|
if (likely(r)) {
|
|
/*
|
|
* Not having an accessor means that we have
|
|
* configured a trap that we don't know how to
|
|
* handle. This certainly qualifies as a gross bug
|
|
* that should be fixed right away.
|
|
*/
|
|
BUG_ON(!r->access);
|
|
|
|
if (likely(r->access(vcpu, params, r))) {
|
|
/* Skip instruction, since it was emulated */
|
|
kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
|
|
return 1;
|
|
}
|
|
/* If access function fails, it should complain. */
|
|
} else {
|
|
kvm_err("Unsupported guest sys_reg access at: %lx\n",
|
|
*vcpu_pc(vcpu));
|
|
print_sys_reg_instr(params);
|
|
}
|
|
kvm_inject_undefined(vcpu);
|
|
return 1;
|
|
}
|
|
|
|
static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_desc *table, size_t num)
|
|
{
|
|
unsigned long i;
|
|
|
|
for (i = 0; i < num; i++)
|
|
if (table[i].reset)
|
|
table[i].reset(vcpu, &table[i]);
|
|
}
|
|
|
|
/**
|
|
* kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
|
|
* @vcpu: The VCPU pointer
|
|
* @run: The kvm_run struct
|
|
*/
|
|
int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
|
|
{
|
|
struct sys_reg_params params;
|
|
unsigned long esr = kvm_vcpu_get_hsr(vcpu);
|
|
|
|
trace_kvm_handle_sys_reg(esr);
|
|
|
|
params.is_aarch32 = false;
|
|
params.is_32bit = false;
|
|
params.Op0 = (esr >> 20) & 3;
|
|
params.Op1 = (esr >> 14) & 0x7;
|
|
params.CRn = (esr >> 10) & 0xf;
|
|
params.CRm = (esr >> 1) & 0xf;
|
|
params.Op2 = (esr >> 17) & 0x7;
|
|
params.Rt = (esr >> 5) & 0x1f;
|
|
params.is_write = !(esr & 1);
|
|
|
|
return emulate_sys_reg(vcpu, ¶ms);
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Userspace API
|
|
*****************************************************************************/
|
|
|
|
static bool index_to_params(u64 id, struct sys_reg_params *params)
|
|
{
|
|
switch (id & KVM_REG_SIZE_MASK) {
|
|
case KVM_REG_SIZE_U64:
|
|
/* Any unused index bits means it's not valid. */
|
|
if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
|
|
| KVM_REG_ARM_COPROC_MASK
|
|
| KVM_REG_ARM64_SYSREG_OP0_MASK
|
|
| KVM_REG_ARM64_SYSREG_OP1_MASK
|
|
| KVM_REG_ARM64_SYSREG_CRN_MASK
|
|
| KVM_REG_ARM64_SYSREG_CRM_MASK
|
|
| KVM_REG_ARM64_SYSREG_OP2_MASK))
|
|
return false;
|
|
params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
|
|
>> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
|
|
params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
|
|
>> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
|
|
params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
|
|
>> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
|
|
params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
|
|
>> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
|
|
params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
|
|
>> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Decode an index value, and find the sys_reg_desc entry. */
|
|
static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
|
|
u64 id)
|
|
{
|
|
size_t num;
|
|
const struct sys_reg_desc *table, *r;
|
|
struct sys_reg_params params;
|
|
|
|
/* We only do sys_reg for now. */
|
|
if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
|
|
return NULL;
|
|
|
|
if (!index_to_params(id, ¶ms))
|
|
return NULL;
|
|
|
|
table = get_target_table(vcpu->arch.target, true, &num);
|
|
r = find_reg(¶ms, table, num);
|
|
if (!r)
|
|
r = find_reg(¶ms, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
|
|
|
|
/* Not saved in the sys_reg array? */
|
|
if (r && !r->reg)
|
|
r = NULL;
|
|
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* These are the invariant sys_reg registers: we let the guest see the
|
|
* host versions of these, so they're part of the guest state.
|
|
*
|
|
* A future CPU may provide a mechanism to present different values to
|
|
* the guest, or a future kvm may trap them.
|
|
*/
|
|
|
|
#define FUNCTION_INVARIANT(reg) \
|
|
static void get_##reg(struct kvm_vcpu *v, \
|
|
const struct sys_reg_desc *r) \
|
|
{ \
|
|
u64 val; \
|
|
\
|
|
asm volatile("mrs %0, " __stringify(reg) "\n" \
|
|
: "=r" (val)); \
|
|
((struct sys_reg_desc *)r)->val = val; \
|
|
}
|
|
|
|
FUNCTION_INVARIANT(midr_el1)
|
|
FUNCTION_INVARIANT(ctr_el0)
|
|
FUNCTION_INVARIANT(revidr_el1)
|
|
FUNCTION_INVARIANT(id_pfr0_el1)
|
|
FUNCTION_INVARIANT(id_pfr1_el1)
|
|
FUNCTION_INVARIANT(id_dfr0_el1)
|
|
FUNCTION_INVARIANT(id_afr0_el1)
|
|
FUNCTION_INVARIANT(id_mmfr0_el1)
|
|
FUNCTION_INVARIANT(id_mmfr1_el1)
|
|
FUNCTION_INVARIANT(id_mmfr2_el1)
|
|
FUNCTION_INVARIANT(id_mmfr3_el1)
|
|
FUNCTION_INVARIANT(id_isar0_el1)
|
|
FUNCTION_INVARIANT(id_isar1_el1)
|
|
FUNCTION_INVARIANT(id_isar2_el1)
|
|
FUNCTION_INVARIANT(id_isar3_el1)
|
|
FUNCTION_INVARIANT(id_isar4_el1)
|
|
FUNCTION_INVARIANT(id_isar5_el1)
|
|
FUNCTION_INVARIANT(clidr_el1)
|
|
FUNCTION_INVARIANT(aidr_el1)
|
|
|
|
/* ->val is filled in by kvm_sys_reg_table_init() */
|
|
static struct sys_reg_desc invariant_sys_regs[] = {
|
|
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
|
|
NULL, get_midr_el1 },
|
|
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
|
|
NULL, get_revidr_el1 },
|
|
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
|
|
NULL, get_id_pfr0_el1 },
|
|
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
|
|
NULL, get_id_pfr1_el1 },
|
|
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
|
|
NULL, get_id_dfr0_el1 },
|
|
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
|
|
NULL, get_id_afr0_el1 },
|
|
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
|
|
NULL, get_id_mmfr0_el1 },
|
|
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
|
|
NULL, get_id_mmfr1_el1 },
|
|
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
|
|
NULL, get_id_mmfr2_el1 },
|
|
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
|
|
NULL, get_id_mmfr3_el1 },
|
|
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
|
|
NULL, get_id_isar0_el1 },
|
|
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
|
|
NULL, get_id_isar1_el1 },
|
|
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
|
|
NULL, get_id_isar2_el1 },
|
|
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
|
|
NULL, get_id_isar3_el1 },
|
|
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
|
|
NULL, get_id_isar4_el1 },
|
|
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
|
|
NULL, get_id_isar5_el1 },
|
|
{ Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
|
|
NULL, get_clidr_el1 },
|
|
{ Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
|
|
NULL, get_aidr_el1 },
|
|
{ Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
|
|
NULL, get_ctr_el0 },
|
|
};
|
|
|
|
static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
|
|
{
|
|
if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
|
|
{
|
|
if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
static int get_invariant_sys_reg(u64 id, void __user *uaddr)
|
|
{
|
|
struct sys_reg_params params;
|
|
const struct sys_reg_desc *r;
|
|
|
|
if (!index_to_params(id, ¶ms))
|
|
return -ENOENT;
|
|
|
|
r = find_reg(¶ms, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
|
|
if (!r)
|
|
return -ENOENT;
|
|
|
|
return reg_to_user(uaddr, &r->val, id);
|
|
}
|
|
|
|
static int set_invariant_sys_reg(u64 id, void __user *uaddr)
|
|
{
|
|
struct sys_reg_params params;
|
|
const struct sys_reg_desc *r;
|
|
int err;
|
|
u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
|
|
|
|
if (!index_to_params(id, ¶ms))
|
|
return -ENOENT;
|
|
r = find_reg(¶ms, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
|
|
if (!r)
|
|
return -ENOENT;
|
|
|
|
err = reg_from_user(&val, uaddr, id);
|
|
if (err)
|
|
return err;
|
|
|
|
/* This is what we mean by invariant: you can't change it. */
|
|
if (r->val != val)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool is_valid_cache(u32 val)
|
|
{
|
|
u32 level, ctype;
|
|
|
|
if (val >= CSSELR_MAX)
|
|
return false;
|
|
|
|
/* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
|
|
level = (val >> 1);
|
|
ctype = (cache_levels >> (level * 3)) & 7;
|
|
|
|
switch (ctype) {
|
|
case 0: /* No cache */
|
|
return false;
|
|
case 1: /* Instruction cache only */
|
|
return (val & 1);
|
|
case 2: /* Data cache only */
|
|
case 4: /* Unified cache */
|
|
return !(val & 1);
|
|
case 3: /* Separate instruction and data caches */
|
|
return true;
|
|
default: /* Reserved: we can't know instruction or data. */
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static int demux_c15_get(u64 id, void __user *uaddr)
|
|
{
|
|
u32 val;
|
|
u32 __user *uval = uaddr;
|
|
|
|
/* Fail if we have unknown bits set. */
|
|
if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
|
|
| ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
|
|
return -ENOENT;
|
|
|
|
switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
|
|
case KVM_REG_ARM_DEMUX_ID_CCSIDR:
|
|
if (KVM_REG_SIZE(id) != 4)
|
|
return -ENOENT;
|
|
val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
|
|
>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
|
|
if (!is_valid_cache(val))
|
|
return -ENOENT;
|
|
|
|
return put_user(get_ccsidr(val), uval);
|
|
default:
|
|
return -ENOENT;
|
|
}
|
|
}
|
|
|
|
static int demux_c15_set(u64 id, void __user *uaddr)
|
|
{
|
|
u32 val, newval;
|
|
u32 __user *uval = uaddr;
|
|
|
|
/* Fail if we have unknown bits set. */
|
|
if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
|
|
| ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
|
|
return -ENOENT;
|
|
|
|
switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
|
|
case KVM_REG_ARM_DEMUX_ID_CCSIDR:
|
|
if (KVM_REG_SIZE(id) != 4)
|
|
return -ENOENT;
|
|
val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
|
|
>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
|
|
if (!is_valid_cache(val))
|
|
return -ENOENT;
|
|
|
|
if (get_user(newval, uval))
|
|
return -EFAULT;
|
|
|
|
/* This is also invariant: you can't change it. */
|
|
if (newval != get_ccsidr(val))
|
|
return -EINVAL;
|
|
return 0;
|
|
default:
|
|
return -ENOENT;
|
|
}
|
|
}
|
|
|
|
int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
|
|
{
|
|
const struct sys_reg_desc *r;
|
|
void __user *uaddr = (void __user *)(unsigned long)reg->addr;
|
|
|
|
if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
|
|
return demux_c15_get(reg->id, uaddr);
|
|
|
|
if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
|
|
return -ENOENT;
|
|
|
|
r = index_to_sys_reg_desc(vcpu, reg->id);
|
|
if (!r)
|
|
return get_invariant_sys_reg(reg->id, uaddr);
|
|
|
|
if (r->get_user)
|
|
return (r->get_user)(vcpu, r, reg, uaddr);
|
|
|
|
return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
|
|
}
|
|
|
|
int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
|
|
{
|
|
const struct sys_reg_desc *r;
|
|
void __user *uaddr = (void __user *)(unsigned long)reg->addr;
|
|
|
|
if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
|
|
return demux_c15_set(reg->id, uaddr);
|
|
|
|
if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
|
|
return -ENOENT;
|
|
|
|
r = index_to_sys_reg_desc(vcpu, reg->id);
|
|
if (!r)
|
|
return set_invariant_sys_reg(reg->id, uaddr);
|
|
|
|
if (r->set_user)
|
|
return (r->set_user)(vcpu, r, reg, uaddr);
|
|
|
|
return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
|
|
}
|
|
|
|
static unsigned int num_demux_regs(void)
|
|
{
|
|
unsigned int i, count = 0;
|
|
|
|
for (i = 0; i < CSSELR_MAX; i++)
|
|
if (is_valid_cache(i))
|
|
count++;
|
|
|
|
return count;
|
|
}
|
|
|
|
static int write_demux_regids(u64 __user *uindices)
|
|
{
|
|
u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
|
|
unsigned int i;
|
|
|
|
val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
|
|
for (i = 0; i < CSSELR_MAX; i++) {
|
|
if (!is_valid_cache(i))
|
|
continue;
|
|
if (put_user(val | i, uindices))
|
|
return -EFAULT;
|
|
uindices++;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
|
|
{
|
|
return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
|
|
KVM_REG_ARM64_SYSREG |
|
|
(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
|
|
(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
|
|
(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
|
|
(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
|
|
(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
|
|
}
|
|
|
|
static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
|
|
{
|
|
if (!*uind)
|
|
return true;
|
|
|
|
if (put_user(sys_reg_to_index(reg), *uind))
|
|
return false;
|
|
|
|
(*uind)++;
|
|
return true;
|
|
}
|
|
|
|
/* Assumed ordered tables, see kvm_sys_reg_table_init. */
|
|
static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
|
|
{
|
|
const struct sys_reg_desc *i1, *i2, *end1, *end2;
|
|
unsigned int total = 0;
|
|
size_t num;
|
|
|
|
/* We check for duplicates here, to allow arch-specific overrides. */
|
|
i1 = get_target_table(vcpu->arch.target, true, &num);
|
|
end1 = i1 + num;
|
|
i2 = sys_reg_descs;
|
|
end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
|
|
|
|
BUG_ON(i1 == end1 || i2 == end2);
|
|
|
|
/* Walk carefully, as both tables may refer to the same register. */
|
|
while (i1 || i2) {
|
|
int cmp = cmp_sys_reg(i1, i2);
|
|
/* target-specific overrides generic entry. */
|
|
if (cmp <= 0) {
|
|
/* Ignore registers we trap but don't save. */
|
|
if (i1->reg) {
|
|
if (!copy_reg_to_user(i1, &uind))
|
|
return -EFAULT;
|
|
total++;
|
|
}
|
|
} else {
|
|
/* Ignore registers we trap but don't save. */
|
|
if (i2->reg) {
|
|
if (!copy_reg_to_user(i2, &uind))
|
|
return -EFAULT;
|
|
total++;
|
|
}
|
|
}
|
|
|
|
if (cmp <= 0 && ++i1 == end1)
|
|
i1 = NULL;
|
|
if (cmp >= 0 && ++i2 == end2)
|
|
i2 = NULL;
|
|
}
|
|
return total;
|
|
}
|
|
|
|
unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
|
|
{
|
|
return ARRAY_SIZE(invariant_sys_regs)
|
|
+ num_demux_regs()
|
|
+ walk_sys_regs(vcpu, (u64 __user *)NULL);
|
|
}
|
|
|
|
int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
|
|
{
|
|
unsigned int i;
|
|
int err;
|
|
|
|
/* Then give them all the invariant registers' indices. */
|
|
for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
|
|
if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
|
|
return -EFAULT;
|
|
uindices++;
|
|
}
|
|
|
|
err = walk_sys_regs(vcpu, uindices);
|
|
if (err < 0)
|
|
return err;
|
|
uindices += err;
|
|
|
|
return write_demux_regids(uindices);
|
|
}
|
|
|
|
static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 1; i < n; i++) {
|
|
if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
|
|
kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void kvm_sys_reg_table_init(void)
|
|
{
|
|
unsigned int i;
|
|
struct sys_reg_desc clidr;
|
|
|
|
/* Make sure tables are unique and in order. */
|
|
BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
|
|
BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
|
|
BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
|
|
BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
|
|
BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
|
|
BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
|
|
|
|
/* We abuse the reset function to overwrite the table itself. */
|
|
for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
|
|
invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
|
|
|
|
/*
|
|
* CLIDR format is awkward, so clean it up. See ARM B4.1.20:
|
|
*
|
|
* If software reads the Cache Type fields from Ctype1
|
|
* upwards, once it has seen a value of 0b000, no caches
|
|
* exist at further-out levels of the hierarchy. So, for
|
|
* example, if Ctype3 is the first Cache Type field with a
|
|
* value of 0b000, the values of Ctype4 to Ctype7 must be
|
|
* ignored.
|
|
*/
|
|
get_clidr_el1(NULL, &clidr); /* Ugly... */
|
|
cache_levels = clidr.val;
|
|
for (i = 0; i < 7; i++)
|
|
if (((cache_levels >> (i*3)) & 7) == 0)
|
|
break;
|
|
/* Clear all higher bits. */
|
|
cache_levels &= (1 << (i*3))-1;
|
|
}
|
|
|
|
/**
|
|
* kvm_reset_sys_regs - sets system registers to reset value
|
|
* @vcpu: The VCPU pointer
|
|
*
|
|
* This function finds the right table above and sets the registers on the
|
|
* virtual CPU struct to their architecturally defined reset values.
|
|
*/
|
|
void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
|
|
{
|
|
size_t num;
|
|
const struct sys_reg_desc *table;
|
|
|
|
/* Catch someone adding a register without putting in reset entry. */
|
|
memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
|
|
|
|
/* Generic chip reset first (so target could override). */
|
|
reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
|
|
|
|
table = get_target_table(vcpu->arch.target, true, &num);
|
|
reset_sys_reg_descs(vcpu, table, num);
|
|
|
|
for (num = 1; num < NR_SYS_REGS; num++)
|
|
if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
|
|
panic("Didn't reset vcpu_sys_reg(%zi)", num);
|
|
}
|