mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-25 07:14:36 +08:00
7ec53e2beb
Since commit 7ef9651e97
("clk: Provide new devm_clk helpers for prepared
and enabled clocks"), devm_clk_get() and clk_prepare_enable() can now be
replaced by devm_clk_get_enabled() when driver enables (and possibly
prepares) the clocks for the whole lifetime of the device. Moreover, it is
no longer necessary to unprepare and disable the clocks explicitly, so drop
the label "err_clk_disable".
Reviewed-by: Miquel Raynal <miquel.raynal@bootlin.com>
Signed-off-by: Li Zetao <lizetao1@huawei.com>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20230821031737.1973183-9-lizetao1@huawei.com
2111 lines
54 KiB
C
2111 lines
54 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) STMicroelectronics 2018
|
|
* Author: Christophe Kerello <christophe.kerello@st.com>
|
|
*/
|
|
|
|
#include <linux/bitfield.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/gpio/consumer.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/iopoll.h>
|
|
#include <linux/mfd/syscon.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mtd/rawnand.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/pinctrl/consumer.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/regmap.h>
|
|
#include <linux/reset.h>
|
|
|
|
/* Bad block marker length */
|
|
#define FMC2_BBM_LEN 2
|
|
|
|
/* ECC step size */
|
|
#define FMC2_ECC_STEP_SIZE 512
|
|
|
|
/* BCHDSRx registers length */
|
|
#define FMC2_BCHDSRS_LEN 20
|
|
|
|
/* HECCR length */
|
|
#define FMC2_HECCR_LEN 4
|
|
|
|
/* Max requests done for a 8k nand page size */
|
|
#define FMC2_MAX_SG 16
|
|
|
|
/* Max chip enable */
|
|
#define FMC2_MAX_CE 2
|
|
|
|
/* Max ECC buffer length */
|
|
#define FMC2_MAX_ECC_BUF_LEN (FMC2_BCHDSRS_LEN * FMC2_MAX_SG)
|
|
|
|
#define FMC2_TIMEOUT_MS 5000
|
|
|
|
/* Timings */
|
|
#define FMC2_THIZ 1
|
|
#define FMC2_TIO 8000
|
|
#define FMC2_TSYNC 3000
|
|
#define FMC2_PCR_TIMING_MASK 0xf
|
|
#define FMC2_PMEM_PATT_TIMING_MASK 0xff
|
|
|
|
/* FMC2 Controller Registers */
|
|
#define FMC2_BCR1 0x0
|
|
#define FMC2_PCR 0x80
|
|
#define FMC2_SR 0x84
|
|
#define FMC2_PMEM 0x88
|
|
#define FMC2_PATT 0x8c
|
|
#define FMC2_HECCR 0x94
|
|
#define FMC2_ISR 0x184
|
|
#define FMC2_ICR 0x188
|
|
#define FMC2_CSQCR 0x200
|
|
#define FMC2_CSQCFGR1 0x204
|
|
#define FMC2_CSQCFGR2 0x208
|
|
#define FMC2_CSQCFGR3 0x20c
|
|
#define FMC2_CSQAR1 0x210
|
|
#define FMC2_CSQAR2 0x214
|
|
#define FMC2_CSQIER 0x220
|
|
#define FMC2_CSQISR 0x224
|
|
#define FMC2_CSQICR 0x228
|
|
#define FMC2_CSQEMSR 0x230
|
|
#define FMC2_BCHIER 0x250
|
|
#define FMC2_BCHISR 0x254
|
|
#define FMC2_BCHICR 0x258
|
|
#define FMC2_BCHPBR1 0x260
|
|
#define FMC2_BCHPBR2 0x264
|
|
#define FMC2_BCHPBR3 0x268
|
|
#define FMC2_BCHPBR4 0x26c
|
|
#define FMC2_BCHDSR0 0x27c
|
|
#define FMC2_BCHDSR1 0x280
|
|
#define FMC2_BCHDSR2 0x284
|
|
#define FMC2_BCHDSR3 0x288
|
|
#define FMC2_BCHDSR4 0x28c
|
|
|
|
/* Register: FMC2_BCR1 */
|
|
#define FMC2_BCR1_FMC2EN BIT(31)
|
|
|
|
/* Register: FMC2_PCR */
|
|
#define FMC2_PCR_PWAITEN BIT(1)
|
|
#define FMC2_PCR_PBKEN BIT(2)
|
|
#define FMC2_PCR_PWID GENMASK(5, 4)
|
|
#define FMC2_PCR_PWID_BUSWIDTH_8 0
|
|
#define FMC2_PCR_PWID_BUSWIDTH_16 1
|
|
#define FMC2_PCR_ECCEN BIT(6)
|
|
#define FMC2_PCR_ECCALG BIT(8)
|
|
#define FMC2_PCR_TCLR GENMASK(12, 9)
|
|
#define FMC2_PCR_TCLR_DEFAULT 0xf
|
|
#define FMC2_PCR_TAR GENMASK(16, 13)
|
|
#define FMC2_PCR_TAR_DEFAULT 0xf
|
|
#define FMC2_PCR_ECCSS GENMASK(19, 17)
|
|
#define FMC2_PCR_ECCSS_512 1
|
|
#define FMC2_PCR_ECCSS_2048 3
|
|
#define FMC2_PCR_BCHECC BIT(24)
|
|
#define FMC2_PCR_WEN BIT(25)
|
|
|
|
/* Register: FMC2_SR */
|
|
#define FMC2_SR_NWRF BIT(6)
|
|
|
|
/* Register: FMC2_PMEM */
|
|
#define FMC2_PMEM_MEMSET GENMASK(7, 0)
|
|
#define FMC2_PMEM_MEMWAIT GENMASK(15, 8)
|
|
#define FMC2_PMEM_MEMHOLD GENMASK(23, 16)
|
|
#define FMC2_PMEM_MEMHIZ GENMASK(31, 24)
|
|
#define FMC2_PMEM_DEFAULT 0x0a0a0a0a
|
|
|
|
/* Register: FMC2_PATT */
|
|
#define FMC2_PATT_ATTSET GENMASK(7, 0)
|
|
#define FMC2_PATT_ATTWAIT GENMASK(15, 8)
|
|
#define FMC2_PATT_ATTHOLD GENMASK(23, 16)
|
|
#define FMC2_PATT_ATTHIZ GENMASK(31, 24)
|
|
#define FMC2_PATT_DEFAULT 0x0a0a0a0a
|
|
|
|
/* Register: FMC2_ISR */
|
|
#define FMC2_ISR_IHLF BIT(1)
|
|
|
|
/* Register: FMC2_ICR */
|
|
#define FMC2_ICR_CIHLF BIT(1)
|
|
|
|
/* Register: FMC2_CSQCR */
|
|
#define FMC2_CSQCR_CSQSTART BIT(0)
|
|
|
|
/* Register: FMC2_CSQCFGR1 */
|
|
#define FMC2_CSQCFGR1_CMD2EN BIT(1)
|
|
#define FMC2_CSQCFGR1_DMADEN BIT(2)
|
|
#define FMC2_CSQCFGR1_ACYNBR GENMASK(6, 4)
|
|
#define FMC2_CSQCFGR1_CMD1 GENMASK(15, 8)
|
|
#define FMC2_CSQCFGR1_CMD2 GENMASK(23, 16)
|
|
#define FMC2_CSQCFGR1_CMD1T BIT(24)
|
|
#define FMC2_CSQCFGR1_CMD2T BIT(25)
|
|
|
|
/* Register: FMC2_CSQCFGR2 */
|
|
#define FMC2_CSQCFGR2_SQSDTEN BIT(0)
|
|
#define FMC2_CSQCFGR2_RCMD2EN BIT(1)
|
|
#define FMC2_CSQCFGR2_DMASEN BIT(2)
|
|
#define FMC2_CSQCFGR2_RCMD1 GENMASK(15, 8)
|
|
#define FMC2_CSQCFGR2_RCMD2 GENMASK(23, 16)
|
|
#define FMC2_CSQCFGR2_RCMD1T BIT(24)
|
|
#define FMC2_CSQCFGR2_RCMD2T BIT(25)
|
|
|
|
/* Register: FMC2_CSQCFGR3 */
|
|
#define FMC2_CSQCFGR3_SNBR GENMASK(13, 8)
|
|
#define FMC2_CSQCFGR3_AC1T BIT(16)
|
|
#define FMC2_CSQCFGR3_AC2T BIT(17)
|
|
#define FMC2_CSQCFGR3_AC3T BIT(18)
|
|
#define FMC2_CSQCFGR3_AC4T BIT(19)
|
|
#define FMC2_CSQCFGR3_AC5T BIT(20)
|
|
#define FMC2_CSQCFGR3_SDT BIT(21)
|
|
#define FMC2_CSQCFGR3_RAC1T BIT(22)
|
|
#define FMC2_CSQCFGR3_RAC2T BIT(23)
|
|
|
|
/* Register: FMC2_CSQCAR1 */
|
|
#define FMC2_CSQCAR1_ADDC1 GENMASK(7, 0)
|
|
#define FMC2_CSQCAR1_ADDC2 GENMASK(15, 8)
|
|
#define FMC2_CSQCAR1_ADDC3 GENMASK(23, 16)
|
|
#define FMC2_CSQCAR1_ADDC4 GENMASK(31, 24)
|
|
|
|
/* Register: FMC2_CSQCAR2 */
|
|
#define FMC2_CSQCAR2_ADDC5 GENMASK(7, 0)
|
|
#define FMC2_CSQCAR2_NANDCEN GENMASK(11, 10)
|
|
#define FMC2_CSQCAR2_SAO GENMASK(31, 16)
|
|
|
|
/* Register: FMC2_CSQIER */
|
|
#define FMC2_CSQIER_TCIE BIT(0)
|
|
|
|
/* Register: FMC2_CSQICR */
|
|
#define FMC2_CSQICR_CLEAR_IRQ GENMASK(4, 0)
|
|
|
|
/* Register: FMC2_CSQEMSR */
|
|
#define FMC2_CSQEMSR_SEM GENMASK(15, 0)
|
|
|
|
/* Register: FMC2_BCHIER */
|
|
#define FMC2_BCHIER_DERIE BIT(1)
|
|
#define FMC2_BCHIER_EPBRIE BIT(4)
|
|
|
|
/* Register: FMC2_BCHICR */
|
|
#define FMC2_BCHICR_CLEAR_IRQ GENMASK(4, 0)
|
|
|
|
/* Register: FMC2_BCHDSR0 */
|
|
#define FMC2_BCHDSR0_DUE BIT(0)
|
|
#define FMC2_BCHDSR0_DEF BIT(1)
|
|
#define FMC2_BCHDSR0_DEN GENMASK(7, 4)
|
|
|
|
/* Register: FMC2_BCHDSR1 */
|
|
#define FMC2_BCHDSR1_EBP1 GENMASK(12, 0)
|
|
#define FMC2_BCHDSR1_EBP2 GENMASK(28, 16)
|
|
|
|
/* Register: FMC2_BCHDSR2 */
|
|
#define FMC2_BCHDSR2_EBP3 GENMASK(12, 0)
|
|
#define FMC2_BCHDSR2_EBP4 GENMASK(28, 16)
|
|
|
|
/* Register: FMC2_BCHDSR3 */
|
|
#define FMC2_BCHDSR3_EBP5 GENMASK(12, 0)
|
|
#define FMC2_BCHDSR3_EBP6 GENMASK(28, 16)
|
|
|
|
/* Register: FMC2_BCHDSR4 */
|
|
#define FMC2_BCHDSR4_EBP7 GENMASK(12, 0)
|
|
#define FMC2_BCHDSR4_EBP8 GENMASK(28, 16)
|
|
|
|
enum stm32_fmc2_ecc {
|
|
FMC2_ECC_HAM = 1,
|
|
FMC2_ECC_BCH4 = 4,
|
|
FMC2_ECC_BCH8 = 8
|
|
};
|
|
|
|
enum stm32_fmc2_irq_state {
|
|
FMC2_IRQ_UNKNOWN = 0,
|
|
FMC2_IRQ_BCH,
|
|
FMC2_IRQ_SEQ
|
|
};
|
|
|
|
struct stm32_fmc2_timings {
|
|
u8 tclr;
|
|
u8 tar;
|
|
u8 thiz;
|
|
u8 twait;
|
|
u8 thold_mem;
|
|
u8 tset_mem;
|
|
u8 thold_att;
|
|
u8 tset_att;
|
|
};
|
|
|
|
struct stm32_fmc2_nand {
|
|
struct nand_chip chip;
|
|
struct gpio_desc *wp_gpio;
|
|
struct stm32_fmc2_timings timings;
|
|
int ncs;
|
|
int cs_used[FMC2_MAX_CE];
|
|
};
|
|
|
|
static inline struct stm32_fmc2_nand *to_fmc2_nand(struct nand_chip *chip)
|
|
{
|
|
return container_of(chip, struct stm32_fmc2_nand, chip);
|
|
}
|
|
|
|
struct stm32_fmc2_nfc {
|
|
struct nand_controller base;
|
|
struct stm32_fmc2_nand nand;
|
|
struct device *dev;
|
|
struct device *cdev;
|
|
struct regmap *regmap;
|
|
void __iomem *data_base[FMC2_MAX_CE];
|
|
void __iomem *cmd_base[FMC2_MAX_CE];
|
|
void __iomem *addr_base[FMC2_MAX_CE];
|
|
phys_addr_t io_phys_addr;
|
|
phys_addr_t data_phys_addr[FMC2_MAX_CE];
|
|
struct clk *clk;
|
|
u8 irq_state;
|
|
|
|
struct dma_chan *dma_tx_ch;
|
|
struct dma_chan *dma_rx_ch;
|
|
struct dma_chan *dma_ecc_ch;
|
|
struct sg_table dma_data_sg;
|
|
struct sg_table dma_ecc_sg;
|
|
u8 *ecc_buf;
|
|
int dma_ecc_len;
|
|
|
|
struct completion complete;
|
|
struct completion dma_data_complete;
|
|
struct completion dma_ecc_complete;
|
|
|
|
u8 cs_assigned;
|
|
int cs_sel;
|
|
};
|
|
|
|
static inline struct stm32_fmc2_nfc *to_stm32_nfc(struct nand_controller *base)
|
|
{
|
|
return container_of(base, struct stm32_fmc2_nfc, base);
|
|
}
|
|
|
|
static void stm32_fmc2_nfc_timings_init(struct nand_chip *chip)
|
|
{
|
|
struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
|
|
struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
|
|
struct stm32_fmc2_timings *timings = &nand->timings;
|
|
u32 pmem, patt;
|
|
|
|
/* Set tclr/tar timings */
|
|
regmap_update_bits(nfc->regmap, FMC2_PCR,
|
|
FMC2_PCR_TCLR | FMC2_PCR_TAR,
|
|
FIELD_PREP(FMC2_PCR_TCLR, timings->tclr) |
|
|
FIELD_PREP(FMC2_PCR_TAR, timings->tar));
|
|
|
|
/* Set tset/twait/thold/thiz timings in common bank */
|
|
pmem = FIELD_PREP(FMC2_PMEM_MEMSET, timings->tset_mem);
|
|
pmem |= FIELD_PREP(FMC2_PMEM_MEMWAIT, timings->twait);
|
|
pmem |= FIELD_PREP(FMC2_PMEM_MEMHOLD, timings->thold_mem);
|
|
pmem |= FIELD_PREP(FMC2_PMEM_MEMHIZ, timings->thiz);
|
|
regmap_write(nfc->regmap, FMC2_PMEM, pmem);
|
|
|
|
/* Set tset/twait/thold/thiz timings in attribut bank */
|
|
patt = FIELD_PREP(FMC2_PATT_ATTSET, timings->tset_att);
|
|
patt |= FIELD_PREP(FMC2_PATT_ATTWAIT, timings->twait);
|
|
patt |= FIELD_PREP(FMC2_PATT_ATTHOLD, timings->thold_att);
|
|
patt |= FIELD_PREP(FMC2_PATT_ATTHIZ, timings->thiz);
|
|
regmap_write(nfc->regmap, FMC2_PATT, patt);
|
|
}
|
|
|
|
static void stm32_fmc2_nfc_setup(struct nand_chip *chip)
|
|
{
|
|
struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
|
|
u32 pcr = 0, pcr_mask;
|
|
|
|
/* Configure ECC algorithm (default configuration is Hamming) */
|
|
pcr_mask = FMC2_PCR_ECCALG;
|
|
pcr_mask |= FMC2_PCR_BCHECC;
|
|
if (chip->ecc.strength == FMC2_ECC_BCH8) {
|
|
pcr |= FMC2_PCR_ECCALG;
|
|
pcr |= FMC2_PCR_BCHECC;
|
|
} else if (chip->ecc.strength == FMC2_ECC_BCH4) {
|
|
pcr |= FMC2_PCR_ECCALG;
|
|
}
|
|
|
|
/* Set buswidth */
|
|
pcr_mask |= FMC2_PCR_PWID;
|
|
if (chip->options & NAND_BUSWIDTH_16)
|
|
pcr |= FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16);
|
|
|
|
/* Set ECC sector size */
|
|
pcr_mask |= FMC2_PCR_ECCSS;
|
|
pcr |= FIELD_PREP(FMC2_PCR_ECCSS, FMC2_PCR_ECCSS_512);
|
|
|
|
regmap_update_bits(nfc->regmap, FMC2_PCR, pcr_mask, pcr);
|
|
}
|
|
|
|
static int stm32_fmc2_nfc_select_chip(struct nand_chip *chip, int chipnr)
|
|
{
|
|
struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
|
|
struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
|
|
struct dma_slave_config dma_cfg;
|
|
int ret;
|
|
|
|
if (nand->cs_used[chipnr] == nfc->cs_sel)
|
|
return 0;
|
|
|
|
nfc->cs_sel = nand->cs_used[chipnr];
|
|
stm32_fmc2_nfc_setup(chip);
|
|
stm32_fmc2_nfc_timings_init(chip);
|
|
|
|
if (nfc->dma_tx_ch && nfc->dma_rx_ch) {
|
|
memset(&dma_cfg, 0, sizeof(dma_cfg));
|
|
dma_cfg.src_addr = nfc->data_phys_addr[nfc->cs_sel];
|
|
dma_cfg.dst_addr = nfc->data_phys_addr[nfc->cs_sel];
|
|
dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
|
|
dma_cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
|
|
dma_cfg.src_maxburst = 32;
|
|
dma_cfg.dst_maxburst = 32;
|
|
|
|
ret = dmaengine_slave_config(nfc->dma_tx_ch, &dma_cfg);
|
|
if (ret) {
|
|
dev_err(nfc->dev, "tx DMA engine slave config failed\n");
|
|
return ret;
|
|
}
|
|
|
|
ret = dmaengine_slave_config(nfc->dma_rx_ch, &dma_cfg);
|
|
if (ret) {
|
|
dev_err(nfc->dev, "rx DMA engine slave config failed\n");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (nfc->dma_ecc_ch) {
|
|
/*
|
|
* Hamming: we read HECCR register
|
|
* BCH4/BCH8: we read BCHDSRSx registers
|
|
*/
|
|
memset(&dma_cfg, 0, sizeof(dma_cfg));
|
|
dma_cfg.src_addr = nfc->io_phys_addr;
|
|
dma_cfg.src_addr += chip->ecc.strength == FMC2_ECC_HAM ?
|
|
FMC2_HECCR : FMC2_BCHDSR0;
|
|
dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
|
|
|
|
ret = dmaengine_slave_config(nfc->dma_ecc_ch, &dma_cfg);
|
|
if (ret) {
|
|
dev_err(nfc->dev, "ECC DMA engine slave config failed\n");
|
|
return ret;
|
|
}
|
|
|
|
/* Calculate ECC length needed for one sector */
|
|
nfc->dma_ecc_len = chip->ecc.strength == FMC2_ECC_HAM ?
|
|
FMC2_HECCR_LEN : FMC2_BCHDSRS_LEN;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void stm32_fmc2_nfc_set_buswidth_16(struct stm32_fmc2_nfc *nfc, bool set)
|
|
{
|
|
u32 pcr;
|
|
|
|
pcr = set ? FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16) :
|
|
FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_8);
|
|
|
|
regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_PWID, pcr);
|
|
}
|
|
|
|
static void stm32_fmc2_nfc_set_ecc(struct stm32_fmc2_nfc *nfc, bool enable)
|
|
{
|
|
regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_ECCEN,
|
|
enable ? FMC2_PCR_ECCEN : 0);
|
|
}
|
|
|
|
static void stm32_fmc2_nfc_enable_seq_irq(struct stm32_fmc2_nfc *nfc)
|
|
{
|
|
nfc->irq_state = FMC2_IRQ_SEQ;
|
|
|
|
regmap_update_bits(nfc->regmap, FMC2_CSQIER,
|
|
FMC2_CSQIER_TCIE, FMC2_CSQIER_TCIE);
|
|
}
|
|
|
|
static void stm32_fmc2_nfc_disable_seq_irq(struct stm32_fmc2_nfc *nfc)
|
|
{
|
|
regmap_update_bits(nfc->regmap, FMC2_CSQIER, FMC2_CSQIER_TCIE, 0);
|
|
|
|
nfc->irq_state = FMC2_IRQ_UNKNOWN;
|
|
}
|
|
|
|
static void stm32_fmc2_nfc_clear_seq_irq(struct stm32_fmc2_nfc *nfc)
|
|
{
|
|
regmap_write(nfc->regmap, FMC2_CSQICR, FMC2_CSQICR_CLEAR_IRQ);
|
|
}
|
|
|
|
static void stm32_fmc2_nfc_enable_bch_irq(struct stm32_fmc2_nfc *nfc, int mode)
|
|
{
|
|
nfc->irq_state = FMC2_IRQ_BCH;
|
|
|
|
if (mode == NAND_ECC_WRITE)
|
|
regmap_update_bits(nfc->regmap, FMC2_BCHIER,
|
|
FMC2_BCHIER_EPBRIE, FMC2_BCHIER_EPBRIE);
|
|
else
|
|
regmap_update_bits(nfc->regmap, FMC2_BCHIER,
|
|
FMC2_BCHIER_DERIE, FMC2_BCHIER_DERIE);
|
|
}
|
|
|
|
static void stm32_fmc2_nfc_disable_bch_irq(struct stm32_fmc2_nfc *nfc)
|
|
{
|
|
regmap_update_bits(nfc->regmap, FMC2_BCHIER,
|
|
FMC2_BCHIER_DERIE | FMC2_BCHIER_EPBRIE, 0);
|
|
|
|
nfc->irq_state = FMC2_IRQ_UNKNOWN;
|
|
}
|
|
|
|
static void stm32_fmc2_nfc_clear_bch_irq(struct stm32_fmc2_nfc *nfc)
|
|
{
|
|
regmap_write(nfc->regmap, FMC2_BCHICR, FMC2_BCHICR_CLEAR_IRQ);
|
|
}
|
|
|
|
/*
|
|
* Enable ECC logic and reset syndrome/parity bits previously calculated
|
|
* Syndrome/parity bits is cleared by setting the ECCEN bit to 0
|
|
*/
|
|
static void stm32_fmc2_nfc_hwctl(struct nand_chip *chip, int mode)
|
|
{
|
|
struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
|
|
|
|
stm32_fmc2_nfc_set_ecc(nfc, false);
|
|
|
|
if (chip->ecc.strength != FMC2_ECC_HAM) {
|
|
regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_WEN,
|
|
mode == NAND_ECC_WRITE ? FMC2_PCR_WEN : 0);
|
|
|
|
reinit_completion(&nfc->complete);
|
|
stm32_fmc2_nfc_clear_bch_irq(nfc);
|
|
stm32_fmc2_nfc_enable_bch_irq(nfc, mode);
|
|
}
|
|
|
|
stm32_fmc2_nfc_set_ecc(nfc, true);
|
|
}
|
|
|
|
/*
|
|
* ECC Hamming calculation
|
|
* ECC is 3 bytes for 512 bytes of data (supports error correction up to
|
|
* max of 1-bit)
|
|
*/
|
|
static void stm32_fmc2_nfc_ham_set_ecc(const u32 ecc_sta, u8 *ecc)
|
|
{
|
|
ecc[0] = ecc_sta;
|
|
ecc[1] = ecc_sta >> 8;
|
|
ecc[2] = ecc_sta >> 16;
|
|
}
|
|
|
|
static int stm32_fmc2_nfc_ham_calculate(struct nand_chip *chip, const u8 *data,
|
|
u8 *ecc)
|
|
{
|
|
struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
|
|
u32 sr, heccr;
|
|
int ret;
|
|
|
|
ret = regmap_read_poll_timeout(nfc->regmap, FMC2_SR, sr,
|
|
sr & FMC2_SR_NWRF, 1,
|
|
1000 * FMC2_TIMEOUT_MS);
|
|
if (ret) {
|
|
dev_err(nfc->dev, "ham timeout\n");
|
|
return ret;
|
|
}
|
|
|
|
regmap_read(nfc->regmap, FMC2_HECCR, &heccr);
|
|
stm32_fmc2_nfc_ham_set_ecc(heccr, ecc);
|
|
stm32_fmc2_nfc_set_ecc(nfc, false);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stm32_fmc2_nfc_ham_correct(struct nand_chip *chip, u8 *dat,
|
|
u8 *read_ecc, u8 *calc_ecc)
|
|
{
|
|
u8 bit_position = 0, b0, b1, b2;
|
|
u32 byte_addr = 0, b;
|
|
u32 i, shifting = 1;
|
|
|
|
/* Indicate which bit and byte is faulty (if any) */
|
|
b0 = read_ecc[0] ^ calc_ecc[0];
|
|
b1 = read_ecc[1] ^ calc_ecc[1];
|
|
b2 = read_ecc[2] ^ calc_ecc[2];
|
|
b = b0 | (b1 << 8) | (b2 << 16);
|
|
|
|
/* No errors */
|
|
if (likely(!b))
|
|
return 0;
|
|
|
|
/* Calculate bit position */
|
|
for (i = 0; i < 3; i++) {
|
|
switch (b % 4) {
|
|
case 2:
|
|
bit_position += shifting;
|
|
break;
|
|
case 1:
|
|
break;
|
|
default:
|
|
return -EBADMSG;
|
|
}
|
|
shifting <<= 1;
|
|
b >>= 2;
|
|
}
|
|
|
|
/* Calculate byte position */
|
|
shifting = 1;
|
|
for (i = 0; i < 9; i++) {
|
|
switch (b % 4) {
|
|
case 2:
|
|
byte_addr += shifting;
|
|
break;
|
|
case 1:
|
|
break;
|
|
default:
|
|
return -EBADMSG;
|
|
}
|
|
shifting <<= 1;
|
|
b >>= 2;
|
|
}
|
|
|
|
/* Flip the bit */
|
|
dat[byte_addr] ^= (1 << bit_position);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* ECC BCH calculation and correction
|
|
* ECC is 7/13 bytes for 512 bytes of data (supports error correction up to
|
|
* max of 4-bit/8-bit)
|
|
*/
|
|
static int stm32_fmc2_nfc_bch_calculate(struct nand_chip *chip, const u8 *data,
|
|
u8 *ecc)
|
|
{
|
|
struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
|
|
u32 bchpbr;
|
|
|
|
/* Wait until the BCH code is ready */
|
|
if (!wait_for_completion_timeout(&nfc->complete,
|
|
msecs_to_jiffies(FMC2_TIMEOUT_MS))) {
|
|
dev_err(nfc->dev, "bch timeout\n");
|
|
stm32_fmc2_nfc_disable_bch_irq(nfc);
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
/* Read parity bits */
|
|
regmap_read(nfc->regmap, FMC2_BCHPBR1, &bchpbr);
|
|
ecc[0] = bchpbr;
|
|
ecc[1] = bchpbr >> 8;
|
|
ecc[2] = bchpbr >> 16;
|
|
ecc[3] = bchpbr >> 24;
|
|
|
|
regmap_read(nfc->regmap, FMC2_BCHPBR2, &bchpbr);
|
|
ecc[4] = bchpbr;
|
|
ecc[5] = bchpbr >> 8;
|
|
ecc[6] = bchpbr >> 16;
|
|
|
|
if (chip->ecc.strength == FMC2_ECC_BCH8) {
|
|
ecc[7] = bchpbr >> 24;
|
|
|
|
regmap_read(nfc->regmap, FMC2_BCHPBR3, &bchpbr);
|
|
ecc[8] = bchpbr;
|
|
ecc[9] = bchpbr >> 8;
|
|
ecc[10] = bchpbr >> 16;
|
|
ecc[11] = bchpbr >> 24;
|
|
|
|
regmap_read(nfc->regmap, FMC2_BCHPBR4, &bchpbr);
|
|
ecc[12] = bchpbr;
|
|
}
|
|
|
|
stm32_fmc2_nfc_set_ecc(nfc, false);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stm32_fmc2_nfc_bch_decode(int eccsize, u8 *dat, u32 *ecc_sta)
|
|
{
|
|
u32 bchdsr0 = ecc_sta[0];
|
|
u32 bchdsr1 = ecc_sta[1];
|
|
u32 bchdsr2 = ecc_sta[2];
|
|
u32 bchdsr3 = ecc_sta[3];
|
|
u32 bchdsr4 = ecc_sta[4];
|
|
u16 pos[8];
|
|
int i, den;
|
|
unsigned int nb_errs = 0;
|
|
|
|
/* No errors found */
|
|
if (likely(!(bchdsr0 & FMC2_BCHDSR0_DEF)))
|
|
return 0;
|
|
|
|
/* Too many errors detected */
|
|
if (unlikely(bchdsr0 & FMC2_BCHDSR0_DUE))
|
|
return -EBADMSG;
|
|
|
|
pos[0] = FIELD_GET(FMC2_BCHDSR1_EBP1, bchdsr1);
|
|
pos[1] = FIELD_GET(FMC2_BCHDSR1_EBP2, bchdsr1);
|
|
pos[2] = FIELD_GET(FMC2_BCHDSR2_EBP3, bchdsr2);
|
|
pos[3] = FIELD_GET(FMC2_BCHDSR2_EBP4, bchdsr2);
|
|
pos[4] = FIELD_GET(FMC2_BCHDSR3_EBP5, bchdsr3);
|
|
pos[5] = FIELD_GET(FMC2_BCHDSR3_EBP6, bchdsr3);
|
|
pos[6] = FIELD_GET(FMC2_BCHDSR4_EBP7, bchdsr4);
|
|
pos[7] = FIELD_GET(FMC2_BCHDSR4_EBP8, bchdsr4);
|
|
|
|
den = FIELD_GET(FMC2_BCHDSR0_DEN, bchdsr0);
|
|
for (i = 0; i < den; i++) {
|
|
if (pos[i] < eccsize * 8) {
|
|
change_bit(pos[i], (unsigned long *)dat);
|
|
nb_errs++;
|
|
}
|
|
}
|
|
|
|
return nb_errs;
|
|
}
|
|
|
|
static int stm32_fmc2_nfc_bch_correct(struct nand_chip *chip, u8 *dat,
|
|
u8 *read_ecc, u8 *calc_ecc)
|
|
{
|
|
struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
|
|
u32 ecc_sta[5];
|
|
|
|
/* Wait until the decoding error is ready */
|
|
if (!wait_for_completion_timeout(&nfc->complete,
|
|
msecs_to_jiffies(FMC2_TIMEOUT_MS))) {
|
|
dev_err(nfc->dev, "bch timeout\n");
|
|
stm32_fmc2_nfc_disable_bch_irq(nfc);
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
regmap_bulk_read(nfc->regmap, FMC2_BCHDSR0, ecc_sta, 5);
|
|
|
|
stm32_fmc2_nfc_set_ecc(nfc, false);
|
|
|
|
return stm32_fmc2_nfc_bch_decode(chip->ecc.size, dat, ecc_sta);
|
|
}
|
|
|
|
static int stm32_fmc2_nfc_read_page(struct nand_chip *chip, u8 *buf,
|
|
int oob_required, int page)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int ret, i, s, stat, eccsize = chip->ecc.size;
|
|
int eccbytes = chip->ecc.bytes;
|
|
int eccsteps = chip->ecc.steps;
|
|
int eccstrength = chip->ecc.strength;
|
|
u8 *p = buf;
|
|
u8 *ecc_calc = chip->ecc.calc_buf;
|
|
u8 *ecc_code = chip->ecc.code_buf;
|
|
unsigned int max_bitflips = 0;
|
|
|
|
ret = nand_read_page_op(chip, page, 0, NULL, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = mtd->writesize + FMC2_BBM_LEN, s = 0; s < eccsteps;
|
|
s++, i += eccbytes, p += eccsize) {
|
|
chip->ecc.hwctl(chip, NAND_ECC_READ);
|
|
|
|
/* Read the nand page sector (512 bytes) */
|
|
ret = nand_change_read_column_op(chip, s * eccsize, p,
|
|
eccsize, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Read the corresponding ECC bytes */
|
|
ret = nand_change_read_column_op(chip, i, ecc_code,
|
|
eccbytes, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Correct the data */
|
|
stat = chip->ecc.correct(chip, p, ecc_code, ecc_calc);
|
|
if (stat == -EBADMSG)
|
|
/* Check for empty pages with bitflips */
|
|
stat = nand_check_erased_ecc_chunk(p, eccsize,
|
|
ecc_code, eccbytes,
|
|
NULL, 0,
|
|
eccstrength);
|
|
|
|
if (stat < 0) {
|
|
mtd->ecc_stats.failed++;
|
|
} else {
|
|
mtd->ecc_stats.corrected += stat;
|
|
max_bitflips = max_t(unsigned int, max_bitflips, stat);
|
|
}
|
|
}
|
|
|
|
/* Read oob */
|
|
if (oob_required) {
|
|
ret = nand_change_read_column_op(chip, mtd->writesize,
|
|
chip->oob_poi, mtd->oobsize,
|
|
false);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return max_bitflips;
|
|
}
|
|
|
|
/* Sequencer read/write configuration */
|
|
static void stm32_fmc2_nfc_rw_page_init(struct nand_chip *chip, int page,
|
|
int raw, bool write_data)
|
|
{
|
|
struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
u32 ecc_offset = mtd->writesize + FMC2_BBM_LEN;
|
|
/*
|
|
* cfg[0] => csqcfgr1, cfg[1] => csqcfgr2, cfg[2] => csqcfgr3
|
|
* cfg[3] => csqar1, cfg[4] => csqar2
|
|
*/
|
|
u32 cfg[5];
|
|
|
|
regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_WEN,
|
|
write_data ? FMC2_PCR_WEN : 0);
|
|
|
|
/*
|
|
* - Set Program Page/Page Read command
|
|
* - Enable DMA request data
|
|
* - Set timings
|
|
*/
|
|
cfg[0] = FMC2_CSQCFGR1_DMADEN | FMC2_CSQCFGR1_CMD1T;
|
|
if (write_data)
|
|
cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_CMD1, NAND_CMD_SEQIN);
|
|
else
|
|
cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_CMD1, NAND_CMD_READ0) |
|
|
FMC2_CSQCFGR1_CMD2EN |
|
|
FIELD_PREP(FMC2_CSQCFGR1_CMD2, NAND_CMD_READSTART) |
|
|
FMC2_CSQCFGR1_CMD2T;
|
|
|
|
/*
|
|
* - Set Random Data Input/Random Data Read command
|
|
* - Enable the sequencer to access the Spare data area
|
|
* - Enable DMA request status decoding for read
|
|
* - Set timings
|
|
*/
|
|
if (write_data)
|
|
cfg[1] = FIELD_PREP(FMC2_CSQCFGR2_RCMD1, NAND_CMD_RNDIN);
|
|
else
|
|
cfg[1] = FIELD_PREP(FMC2_CSQCFGR2_RCMD1, NAND_CMD_RNDOUT) |
|
|
FMC2_CSQCFGR2_RCMD2EN |
|
|
FIELD_PREP(FMC2_CSQCFGR2_RCMD2, NAND_CMD_RNDOUTSTART) |
|
|
FMC2_CSQCFGR2_RCMD1T |
|
|
FMC2_CSQCFGR2_RCMD2T;
|
|
if (!raw) {
|
|
cfg[1] |= write_data ? 0 : FMC2_CSQCFGR2_DMASEN;
|
|
cfg[1] |= FMC2_CSQCFGR2_SQSDTEN;
|
|
}
|
|
|
|
/*
|
|
* - Set the number of sectors to be written
|
|
* - Set timings
|
|
*/
|
|
cfg[2] = FIELD_PREP(FMC2_CSQCFGR3_SNBR, chip->ecc.steps - 1);
|
|
if (write_data) {
|
|
cfg[2] |= FMC2_CSQCFGR3_RAC2T;
|
|
if (chip->options & NAND_ROW_ADDR_3)
|
|
cfg[2] |= FMC2_CSQCFGR3_AC5T;
|
|
else
|
|
cfg[2] |= FMC2_CSQCFGR3_AC4T;
|
|
}
|
|
|
|
/*
|
|
* Set the fourth first address cycles
|
|
* Byte 1 and byte 2 => column, we start at 0x0
|
|
* Byte 3 and byte 4 => page
|
|
*/
|
|
cfg[3] = FIELD_PREP(FMC2_CSQCAR1_ADDC3, page);
|
|
cfg[3] |= FIELD_PREP(FMC2_CSQCAR1_ADDC4, page >> 8);
|
|
|
|
/*
|
|
* - Set chip enable number
|
|
* - Set ECC byte offset in the spare area
|
|
* - Calculate the number of address cycles to be issued
|
|
* - Set byte 5 of address cycle if needed
|
|
*/
|
|
cfg[4] = FIELD_PREP(FMC2_CSQCAR2_NANDCEN, nfc->cs_sel);
|
|
if (chip->options & NAND_BUSWIDTH_16)
|
|
cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_SAO, ecc_offset >> 1);
|
|
else
|
|
cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_SAO, ecc_offset);
|
|
if (chip->options & NAND_ROW_ADDR_3) {
|
|
cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_ACYNBR, 5);
|
|
cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_ADDC5, page >> 16);
|
|
} else {
|
|
cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_ACYNBR, 4);
|
|
}
|
|
|
|
regmap_bulk_write(nfc->regmap, FMC2_CSQCFGR1, cfg, 5);
|
|
}
|
|
|
|
static void stm32_fmc2_nfc_dma_callback(void *arg)
|
|
{
|
|
complete((struct completion *)arg);
|
|
}
|
|
|
|
/* Read/write data from/to a page */
|
|
static int stm32_fmc2_nfc_xfer(struct nand_chip *chip, const u8 *buf,
|
|
int raw, bool write_data)
|
|
{
|
|
struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
|
|
struct dma_async_tx_descriptor *desc_data, *desc_ecc;
|
|
struct scatterlist *sg;
|
|
struct dma_chan *dma_ch = nfc->dma_rx_ch;
|
|
enum dma_data_direction dma_data_dir = DMA_FROM_DEVICE;
|
|
enum dma_transfer_direction dma_transfer_dir = DMA_DEV_TO_MEM;
|
|
int eccsteps = chip->ecc.steps;
|
|
int eccsize = chip->ecc.size;
|
|
unsigned long timeout = msecs_to_jiffies(FMC2_TIMEOUT_MS);
|
|
const u8 *p = buf;
|
|
int s, ret;
|
|
|
|
/* Configure DMA data */
|
|
if (write_data) {
|
|
dma_data_dir = DMA_TO_DEVICE;
|
|
dma_transfer_dir = DMA_MEM_TO_DEV;
|
|
dma_ch = nfc->dma_tx_ch;
|
|
}
|
|
|
|
for_each_sg(nfc->dma_data_sg.sgl, sg, eccsteps, s) {
|
|
sg_set_buf(sg, p, eccsize);
|
|
p += eccsize;
|
|
}
|
|
|
|
ret = dma_map_sg(nfc->dev, nfc->dma_data_sg.sgl,
|
|
eccsteps, dma_data_dir);
|
|
if (!ret)
|
|
return -EIO;
|
|
|
|
desc_data = dmaengine_prep_slave_sg(dma_ch, nfc->dma_data_sg.sgl,
|
|
eccsteps, dma_transfer_dir,
|
|
DMA_PREP_INTERRUPT);
|
|
if (!desc_data) {
|
|
ret = -ENOMEM;
|
|
goto err_unmap_data;
|
|
}
|
|
|
|
reinit_completion(&nfc->dma_data_complete);
|
|
reinit_completion(&nfc->complete);
|
|
desc_data->callback = stm32_fmc2_nfc_dma_callback;
|
|
desc_data->callback_param = &nfc->dma_data_complete;
|
|
ret = dma_submit_error(dmaengine_submit(desc_data));
|
|
if (ret)
|
|
goto err_unmap_data;
|
|
|
|
dma_async_issue_pending(dma_ch);
|
|
|
|
if (!write_data && !raw) {
|
|
/* Configure DMA ECC status */
|
|
p = nfc->ecc_buf;
|
|
for_each_sg(nfc->dma_ecc_sg.sgl, sg, eccsteps, s) {
|
|
sg_set_buf(sg, p, nfc->dma_ecc_len);
|
|
p += nfc->dma_ecc_len;
|
|
}
|
|
|
|
ret = dma_map_sg(nfc->dev, nfc->dma_ecc_sg.sgl,
|
|
eccsteps, dma_data_dir);
|
|
if (!ret) {
|
|
ret = -EIO;
|
|
goto err_unmap_data;
|
|
}
|
|
|
|
desc_ecc = dmaengine_prep_slave_sg(nfc->dma_ecc_ch,
|
|
nfc->dma_ecc_sg.sgl,
|
|
eccsteps, dma_transfer_dir,
|
|
DMA_PREP_INTERRUPT);
|
|
if (!desc_ecc) {
|
|
ret = -ENOMEM;
|
|
goto err_unmap_ecc;
|
|
}
|
|
|
|
reinit_completion(&nfc->dma_ecc_complete);
|
|
desc_ecc->callback = stm32_fmc2_nfc_dma_callback;
|
|
desc_ecc->callback_param = &nfc->dma_ecc_complete;
|
|
ret = dma_submit_error(dmaengine_submit(desc_ecc));
|
|
if (ret)
|
|
goto err_unmap_ecc;
|
|
|
|
dma_async_issue_pending(nfc->dma_ecc_ch);
|
|
}
|
|
|
|
stm32_fmc2_nfc_clear_seq_irq(nfc);
|
|
stm32_fmc2_nfc_enable_seq_irq(nfc);
|
|
|
|
/* Start the transfer */
|
|
regmap_update_bits(nfc->regmap, FMC2_CSQCR,
|
|
FMC2_CSQCR_CSQSTART, FMC2_CSQCR_CSQSTART);
|
|
|
|
/* Wait end of sequencer transfer */
|
|
if (!wait_for_completion_timeout(&nfc->complete, timeout)) {
|
|
dev_err(nfc->dev, "seq timeout\n");
|
|
stm32_fmc2_nfc_disable_seq_irq(nfc);
|
|
dmaengine_terminate_all(dma_ch);
|
|
if (!write_data && !raw)
|
|
dmaengine_terminate_all(nfc->dma_ecc_ch);
|
|
ret = -ETIMEDOUT;
|
|
goto err_unmap_ecc;
|
|
}
|
|
|
|
/* Wait DMA data transfer completion */
|
|
if (!wait_for_completion_timeout(&nfc->dma_data_complete, timeout)) {
|
|
dev_err(nfc->dev, "data DMA timeout\n");
|
|
dmaengine_terminate_all(dma_ch);
|
|
ret = -ETIMEDOUT;
|
|
}
|
|
|
|
/* Wait DMA ECC transfer completion */
|
|
if (!write_data && !raw) {
|
|
if (!wait_for_completion_timeout(&nfc->dma_ecc_complete,
|
|
timeout)) {
|
|
dev_err(nfc->dev, "ECC DMA timeout\n");
|
|
dmaengine_terminate_all(nfc->dma_ecc_ch);
|
|
ret = -ETIMEDOUT;
|
|
}
|
|
}
|
|
|
|
err_unmap_ecc:
|
|
if (!write_data && !raw)
|
|
dma_unmap_sg(nfc->dev, nfc->dma_ecc_sg.sgl,
|
|
eccsteps, dma_data_dir);
|
|
|
|
err_unmap_data:
|
|
dma_unmap_sg(nfc->dev, nfc->dma_data_sg.sgl, eccsteps, dma_data_dir);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int stm32_fmc2_nfc_seq_write(struct nand_chip *chip, const u8 *buf,
|
|
int oob_required, int page, int raw)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int ret;
|
|
|
|
/* Configure the sequencer */
|
|
stm32_fmc2_nfc_rw_page_init(chip, page, raw, true);
|
|
|
|
/* Write the page */
|
|
ret = stm32_fmc2_nfc_xfer(chip, buf, raw, true);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Write oob */
|
|
if (oob_required) {
|
|
ret = nand_change_write_column_op(chip, mtd->writesize,
|
|
chip->oob_poi, mtd->oobsize,
|
|
false);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return nand_prog_page_end_op(chip);
|
|
}
|
|
|
|
static int stm32_fmc2_nfc_seq_write_page(struct nand_chip *chip, const u8 *buf,
|
|
int oob_required, int page)
|
|
{
|
|
int ret;
|
|
|
|
ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return stm32_fmc2_nfc_seq_write(chip, buf, oob_required, page, false);
|
|
}
|
|
|
|
static int stm32_fmc2_nfc_seq_write_page_raw(struct nand_chip *chip,
|
|
const u8 *buf, int oob_required,
|
|
int page)
|
|
{
|
|
int ret;
|
|
|
|
ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return stm32_fmc2_nfc_seq_write(chip, buf, oob_required, page, true);
|
|
}
|
|
|
|
/* Get a status indicating which sectors have errors */
|
|
static u16 stm32_fmc2_nfc_get_mapping_status(struct stm32_fmc2_nfc *nfc)
|
|
{
|
|
u32 csqemsr;
|
|
|
|
regmap_read(nfc->regmap, FMC2_CSQEMSR, &csqemsr);
|
|
|
|
return FIELD_GET(FMC2_CSQEMSR_SEM, csqemsr);
|
|
}
|
|
|
|
static int stm32_fmc2_nfc_seq_correct(struct nand_chip *chip, u8 *dat,
|
|
u8 *read_ecc, u8 *calc_ecc)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
|
|
int eccbytes = chip->ecc.bytes;
|
|
int eccsteps = chip->ecc.steps;
|
|
int eccstrength = chip->ecc.strength;
|
|
int i, s, eccsize = chip->ecc.size;
|
|
u32 *ecc_sta = (u32 *)nfc->ecc_buf;
|
|
u16 sta_map = stm32_fmc2_nfc_get_mapping_status(nfc);
|
|
unsigned int max_bitflips = 0;
|
|
|
|
for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, dat += eccsize) {
|
|
int stat = 0;
|
|
|
|
if (eccstrength == FMC2_ECC_HAM) {
|
|
/* Ecc_sta = FMC2_HECCR */
|
|
if (sta_map & BIT(s)) {
|
|
stm32_fmc2_nfc_ham_set_ecc(*ecc_sta,
|
|
&calc_ecc[i]);
|
|
stat = stm32_fmc2_nfc_ham_correct(chip, dat,
|
|
&read_ecc[i],
|
|
&calc_ecc[i]);
|
|
}
|
|
ecc_sta++;
|
|
} else {
|
|
/*
|
|
* Ecc_sta[0] = FMC2_BCHDSR0
|
|
* Ecc_sta[1] = FMC2_BCHDSR1
|
|
* Ecc_sta[2] = FMC2_BCHDSR2
|
|
* Ecc_sta[3] = FMC2_BCHDSR3
|
|
* Ecc_sta[4] = FMC2_BCHDSR4
|
|
*/
|
|
if (sta_map & BIT(s))
|
|
stat = stm32_fmc2_nfc_bch_decode(eccsize, dat,
|
|
ecc_sta);
|
|
ecc_sta += 5;
|
|
}
|
|
|
|
if (stat == -EBADMSG)
|
|
/* Check for empty pages with bitflips */
|
|
stat = nand_check_erased_ecc_chunk(dat, eccsize,
|
|
&read_ecc[i],
|
|
eccbytes,
|
|
NULL, 0,
|
|
eccstrength);
|
|
|
|
if (stat < 0) {
|
|
mtd->ecc_stats.failed++;
|
|
} else {
|
|
mtd->ecc_stats.corrected += stat;
|
|
max_bitflips = max_t(unsigned int, max_bitflips, stat);
|
|
}
|
|
}
|
|
|
|
return max_bitflips;
|
|
}
|
|
|
|
static int stm32_fmc2_nfc_seq_read_page(struct nand_chip *chip, u8 *buf,
|
|
int oob_required, int page)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
|
|
u8 *ecc_calc = chip->ecc.calc_buf;
|
|
u8 *ecc_code = chip->ecc.code_buf;
|
|
u16 sta_map;
|
|
int ret;
|
|
|
|
ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Configure the sequencer */
|
|
stm32_fmc2_nfc_rw_page_init(chip, page, 0, false);
|
|
|
|
/* Read the page */
|
|
ret = stm32_fmc2_nfc_xfer(chip, buf, 0, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
sta_map = stm32_fmc2_nfc_get_mapping_status(nfc);
|
|
|
|
/* Check if errors happen */
|
|
if (likely(!sta_map)) {
|
|
if (oob_required)
|
|
return nand_change_read_column_op(chip, mtd->writesize,
|
|
chip->oob_poi,
|
|
mtd->oobsize, false);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Read oob */
|
|
ret = nand_change_read_column_op(chip, mtd->writesize,
|
|
chip->oob_poi, mtd->oobsize, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
|
|
chip->ecc.total);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Correct data */
|
|
return chip->ecc.correct(chip, buf, ecc_code, ecc_calc);
|
|
}
|
|
|
|
static int stm32_fmc2_nfc_seq_read_page_raw(struct nand_chip *chip, u8 *buf,
|
|
int oob_required, int page)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int ret;
|
|
|
|
ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Configure the sequencer */
|
|
stm32_fmc2_nfc_rw_page_init(chip, page, 1, false);
|
|
|
|
/* Read the page */
|
|
ret = stm32_fmc2_nfc_xfer(chip, buf, 1, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Read oob */
|
|
if (oob_required)
|
|
return nand_change_read_column_op(chip, mtd->writesize,
|
|
chip->oob_poi, mtd->oobsize,
|
|
false);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static irqreturn_t stm32_fmc2_nfc_irq(int irq, void *dev_id)
|
|
{
|
|
struct stm32_fmc2_nfc *nfc = (struct stm32_fmc2_nfc *)dev_id;
|
|
|
|
if (nfc->irq_state == FMC2_IRQ_SEQ)
|
|
/* Sequencer is used */
|
|
stm32_fmc2_nfc_disable_seq_irq(nfc);
|
|
else if (nfc->irq_state == FMC2_IRQ_BCH)
|
|
/* BCH is used */
|
|
stm32_fmc2_nfc_disable_bch_irq(nfc);
|
|
|
|
complete(&nfc->complete);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static void stm32_fmc2_nfc_read_data(struct nand_chip *chip, void *buf,
|
|
unsigned int len, bool force_8bit)
|
|
{
|
|
struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
|
|
void __iomem *io_addr_r = nfc->data_base[nfc->cs_sel];
|
|
|
|
if (force_8bit && chip->options & NAND_BUSWIDTH_16)
|
|
/* Reconfigure bus width to 8-bit */
|
|
stm32_fmc2_nfc_set_buswidth_16(nfc, false);
|
|
|
|
if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) {
|
|
if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) {
|
|
*(u8 *)buf = readb_relaxed(io_addr_r);
|
|
buf += sizeof(u8);
|
|
len -= sizeof(u8);
|
|
}
|
|
|
|
if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
|
|
len >= sizeof(u16)) {
|
|
*(u16 *)buf = readw_relaxed(io_addr_r);
|
|
buf += sizeof(u16);
|
|
len -= sizeof(u16);
|
|
}
|
|
}
|
|
|
|
/* Buf is aligned */
|
|
while (len >= sizeof(u32)) {
|
|
*(u32 *)buf = readl_relaxed(io_addr_r);
|
|
buf += sizeof(u32);
|
|
len -= sizeof(u32);
|
|
}
|
|
|
|
/* Read remaining bytes */
|
|
if (len >= sizeof(u16)) {
|
|
*(u16 *)buf = readw_relaxed(io_addr_r);
|
|
buf += sizeof(u16);
|
|
len -= sizeof(u16);
|
|
}
|
|
|
|
if (len)
|
|
*(u8 *)buf = readb_relaxed(io_addr_r);
|
|
|
|
if (force_8bit && chip->options & NAND_BUSWIDTH_16)
|
|
/* Reconfigure bus width to 16-bit */
|
|
stm32_fmc2_nfc_set_buswidth_16(nfc, true);
|
|
}
|
|
|
|
static void stm32_fmc2_nfc_write_data(struct nand_chip *chip, const void *buf,
|
|
unsigned int len, bool force_8bit)
|
|
{
|
|
struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
|
|
void __iomem *io_addr_w = nfc->data_base[nfc->cs_sel];
|
|
|
|
if (force_8bit && chip->options & NAND_BUSWIDTH_16)
|
|
/* Reconfigure bus width to 8-bit */
|
|
stm32_fmc2_nfc_set_buswidth_16(nfc, false);
|
|
|
|
if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) {
|
|
if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) {
|
|
writeb_relaxed(*(u8 *)buf, io_addr_w);
|
|
buf += sizeof(u8);
|
|
len -= sizeof(u8);
|
|
}
|
|
|
|
if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
|
|
len >= sizeof(u16)) {
|
|
writew_relaxed(*(u16 *)buf, io_addr_w);
|
|
buf += sizeof(u16);
|
|
len -= sizeof(u16);
|
|
}
|
|
}
|
|
|
|
/* Buf is aligned */
|
|
while (len >= sizeof(u32)) {
|
|
writel_relaxed(*(u32 *)buf, io_addr_w);
|
|
buf += sizeof(u32);
|
|
len -= sizeof(u32);
|
|
}
|
|
|
|
/* Write remaining bytes */
|
|
if (len >= sizeof(u16)) {
|
|
writew_relaxed(*(u16 *)buf, io_addr_w);
|
|
buf += sizeof(u16);
|
|
len -= sizeof(u16);
|
|
}
|
|
|
|
if (len)
|
|
writeb_relaxed(*(u8 *)buf, io_addr_w);
|
|
|
|
if (force_8bit && chip->options & NAND_BUSWIDTH_16)
|
|
/* Reconfigure bus width to 16-bit */
|
|
stm32_fmc2_nfc_set_buswidth_16(nfc, true);
|
|
}
|
|
|
|
static int stm32_fmc2_nfc_waitrdy(struct nand_chip *chip,
|
|
unsigned long timeout_ms)
|
|
{
|
|
struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
|
|
const struct nand_sdr_timings *timings;
|
|
u32 isr, sr;
|
|
|
|
/* Check if there is no pending requests to the NAND flash */
|
|
if (regmap_read_poll_timeout(nfc->regmap, FMC2_SR, sr,
|
|
sr & FMC2_SR_NWRF, 1,
|
|
1000 * FMC2_TIMEOUT_MS))
|
|
dev_warn(nfc->dev, "Waitrdy timeout\n");
|
|
|
|
/* Wait tWB before R/B# signal is low */
|
|
timings = nand_get_sdr_timings(nand_get_interface_config(chip));
|
|
ndelay(PSEC_TO_NSEC(timings->tWB_max));
|
|
|
|
/* R/B# signal is low, clear high level flag */
|
|
regmap_write(nfc->regmap, FMC2_ICR, FMC2_ICR_CIHLF);
|
|
|
|
/* Wait R/B# signal is high */
|
|
return regmap_read_poll_timeout(nfc->regmap, FMC2_ISR, isr,
|
|
isr & FMC2_ISR_IHLF, 5,
|
|
1000 * FMC2_TIMEOUT_MS);
|
|
}
|
|
|
|
static int stm32_fmc2_nfc_exec_op(struct nand_chip *chip,
|
|
const struct nand_operation *op,
|
|
bool check_only)
|
|
{
|
|
struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
|
|
const struct nand_op_instr *instr = NULL;
|
|
unsigned int op_id, i, timeout;
|
|
int ret;
|
|
|
|
if (check_only)
|
|
return 0;
|
|
|
|
ret = stm32_fmc2_nfc_select_chip(chip, op->cs);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (op_id = 0; op_id < op->ninstrs; op_id++) {
|
|
instr = &op->instrs[op_id];
|
|
|
|
switch (instr->type) {
|
|
case NAND_OP_CMD_INSTR:
|
|
writeb_relaxed(instr->ctx.cmd.opcode,
|
|
nfc->cmd_base[nfc->cs_sel]);
|
|
break;
|
|
|
|
case NAND_OP_ADDR_INSTR:
|
|
for (i = 0; i < instr->ctx.addr.naddrs; i++)
|
|
writeb_relaxed(instr->ctx.addr.addrs[i],
|
|
nfc->addr_base[nfc->cs_sel]);
|
|
break;
|
|
|
|
case NAND_OP_DATA_IN_INSTR:
|
|
stm32_fmc2_nfc_read_data(chip, instr->ctx.data.buf.in,
|
|
instr->ctx.data.len,
|
|
instr->ctx.data.force_8bit);
|
|
break;
|
|
|
|
case NAND_OP_DATA_OUT_INSTR:
|
|
stm32_fmc2_nfc_write_data(chip, instr->ctx.data.buf.out,
|
|
instr->ctx.data.len,
|
|
instr->ctx.data.force_8bit);
|
|
break;
|
|
|
|
case NAND_OP_WAITRDY_INSTR:
|
|
timeout = instr->ctx.waitrdy.timeout_ms;
|
|
ret = stm32_fmc2_nfc_waitrdy(chip, timeout);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void stm32_fmc2_nfc_init(struct stm32_fmc2_nfc *nfc)
|
|
{
|
|
u32 pcr;
|
|
|
|
regmap_read(nfc->regmap, FMC2_PCR, &pcr);
|
|
|
|
/* Set CS used to undefined */
|
|
nfc->cs_sel = -1;
|
|
|
|
/* Enable wait feature and nand flash memory bank */
|
|
pcr |= FMC2_PCR_PWAITEN;
|
|
pcr |= FMC2_PCR_PBKEN;
|
|
|
|
/* Set buswidth to 8 bits mode for identification */
|
|
pcr &= ~FMC2_PCR_PWID;
|
|
|
|
/* ECC logic is disabled */
|
|
pcr &= ~FMC2_PCR_ECCEN;
|
|
|
|
/* Default mode */
|
|
pcr &= ~FMC2_PCR_ECCALG;
|
|
pcr &= ~FMC2_PCR_BCHECC;
|
|
pcr &= ~FMC2_PCR_WEN;
|
|
|
|
/* Set default ECC sector size */
|
|
pcr &= ~FMC2_PCR_ECCSS;
|
|
pcr |= FIELD_PREP(FMC2_PCR_ECCSS, FMC2_PCR_ECCSS_2048);
|
|
|
|
/* Set default tclr/tar timings */
|
|
pcr &= ~FMC2_PCR_TCLR;
|
|
pcr |= FIELD_PREP(FMC2_PCR_TCLR, FMC2_PCR_TCLR_DEFAULT);
|
|
pcr &= ~FMC2_PCR_TAR;
|
|
pcr |= FIELD_PREP(FMC2_PCR_TAR, FMC2_PCR_TAR_DEFAULT);
|
|
|
|
/* Enable FMC2 controller */
|
|
if (nfc->dev == nfc->cdev)
|
|
regmap_update_bits(nfc->regmap, FMC2_BCR1,
|
|
FMC2_BCR1_FMC2EN, FMC2_BCR1_FMC2EN);
|
|
|
|
regmap_write(nfc->regmap, FMC2_PCR, pcr);
|
|
regmap_write(nfc->regmap, FMC2_PMEM, FMC2_PMEM_DEFAULT);
|
|
regmap_write(nfc->regmap, FMC2_PATT, FMC2_PATT_DEFAULT);
|
|
}
|
|
|
|
static void stm32_fmc2_nfc_calc_timings(struct nand_chip *chip,
|
|
const struct nand_sdr_timings *sdrt)
|
|
{
|
|
struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
|
|
struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
|
|
struct stm32_fmc2_timings *tims = &nand->timings;
|
|
unsigned long hclk = clk_get_rate(nfc->clk);
|
|
unsigned long hclkp = NSEC_PER_SEC / (hclk / 1000);
|
|
unsigned long timing, tar, tclr, thiz, twait;
|
|
unsigned long tset_mem, tset_att, thold_mem, thold_att;
|
|
|
|
tar = max_t(unsigned long, hclkp, sdrt->tAR_min);
|
|
timing = DIV_ROUND_UP(tar, hclkp) - 1;
|
|
tims->tar = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
|
|
|
|
tclr = max_t(unsigned long, hclkp, sdrt->tCLR_min);
|
|
timing = DIV_ROUND_UP(tclr, hclkp) - 1;
|
|
tims->tclr = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
|
|
|
|
tims->thiz = FMC2_THIZ;
|
|
thiz = (tims->thiz + 1) * hclkp;
|
|
|
|
/*
|
|
* tWAIT > tRP
|
|
* tWAIT > tWP
|
|
* tWAIT > tREA + tIO
|
|
*/
|
|
twait = max_t(unsigned long, hclkp, sdrt->tRP_min);
|
|
twait = max_t(unsigned long, twait, sdrt->tWP_min);
|
|
twait = max_t(unsigned long, twait, sdrt->tREA_max + FMC2_TIO);
|
|
timing = DIV_ROUND_UP(twait, hclkp);
|
|
tims->twait = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
|
|
|
|
/*
|
|
* tSETUP_MEM > tCS - tWAIT
|
|
* tSETUP_MEM > tALS - tWAIT
|
|
* tSETUP_MEM > tDS - (tWAIT - tHIZ)
|
|
*/
|
|
tset_mem = hclkp;
|
|
if (sdrt->tCS_min > twait && (tset_mem < sdrt->tCS_min - twait))
|
|
tset_mem = sdrt->tCS_min - twait;
|
|
if (sdrt->tALS_min > twait && (tset_mem < sdrt->tALS_min - twait))
|
|
tset_mem = sdrt->tALS_min - twait;
|
|
if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
|
|
(tset_mem < sdrt->tDS_min - (twait - thiz)))
|
|
tset_mem = sdrt->tDS_min - (twait - thiz);
|
|
timing = DIV_ROUND_UP(tset_mem, hclkp);
|
|
tims->tset_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
|
|
|
|
/*
|
|
* tHOLD_MEM > tCH
|
|
* tHOLD_MEM > tREH - tSETUP_MEM
|
|
* tHOLD_MEM > max(tRC, tWC) - (tSETUP_MEM + tWAIT)
|
|
*/
|
|
thold_mem = max_t(unsigned long, hclkp, sdrt->tCH_min);
|
|
if (sdrt->tREH_min > tset_mem &&
|
|
(thold_mem < sdrt->tREH_min - tset_mem))
|
|
thold_mem = sdrt->tREH_min - tset_mem;
|
|
if ((sdrt->tRC_min > tset_mem + twait) &&
|
|
(thold_mem < sdrt->tRC_min - (tset_mem + twait)))
|
|
thold_mem = sdrt->tRC_min - (tset_mem + twait);
|
|
if ((sdrt->tWC_min > tset_mem + twait) &&
|
|
(thold_mem < sdrt->tWC_min - (tset_mem + twait)))
|
|
thold_mem = sdrt->tWC_min - (tset_mem + twait);
|
|
timing = DIV_ROUND_UP(thold_mem, hclkp);
|
|
tims->thold_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
|
|
|
|
/*
|
|
* tSETUP_ATT > tCS - tWAIT
|
|
* tSETUP_ATT > tCLS - tWAIT
|
|
* tSETUP_ATT > tALS - tWAIT
|
|
* tSETUP_ATT > tRHW - tHOLD_MEM
|
|
* tSETUP_ATT > tDS - (tWAIT - tHIZ)
|
|
*/
|
|
tset_att = hclkp;
|
|
if (sdrt->tCS_min > twait && (tset_att < sdrt->tCS_min - twait))
|
|
tset_att = sdrt->tCS_min - twait;
|
|
if (sdrt->tCLS_min > twait && (tset_att < sdrt->tCLS_min - twait))
|
|
tset_att = sdrt->tCLS_min - twait;
|
|
if (sdrt->tALS_min > twait && (tset_att < sdrt->tALS_min - twait))
|
|
tset_att = sdrt->tALS_min - twait;
|
|
if (sdrt->tRHW_min > thold_mem &&
|
|
(tset_att < sdrt->tRHW_min - thold_mem))
|
|
tset_att = sdrt->tRHW_min - thold_mem;
|
|
if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
|
|
(tset_att < sdrt->tDS_min - (twait - thiz)))
|
|
tset_att = sdrt->tDS_min - (twait - thiz);
|
|
timing = DIV_ROUND_UP(tset_att, hclkp);
|
|
tims->tset_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
|
|
|
|
/*
|
|
* tHOLD_ATT > tALH
|
|
* tHOLD_ATT > tCH
|
|
* tHOLD_ATT > tCLH
|
|
* tHOLD_ATT > tCOH
|
|
* tHOLD_ATT > tDH
|
|
* tHOLD_ATT > tWB + tIO + tSYNC - tSETUP_MEM
|
|
* tHOLD_ATT > tADL - tSETUP_MEM
|
|
* tHOLD_ATT > tWH - tSETUP_MEM
|
|
* tHOLD_ATT > tWHR - tSETUP_MEM
|
|
* tHOLD_ATT > tRC - (tSETUP_ATT + tWAIT)
|
|
* tHOLD_ATT > tWC - (tSETUP_ATT + tWAIT)
|
|
*/
|
|
thold_att = max_t(unsigned long, hclkp, sdrt->tALH_min);
|
|
thold_att = max_t(unsigned long, thold_att, sdrt->tCH_min);
|
|
thold_att = max_t(unsigned long, thold_att, sdrt->tCLH_min);
|
|
thold_att = max_t(unsigned long, thold_att, sdrt->tCOH_min);
|
|
thold_att = max_t(unsigned long, thold_att, sdrt->tDH_min);
|
|
if ((sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC > tset_mem) &&
|
|
(thold_att < sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem))
|
|
thold_att = sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem;
|
|
if (sdrt->tADL_min > tset_mem &&
|
|
(thold_att < sdrt->tADL_min - tset_mem))
|
|
thold_att = sdrt->tADL_min - tset_mem;
|
|
if (sdrt->tWH_min > tset_mem &&
|
|
(thold_att < sdrt->tWH_min - tset_mem))
|
|
thold_att = sdrt->tWH_min - tset_mem;
|
|
if (sdrt->tWHR_min > tset_mem &&
|
|
(thold_att < sdrt->tWHR_min - tset_mem))
|
|
thold_att = sdrt->tWHR_min - tset_mem;
|
|
if ((sdrt->tRC_min > tset_att + twait) &&
|
|
(thold_att < sdrt->tRC_min - (tset_att + twait)))
|
|
thold_att = sdrt->tRC_min - (tset_att + twait);
|
|
if ((sdrt->tWC_min > tset_att + twait) &&
|
|
(thold_att < sdrt->tWC_min - (tset_att + twait)))
|
|
thold_att = sdrt->tWC_min - (tset_att + twait);
|
|
timing = DIV_ROUND_UP(thold_att, hclkp);
|
|
tims->thold_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
|
|
}
|
|
|
|
static int stm32_fmc2_nfc_setup_interface(struct nand_chip *chip, int chipnr,
|
|
const struct nand_interface_config *conf)
|
|
{
|
|
const struct nand_sdr_timings *sdrt;
|
|
|
|
sdrt = nand_get_sdr_timings(conf);
|
|
if (IS_ERR(sdrt))
|
|
return PTR_ERR(sdrt);
|
|
|
|
if (conf->timings.mode > 3)
|
|
return -EOPNOTSUPP;
|
|
|
|
if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
|
|
return 0;
|
|
|
|
stm32_fmc2_nfc_calc_timings(chip, sdrt);
|
|
stm32_fmc2_nfc_timings_init(chip);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stm32_fmc2_nfc_dma_setup(struct stm32_fmc2_nfc *nfc)
|
|
{
|
|
int ret = 0;
|
|
|
|
nfc->dma_tx_ch = dma_request_chan(nfc->dev, "tx");
|
|
if (IS_ERR(nfc->dma_tx_ch)) {
|
|
ret = PTR_ERR(nfc->dma_tx_ch);
|
|
if (ret != -ENODEV && ret != -EPROBE_DEFER)
|
|
dev_err(nfc->dev,
|
|
"failed to request tx DMA channel: %d\n", ret);
|
|
nfc->dma_tx_ch = NULL;
|
|
goto err_dma;
|
|
}
|
|
|
|
nfc->dma_rx_ch = dma_request_chan(nfc->dev, "rx");
|
|
if (IS_ERR(nfc->dma_rx_ch)) {
|
|
ret = PTR_ERR(nfc->dma_rx_ch);
|
|
if (ret != -ENODEV && ret != -EPROBE_DEFER)
|
|
dev_err(nfc->dev,
|
|
"failed to request rx DMA channel: %d\n", ret);
|
|
nfc->dma_rx_ch = NULL;
|
|
goto err_dma;
|
|
}
|
|
|
|
nfc->dma_ecc_ch = dma_request_chan(nfc->dev, "ecc");
|
|
if (IS_ERR(nfc->dma_ecc_ch)) {
|
|
ret = PTR_ERR(nfc->dma_ecc_ch);
|
|
if (ret != -ENODEV && ret != -EPROBE_DEFER)
|
|
dev_err(nfc->dev,
|
|
"failed to request ecc DMA channel: %d\n", ret);
|
|
nfc->dma_ecc_ch = NULL;
|
|
goto err_dma;
|
|
}
|
|
|
|
ret = sg_alloc_table(&nfc->dma_ecc_sg, FMC2_MAX_SG, GFP_KERNEL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Allocate a buffer to store ECC status registers */
|
|
nfc->ecc_buf = devm_kzalloc(nfc->dev, FMC2_MAX_ECC_BUF_LEN, GFP_KERNEL);
|
|
if (!nfc->ecc_buf)
|
|
return -ENOMEM;
|
|
|
|
ret = sg_alloc_table(&nfc->dma_data_sg, FMC2_MAX_SG, GFP_KERNEL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
init_completion(&nfc->dma_data_complete);
|
|
init_completion(&nfc->dma_ecc_complete);
|
|
|
|
return 0;
|
|
|
|
err_dma:
|
|
if (ret == -ENODEV) {
|
|
dev_warn(nfc->dev,
|
|
"DMAs not defined in the DT, polling mode is used\n");
|
|
ret = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void stm32_fmc2_nfc_nand_callbacks_setup(struct nand_chip *chip)
|
|
{
|
|
struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
|
|
|
|
/*
|
|
* Specific callbacks to read/write a page depending on
|
|
* the mode (polling/sequencer) and the algo used (Hamming, BCH).
|
|
*/
|
|
if (nfc->dma_tx_ch && nfc->dma_rx_ch && nfc->dma_ecc_ch) {
|
|
/* DMA => use sequencer mode callbacks */
|
|
chip->ecc.correct = stm32_fmc2_nfc_seq_correct;
|
|
chip->ecc.write_page = stm32_fmc2_nfc_seq_write_page;
|
|
chip->ecc.read_page = stm32_fmc2_nfc_seq_read_page;
|
|
chip->ecc.write_page_raw = stm32_fmc2_nfc_seq_write_page_raw;
|
|
chip->ecc.read_page_raw = stm32_fmc2_nfc_seq_read_page_raw;
|
|
} else {
|
|
/* No DMA => use polling mode callbacks */
|
|
chip->ecc.hwctl = stm32_fmc2_nfc_hwctl;
|
|
if (chip->ecc.strength == FMC2_ECC_HAM) {
|
|
/* Hamming is used */
|
|
chip->ecc.calculate = stm32_fmc2_nfc_ham_calculate;
|
|
chip->ecc.correct = stm32_fmc2_nfc_ham_correct;
|
|
chip->ecc.options |= NAND_ECC_GENERIC_ERASED_CHECK;
|
|
} else {
|
|
/* BCH is used */
|
|
chip->ecc.calculate = stm32_fmc2_nfc_bch_calculate;
|
|
chip->ecc.correct = stm32_fmc2_nfc_bch_correct;
|
|
chip->ecc.read_page = stm32_fmc2_nfc_read_page;
|
|
}
|
|
}
|
|
|
|
/* Specific configurations depending on the algo used */
|
|
if (chip->ecc.strength == FMC2_ECC_HAM)
|
|
chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 4 : 3;
|
|
else if (chip->ecc.strength == FMC2_ECC_BCH8)
|
|
chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 14 : 13;
|
|
else
|
|
chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 8 : 7;
|
|
}
|
|
|
|
static int stm32_fmc2_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct nand_ecc_ctrl *ecc = &chip->ecc;
|
|
|
|
if (section)
|
|
return -ERANGE;
|
|
|
|
oobregion->length = ecc->total;
|
|
oobregion->offset = FMC2_BBM_LEN;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stm32_fmc2_nfc_ooblayout_free(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct nand_ecc_ctrl *ecc = &chip->ecc;
|
|
|
|
if (section)
|
|
return -ERANGE;
|
|
|
|
oobregion->length = mtd->oobsize - ecc->total - FMC2_BBM_LEN;
|
|
oobregion->offset = ecc->total + FMC2_BBM_LEN;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct mtd_ooblayout_ops stm32_fmc2_nfc_ooblayout_ops = {
|
|
.ecc = stm32_fmc2_nfc_ooblayout_ecc,
|
|
.free = stm32_fmc2_nfc_ooblayout_free,
|
|
};
|
|
|
|
static int stm32_fmc2_nfc_calc_ecc_bytes(int step_size, int strength)
|
|
{
|
|
/* Hamming */
|
|
if (strength == FMC2_ECC_HAM)
|
|
return 4;
|
|
|
|
/* BCH8 */
|
|
if (strength == FMC2_ECC_BCH8)
|
|
return 14;
|
|
|
|
/* BCH4 */
|
|
return 8;
|
|
}
|
|
|
|
NAND_ECC_CAPS_SINGLE(stm32_fmc2_nfc_ecc_caps, stm32_fmc2_nfc_calc_ecc_bytes,
|
|
FMC2_ECC_STEP_SIZE,
|
|
FMC2_ECC_HAM, FMC2_ECC_BCH4, FMC2_ECC_BCH8);
|
|
|
|
static int stm32_fmc2_nfc_attach_chip(struct nand_chip *chip)
|
|
{
|
|
struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int ret;
|
|
|
|
/*
|
|
* Only NAND_ECC_ENGINE_TYPE_ON_HOST mode is actually supported
|
|
* Hamming => ecc.strength = 1
|
|
* BCH4 => ecc.strength = 4
|
|
* BCH8 => ecc.strength = 8
|
|
* ECC sector size = 512
|
|
*/
|
|
if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) {
|
|
dev_err(nfc->dev,
|
|
"nand_ecc_engine_type is not well defined in the DT\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Default ECC settings in case they are not set in the device tree */
|
|
if (!chip->ecc.size)
|
|
chip->ecc.size = FMC2_ECC_STEP_SIZE;
|
|
|
|
if (!chip->ecc.strength)
|
|
chip->ecc.strength = FMC2_ECC_BCH8;
|
|
|
|
ret = nand_ecc_choose_conf(chip, &stm32_fmc2_nfc_ecc_caps,
|
|
mtd->oobsize - FMC2_BBM_LEN);
|
|
if (ret) {
|
|
dev_err(nfc->dev, "no valid ECC settings set\n");
|
|
return ret;
|
|
}
|
|
|
|
if (mtd->writesize / chip->ecc.size > FMC2_MAX_SG) {
|
|
dev_err(nfc->dev, "nand page size is not supported\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (chip->bbt_options & NAND_BBT_USE_FLASH)
|
|
chip->bbt_options |= NAND_BBT_NO_OOB;
|
|
|
|
stm32_fmc2_nfc_nand_callbacks_setup(chip);
|
|
|
|
mtd_set_ooblayout(mtd, &stm32_fmc2_nfc_ooblayout_ops);
|
|
|
|
stm32_fmc2_nfc_setup(chip);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct nand_controller_ops stm32_fmc2_nfc_controller_ops = {
|
|
.attach_chip = stm32_fmc2_nfc_attach_chip,
|
|
.exec_op = stm32_fmc2_nfc_exec_op,
|
|
.setup_interface = stm32_fmc2_nfc_setup_interface,
|
|
};
|
|
|
|
static void stm32_fmc2_nfc_wp_enable(struct stm32_fmc2_nand *nand)
|
|
{
|
|
if (nand->wp_gpio)
|
|
gpiod_set_value(nand->wp_gpio, 1);
|
|
}
|
|
|
|
static void stm32_fmc2_nfc_wp_disable(struct stm32_fmc2_nand *nand)
|
|
{
|
|
if (nand->wp_gpio)
|
|
gpiod_set_value(nand->wp_gpio, 0);
|
|
}
|
|
|
|
static int stm32_fmc2_nfc_parse_child(struct stm32_fmc2_nfc *nfc,
|
|
struct device_node *dn)
|
|
{
|
|
struct stm32_fmc2_nand *nand = &nfc->nand;
|
|
u32 cs;
|
|
int ret, i;
|
|
|
|
if (!of_get_property(dn, "reg", &nand->ncs))
|
|
return -EINVAL;
|
|
|
|
nand->ncs /= sizeof(u32);
|
|
if (!nand->ncs) {
|
|
dev_err(nfc->dev, "invalid reg property size\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
for (i = 0; i < nand->ncs; i++) {
|
|
ret = of_property_read_u32_index(dn, "reg", i, &cs);
|
|
if (ret) {
|
|
dev_err(nfc->dev, "could not retrieve reg property: %d\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
|
|
if (cs >= FMC2_MAX_CE) {
|
|
dev_err(nfc->dev, "invalid reg value: %d\n", cs);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (nfc->cs_assigned & BIT(cs)) {
|
|
dev_err(nfc->dev, "cs already assigned: %d\n", cs);
|
|
return -EINVAL;
|
|
}
|
|
|
|
nfc->cs_assigned |= BIT(cs);
|
|
nand->cs_used[i] = cs;
|
|
}
|
|
|
|
nand->wp_gpio = devm_fwnode_gpiod_get(nfc->dev, of_fwnode_handle(dn),
|
|
"wp", GPIOD_OUT_HIGH, "wp");
|
|
if (IS_ERR(nand->wp_gpio)) {
|
|
ret = PTR_ERR(nand->wp_gpio);
|
|
if (ret != -ENOENT)
|
|
return dev_err_probe(nfc->dev, ret,
|
|
"failed to request WP GPIO\n");
|
|
|
|
nand->wp_gpio = NULL;
|
|
}
|
|
|
|
nand_set_flash_node(&nand->chip, dn);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stm32_fmc2_nfc_parse_dt(struct stm32_fmc2_nfc *nfc)
|
|
{
|
|
struct device_node *dn = nfc->dev->of_node;
|
|
struct device_node *child;
|
|
int nchips = of_get_child_count(dn);
|
|
int ret = 0;
|
|
|
|
if (!nchips) {
|
|
dev_err(nfc->dev, "NAND chip not defined\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (nchips > 1) {
|
|
dev_err(nfc->dev, "too many NAND chips defined\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
for_each_child_of_node(dn, child) {
|
|
ret = stm32_fmc2_nfc_parse_child(nfc, child);
|
|
if (ret < 0) {
|
|
of_node_put(child);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int stm32_fmc2_nfc_set_cdev(struct stm32_fmc2_nfc *nfc)
|
|
{
|
|
struct device *dev = nfc->dev;
|
|
bool ebi_found = false;
|
|
|
|
if (dev->parent && of_device_is_compatible(dev->parent->of_node,
|
|
"st,stm32mp1-fmc2-ebi"))
|
|
ebi_found = true;
|
|
|
|
if (of_device_is_compatible(dev->of_node, "st,stm32mp1-fmc2-nfc")) {
|
|
if (ebi_found) {
|
|
nfc->cdev = dev->parent;
|
|
|
|
return 0;
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (ebi_found)
|
|
return -EINVAL;
|
|
|
|
nfc->cdev = dev;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stm32_fmc2_nfc_probe(struct platform_device *pdev)
|
|
{
|
|
struct device *dev = &pdev->dev;
|
|
struct reset_control *rstc;
|
|
struct stm32_fmc2_nfc *nfc;
|
|
struct stm32_fmc2_nand *nand;
|
|
struct resource *res;
|
|
struct mtd_info *mtd;
|
|
struct nand_chip *chip;
|
|
struct resource cres;
|
|
int chip_cs, mem_region, ret, irq;
|
|
int start_region = 0;
|
|
|
|
nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
|
|
if (!nfc)
|
|
return -ENOMEM;
|
|
|
|
nfc->dev = dev;
|
|
nand_controller_init(&nfc->base);
|
|
nfc->base.ops = &stm32_fmc2_nfc_controller_ops;
|
|
|
|
ret = stm32_fmc2_nfc_set_cdev(nfc);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = stm32_fmc2_nfc_parse_dt(nfc);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = of_address_to_resource(nfc->cdev->of_node, 0, &cres);
|
|
if (ret)
|
|
return ret;
|
|
|
|
nfc->io_phys_addr = cres.start;
|
|
|
|
nfc->regmap = device_node_to_regmap(nfc->cdev->of_node);
|
|
if (IS_ERR(nfc->regmap))
|
|
return PTR_ERR(nfc->regmap);
|
|
|
|
if (nfc->dev == nfc->cdev)
|
|
start_region = 1;
|
|
|
|
for (chip_cs = 0, mem_region = start_region; chip_cs < FMC2_MAX_CE;
|
|
chip_cs++, mem_region += 3) {
|
|
if (!(nfc->cs_assigned & BIT(chip_cs)))
|
|
continue;
|
|
|
|
nfc->data_base[chip_cs] = devm_platform_get_and_ioremap_resource(pdev,
|
|
mem_region, &res);
|
|
if (IS_ERR(nfc->data_base[chip_cs]))
|
|
return PTR_ERR(nfc->data_base[chip_cs]);
|
|
|
|
nfc->data_phys_addr[chip_cs] = res->start;
|
|
|
|
nfc->cmd_base[chip_cs] = devm_platform_ioremap_resource(pdev, mem_region + 1);
|
|
if (IS_ERR(nfc->cmd_base[chip_cs]))
|
|
return PTR_ERR(nfc->cmd_base[chip_cs]);
|
|
|
|
nfc->addr_base[chip_cs] = devm_platform_ioremap_resource(pdev, mem_region + 2);
|
|
if (IS_ERR(nfc->addr_base[chip_cs]))
|
|
return PTR_ERR(nfc->addr_base[chip_cs]);
|
|
}
|
|
|
|
irq = platform_get_irq(pdev, 0);
|
|
if (irq < 0)
|
|
return irq;
|
|
|
|
ret = devm_request_irq(dev, irq, stm32_fmc2_nfc_irq, 0,
|
|
dev_name(dev), nfc);
|
|
if (ret) {
|
|
dev_err(dev, "failed to request irq\n");
|
|
return ret;
|
|
}
|
|
|
|
init_completion(&nfc->complete);
|
|
|
|
nfc->clk = devm_clk_get_enabled(nfc->cdev, NULL);
|
|
if (IS_ERR(nfc->clk)) {
|
|
dev_err(dev, "can not get and enable the clock\n");
|
|
return PTR_ERR(nfc->clk);
|
|
}
|
|
|
|
rstc = devm_reset_control_get(dev, NULL);
|
|
if (IS_ERR(rstc)) {
|
|
ret = PTR_ERR(rstc);
|
|
if (ret == -EPROBE_DEFER)
|
|
return ret;
|
|
} else {
|
|
reset_control_assert(rstc);
|
|
reset_control_deassert(rstc);
|
|
}
|
|
|
|
ret = stm32_fmc2_nfc_dma_setup(nfc);
|
|
if (ret)
|
|
goto err_release_dma;
|
|
|
|
stm32_fmc2_nfc_init(nfc);
|
|
|
|
nand = &nfc->nand;
|
|
chip = &nand->chip;
|
|
mtd = nand_to_mtd(chip);
|
|
mtd->dev.parent = dev;
|
|
|
|
chip->controller = &nfc->base;
|
|
chip->options |= NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE |
|
|
NAND_USES_DMA;
|
|
|
|
stm32_fmc2_nfc_wp_disable(nand);
|
|
|
|
/* Scan to find existence of the device */
|
|
ret = nand_scan(chip, nand->ncs);
|
|
if (ret)
|
|
goto err_wp_enable;
|
|
|
|
ret = mtd_device_register(mtd, NULL, 0);
|
|
if (ret)
|
|
goto err_nand_cleanup;
|
|
|
|
platform_set_drvdata(pdev, nfc);
|
|
|
|
return 0;
|
|
|
|
err_nand_cleanup:
|
|
nand_cleanup(chip);
|
|
|
|
err_wp_enable:
|
|
stm32_fmc2_nfc_wp_enable(nand);
|
|
|
|
err_release_dma:
|
|
if (nfc->dma_ecc_ch)
|
|
dma_release_channel(nfc->dma_ecc_ch);
|
|
if (nfc->dma_tx_ch)
|
|
dma_release_channel(nfc->dma_tx_ch);
|
|
if (nfc->dma_rx_ch)
|
|
dma_release_channel(nfc->dma_rx_ch);
|
|
|
|
sg_free_table(&nfc->dma_data_sg);
|
|
sg_free_table(&nfc->dma_ecc_sg);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void stm32_fmc2_nfc_remove(struct platform_device *pdev)
|
|
{
|
|
struct stm32_fmc2_nfc *nfc = platform_get_drvdata(pdev);
|
|
struct stm32_fmc2_nand *nand = &nfc->nand;
|
|
struct nand_chip *chip = &nand->chip;
|
|
int ret;
|
|
|
|
ret = mtd_device_unregister(nand_to_mtd(chip));
|
|
WARN_ON(ret);
|
|
nand_cleanup(chip);
|
|
|
|
if (nfc->dma_ecc_ch)
|
|
dma_release_channel(nfc->dma_ecc_ch);
|
|
if (nfc->dma_tx_ch)
|
|
dma_release_channel(nfc->dma_tx_ch);
|
|
if (nfc->dma_rx_ch)
|
|
dma_release_channel(nfc->dma_rx_ch);
|
|
|
|
sg_free_table(&nfc->dma_data_sg);
|
|
sg_free_table(&nfc->dma_ecc_sg);
|
|
|
|
stm32_fmc2_nfc_wp_enable(nand);
|
|
}
|
|
|
|
static int __maybe_unused stm32_fmc2_nfc_suspend(struct device *dev)
|
|
{
|
|
struct stm32_fmc2_nfc *nfc = dev_get_drvdata(dev);
|
|
struct stm32_fmc2_nand *nand = &nfc->nand;
|
|
|
|
clk_disable_unprepare(nfc->clk);
|
|
|
|
stm32_fmc2_nfc_wp_enable(nand);
|
|
|
|
pinctrl_pm_select_sleep_state(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __maybe_unused stm32_fmc2_nfc_resume(struct device *dev)
|
|
{
|
|
struct stm32_fmc2_nfc *nfc = dev_get_drvdata(dev);
|
|
struct stm32_fmc2_nand *nand = &nfc->nand;
|
|
int chip_cs, ret;
|
|
|
|
pinctrl_pm_select_default_state(dev);
|
|
|
|
ret = clk_prepare_enable(nfc->clk);
|
|
if (ret) {
|
|
dev_err(dev, "can not enable the clock\n");
|
|
return ret;
|
|
}
|
|
|
|
stm32_fmc2_nfc_init(nfc);
|
|
|
|
stm32_fmc2_nfc_wp_disable(nand);
|
|
|
|
for (chip_cs = 0; chip_cs < FMC2_MAX_CE; chip_cs++) {
|
|
if (!(nfc->cs_assigned & BIT(chip_cs)))
|
|
continue;
|
|
|
|
nand_reset(&nand->chip, chip_cs);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static SIMPLE_DEV_PM_OPS(stm32_fmc2_nfc_pm_ops, stm32_fmc2_nfc_suspend,
|
|
stm32_fmc2_nfc_resume);
|
|
|
|
static const struct of_device_id stm32_fmc2_nfc_match[] = {
|
|
{.compatible = "st,stm32mp15-fmc2"},
|
|
{.compatible = "st,stm32mp1-fmc2-nfc"},
|
|
{}
|
|
};
|
|
MODULE_DEVICE_TABLE(of, stm32_fmc2_nfc_match);
|
|
|
|
static struct platform_driver stm32_fmc2_nfc_driver = {
|
|
.probe = stm32_fmc2_nfc_probe,
|
|
.remove_new = stm32_fmc2_nfc_remove,
|
|
.driver = {
|
|
.name = "stm32_fmc2_nfc",
|
|
.of_match_table = stm32_fmc2_nfc_match,
|
|
.pm = &stm32_fmc2_nfc_pm_ops,
|
|
},
|
|
};
|
|
module_platform_driver(stm32_fmc2_nfc_driver);
|
|
|
|
MODULE_ALIAS("platform:stm32_fmc2_nfc");
|
|
MODULE_AUTHOR("Christophe Kerello <christophe.kerello@st.com>");
|
|
MODULE_DESCRIPTION("STMicroelectronics STM32 FMC2 NFC driver");
|
|
MODULE_LICENSE("GPL v2");
|