mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-11 04:18:39 +08:00
117478c9d7
The ACPI specification says that if no action was performed when processing the _PUR object, _OST should still be evaluated, albeit with a different status code. Evaluate _OST even when evaluating _PUR fails, to signal the firmware that no action was performed. Compile-tested only. Signed-off-by: Armin Wolf <W_Armin@gmx.de> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
494 lines
12 KiB
C
494 lines
12 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* acpi_pad.c ACPI Processor Aggregator Driver
|
|
*
|
|
* Copyright (c) 2009, Intel Corporation.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/types.h>
|
|
#include <linux/kthread.h>
|
|
#include <uapi/linux/sched/types.h>
|
|
#include <linux/freezer.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/tick.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/acpi.h>
|
|
#include <linux/perf_event.h>
|
|
#include <linux/platform_device.h>
|
|
#include <asm/mwait.h>
|
|
#include <xen/xen.h>
|
|
|
|
#define ACPI_PROCESSOR_AGGREGATOR_CLASS "acpi_pad"
|
|
#define ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME "Processor Aggregator"
|
|
#define ACPI_PROCESSOR_AGGREGATOR_NOTIFY 0x80
|
|
|
|
#define ACPI_PROCESSOR_AGGREGATOR_STATUS_SUCCESS 0
|
|
#define ACPI_PROCESSOR_AGGREGATOR_STATUS_NO_ACTION 1
|
|
|
|
static DEFINE_MUTEX(isolated_cpus_lock);
|
|
static DEFINE_MUTEX(round_robin_lock);
|
|
|
|
static unsigned long power_saving_mwait_eax;
|
|
|
|
static unsigned char tsc_detected_unstable;
|
|
static unsigned char tsc_marked_unstable;
|
|
|
|
static void power_saving_mwait_init(void)
|
|
{
|
|
unsigned int eax, ebx, ecx, edx;
|
|
unsigned int highest_cstate = 0;
|
|
unsigned int highest_subcstate = 0;
|
|
int i;
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_MWAIT))
|
|
return;
|
|
if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
|
|
return;
|
|
|
|
cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
|
|
|
|
if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
|
|
!(ecx & CPUID5_ECX_INTERRUPT_BREAK))
|
|
return;
|
|
|
|
edx >>= MWAIT_SUBSTATE_SIZE;
|
|
for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
|
|
if (edx & MWAIT_SUBSTATE_MASK) {
|
|
highest_cstate = i;
|
|
highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
|
|
}
|
|
}
|
|
power_saving_mwait_eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
|
|
(highest_subcstate - 1);
|
|
|
|
#if defined(CONFIG_X86)
|
|
switch (boot_cpu_data.x86_vendor) {
|
|
case X86_VENDOR_HYGON:
|
|
case X86_VENDOR_AMD:
|
|
case X86_VENDOR_INTEL:
|
|
case X86_VENDOR_ZHAOXIN:
|
|
case X86_VENDOR_CENTAUR:
|
|
/*
|
|
* AMD Fam10h TSC will tick in all
|
|
* C/P/S0/S1 states when this bit is set.
|
|
*/
|
|
if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
|
|
tsc_detected_unstable = 1;
|
|
break;
|
|
default:
|
|
/* TSC could halt in idle */
|
|
tsc_detected_unstable = 1;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static unsigned long cpu_weight[NR_CPUS];
|
|
static int tsk_in_cpu[NR_CPUS] = {[0 ... NR_CPUS-1] = -1};
|
|
static DECLARE_BITMAP(pad_busy_cpus_bits, NR_CPUS);
|
|
static void round_robin_cpu(unsigned int tsk_index)
|
|
{
|
|
struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
|
|
cpumask_var_t tmp;
|
|
int cpu;
|
|
unsigned long min_weight = -1;
|
|
unsigned long preferred_cpu;
|
|
|
|
if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
|
|
return;
|
|
|
|
mutex_lock(&round_robin_lock);
|
|
cpumask_clear(tmp);
|
|
for_each_cpu(cpu, pad_busy_cpus)
|
|
cpumask_or(tmp, tmp, topology_sibling_cpumask(cpu));
|
|
cpumask_andnot(tmp, cpu_online_mask, tmp);
|
|
/* avoid HT siblings if possible */
|
|
if (cpumask_empty(tmp))
|
|
cpumask_andnot(tmp, cpu_online_mask, pad_busy_cpus);
|
|
if (cpumask_empty(tmp)) {
|
|
mutex_unlock(&round_robin_lock);
|
|
free_cpumask_var(tmp);
|
|
return;
|
|
}
|
|
for_each_cpu(cpu, tmp) {
|
|
if (cpu_weight[cpu] < min_weight) {
|
|
min_weight = cpu_weight[cpu];
|
|
preferred_cpu = cpu;
|
|
}
|
|
}
|
|
|
|
if (tsk_in_cpu[tsk_index] != -1)
|
|
cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
|
|
tsk_in_cpu[tsk_index] = preferred_cpu;
|
|
cpumask_set_cpu(preferred_cpu, pad_busy_cpus);
|
|
cpu_weight[preferred_cpu]++;
|
|
mutex_unlock(&round_robin_lock);
|
|
|
|
set_cpus_allowed_ptr(current, cpumask_of(preferred_cpu));
|
|
|
|
free_cpumask_var(tmp);
|
|
}
|
|
|
|
static void exit_round_robin(unsigned int tsk_index)
|
|
{
|
|
struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
|
|
|
|
cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
|
|
tsk_in_cpu[tsk_index] = -1;
|
|
}
|
|
|
|
static unsigned int idle_pct = 5; /* percentage */
|
|
static unsigned int round_robin_time = 1; /* second */
|
|
static int power_saving_thread(void *data)
|
|
{
|
|
int do_sleep;
|
|
unsigned int tsk_index = (unsigned long)data;
|
|
u64 last_jiffies = 0;
|
|
|
|
sched_set_fifo_low(current);
|
|
|
|
while (!kthread_should_stop()) {
|
|
unsigned long expire_time;
|
|
|
|
/* round robin to cpus */
|
|
expire_time = last_jiffies + round_robin_time * HZ;
|
|
if (time_before(expire_time, jiffies)) {
|
|
last_jiffies = jiffies;
|
|
round_robin_cpu(tsk_index);
|
|
}
|
|
|
|
do_sleep = 0;
|
|
|
|
expire_time = jiffies + HZ * (100 - idle_pct) / 100;
|
|
|
|
while (!need_resched()) {
|
|
if (tsc_detected_unstable && !tsc_marked_unstable) {
|
|
/* TSC could halt in idle, so notify users */
|
|
mark_tsc_unstable("TSC halts in idle");
|
|
tsc_marked_unstable = 1;
|
|
}
|
|
local_irq_disable();
|
|
|
|
perf_lopwr_cb(true);
|
|
|
|
tick_broadcast_enable();
|
|
tick_broadcast_enter();
|
|
stop_critical_timings();
|
|
|
|
mwait_idle_with_hints(power_saving_mwait_eax, 1);
|
|
|
|
start_critical_timings();
|
|
tick_broadcast_exit();
|
|
|
|
perf_lopwr_cb(false);
|
|
|
|
local_irq_enable();
|
|
|
|
if (time_before(expire_time, jiffies)) {
|
|
do_sleep = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* current sched_rt has threshold for rt task running time.
|
|
* When a rt task uses 95% CPU time, the rt thread will be
|
|
* scheduled out for 5% CPU time to not starve other tasks. But
|
|
* the mechanism only works when all CPUs have RT task running,
|
|
* as if one CPU hasn't RT task, RT task from other CPUs will
|
|
* borrow CPU time from this CPU and cause RT task use > 95%
|
|
* CPU time. To make 'avoid starvation' work, takes a nap here.
|
|
*/
|
|
if (unlikely(do_sleep))
|
|
schedule_timeout_killable(HZ * idle_pct / 100);
|
|
|
|
/* If an external event has set the need_resched flag, then
|
|
* we need to deal with it, or this loop will continue to
|
|
* spin without calling __mwait().
|
|
*/
|
|
if (unlikely(need_resched()))
|
|
schedule();
|
|
}
|
|
|
|
exit_round_robin(tsk_index);
|
|
return 0;
|
|
}
|
|
|
|
static struct task_struct *ps_tsks[NR_CPUS];
|
|
static unsigned int ps_tsk_num;
|
|
static int create_power_saving_task(void)
|
|
{
|
|
int rc;
|
|
|
|
ps_tsks[ps_tsk_num] = kthread_run(power_saving_thread,
|
|
(void *)(unsigned long)ps_tsk_num,
|
|
"acpi_pad/%d", ps_tsk_num);
|
|
|
|
if (IS_ERR(ps_tsks[ps_tsk_num])) {
|
|
rc = PTR_ERR(ps_tsks[ps_tsk_num]);
|
|
ps_tsks[ps_tsk_num] = NULL;
|
|
} else {
|
|
rc = 0;
|
|
ps_tsk_num++;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void destroy_power_saving_task(void)
|
|
{
|
|
if (ps_tsk_num > 0) {
|
|
ps_tsk_num--;
|
|
kthread_stop(ps_tsks[ps_tsk_num]);
|
|
ps_tsks[ps_tsk_num] = NULL;
|
|
}
|
|
}
|
|
|
|
static void set_power_saving_task_num(unsigned int num)
|
|
{
|
|
if (num > ps_tsk_num) {
|
|
while (ps_tsk_num < num) {
|
|
if (create_power_saving_task())
|
|
return;
|
|
}
|
|
} else if (num < ps_tsk_num) {
|
|
while (ps_tsk_num > num)
|
|
destroy_power_saving_task();
|
|
}
|
|
}
|
|
|
|
static void acpi_pad_idle_cpus(unsigned int num_cpus)
|
|
{
|
|
cpus_read_lock();
|
|
|
|
num_cpus = min_t(unsigned int, num_cpus, num_online_cpus());
|
|
set_power_saving_task_num(num_cpus);
|
|
|
|
cpus_read_unlock();
|
|
}
|
|
|
|
static uint32_t acpi_pad_idle_cpus_num(void)
|
|
{
|
|
return ps_tsk_num;
|
|
}
|
|
|
|
static ssize_t rrtime_store(struct device *dev,
|
|
struct device_attribute *attr, const char *buf, size_t count)
|
|
{
|
|
unsigned long num;
|
|
|
|
if (kstrtoul(buf, 0, &num))
|
|
return -EINVAL;
|
|
if (num < 1 || num >= 100)
|
|
return -EINVAL;
|
|
mutex_lock(&isolated_cpus_lock);
|
|
round_robin_time = num;
|
|
mutex_unlock(&isolated_cpus_lock);
|
|
return count;
|
|
}
|
|
|
|
static ssize_t rrtime_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
return sysfs_emit(buf, "%d\n", round_robin_time);
|
|
}
|
|
static DEVICE_ATTR_RW(rrtime);
|
|
|
|
static ssize_t idlepct_store(struct device *dev,
|
|
struct device_attribute *attr, const char *buf, size_t count)
|
|
{
|
|
unsigned long num;
|
|
|
|
if (kstrtoul(buf, 0, &num))
|
|
return -EINVAL;
|
|
if (num < 1 || num >= 100)
|
|
return -EINVAL;
|
|
mutex_lock(&isolated_cpus_lock);
|
|
idle_pct = num;
|
|
mutex_unlock(&isolated_cpus_lock);
|
|
return count;
|
|
}
|
|
|
|
static ssize_t idlepct_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
return sysfs_emit(buf, "%d\n", idle_pct);
|
|
}
|
|
static DEVICE_ATTR_RW(idlepct);
|
|
|
|
static ssize_t idlecpus_store(struct device *dev,
|
|
struct device_attribute *attr, const char *buf, size_t count)
|
|
{
|
|
unsigned long num;
|
|
|
|
if (kstrtoul(buf, 0, &num))
|
|
return -EINVAL;
|
|
mutex_lock(&isolated_cpus_lock);
|
|
acpi_pad_idle_cpus(num);
|
|
mutex_unlock(&isolated_cpus_lock);
|
|
return count;
|
|
}
|
|
|
|
static ssize_t idlecpus_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
return cpumap_print_to_pagebuf(false, buf,
|
|
to_cpumask(pad_busy_cpus_bits));
|
|
}
|
|
|
|
static DEVICE_ATTR_RW(idlecpus);
|
|
|
|
static struct attribute *acpi_pad_attrs[] = {
|
|
&dev_attr_idlecpus.attr,
|
|
&dev_attr_idlepct.attr,
|
|
&dev_attr_rrtime.attr,
|
|
NULL
|
|
};
|
|
|
|
ATTRIBUTE_GROUPS(acpi_pad);
|
|
|
|
/*
|
|
* Query firmware how many CPUs should be idle
|
|
* return -1 on failure
|
|
*/
|
|
static int acpi_pad_pur(acpi_handle handle)
|
|
{
|
|
struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
|
|
union acpi_object *package;
|
|
int num = -1;
|
|
|
|
if (ACPI_FAILURE(acpi_evaluate_object(handle, "_PUR", NULL, &buffer)))
|
|
return num;
|
|
|
|
if (!buffer.length || !buffer.pointer)
|
|
return num;
|
|
|
|
package = buffer.pointer;
|
|
|
|
if (package->type == ACPI_TYPE_PACKAGE &&
|
|
package->package.count == 2 &&
|
|
package->package.elements[0].integer.value == 1) /* rev 1 */
|
|
|
|
num = package->package.elements[1].integer.value;
|
|
|
|
kfree(buffer.pointer);
|
|
return num;
|
|
}
|
|
|
|
static void acpi_pad_handle_notify(acpi_handle handle)
|
|
{
|
|
int num_cpus;
|
|
uint32_t idle_cpus;
|
|
struct acpi_buffer param = {
|
|
.length = 4,
|
|
.pointer = (void *)&idle_cpus,
|
|
};
|
|
u32 status;
|
|
|
|
mutex_lock(&isolated_cpus_lock);
|
|
num_cpus = acpi_pad_pur(handle);
|
|
if (num_cpus < 0) {
|
|
/* The ACPI specification says that if no action was performed when
|
|
* processing the _PUR object, _OST should still be evaluated, albeit
|
|
* with a different status code.
|
|
*/
|
|
status = ACPI_PROCESSOR_AGGREGATOR_STATUS_NO_ACTION;
|
|
} else {
|
|
status = ACPI_PROCESSOR_AGGREGATOR_STATUS_SUCCESS;
|
|
acpi_pad_idle_cpus(num_cpus);
|
|
}
|
|
|
|
idle_cpus = acpi_pad_idle_cpus_num();
|
|
acpi_evaluate_ost(handle, ACPI_PROCESSOR_AGGREGATOR_NOTIFY, status, ¶m);
|
|
mutex_unlock(&isolated_cpus_lock);
|
|
}
|
|
|
|
static void acpi_pad_notify(acpi_handle handle, u32 event,
|
|
void *data)
|
|
{
|
|
struct acpi_device *adev = data;
|
|
|
|
switch (event) {
|
|
case ACPI_PROCESSOR_AGGREGATOR_NOTIFY:
|
|
acpi_pad_handle_notify(handle);
|
|
acpi_bus_generate_netlink_event(adev->pnp.device_class,
|
|
dev_name(&adev->dev), event, 0);
|
|
break;
|
|
default:
|
|
pr_warn("Unsupported event [0x%x]\n", event);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int acpi_pad_probe(struct platform_device *pdev)
|
|
{
|
|
struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
|
|
acpi_status status;
|
|
|
|
strcpy(acpi_device_name(adev), ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME);
|
|
strcpy(acpi_device_class(adev), ACPI_PROCESSOR_AGGREGATOR_CLASS);
|
|
|
|
status = acpi_install_notify_handler(adev->handle,
|
|
ACPI_DEVICE_NOTIFY, acpi_pad_notify, adev);
|
|
|
|
if (ACPI_FAILURE(status))
|
|
return -ENODEV;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void acpi_pad_remove(struct platform_device *pdev)
|
|
{
|
|
struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
|
|
|
|
mutex_lock(&isolated_cpus_lock);
|
|
acpi_pad_idle_cpus(0);
|
|
mutex_unlock(&isolated_cpus_lock);
|
|
|
|
acpi_remove_notify_handler(adev->handle,
|
|
ACPI_DEVICE_NOTIFY, acpi_pad_notify);
|
|
}
|
|
|
|
static const struct acpi_device_id pad_device_ids[] = {
|
|
{"ACPI000C", 0},
|
|
{"", 0},
|
|
};
|
|
MODULE_DEVICE_TABLE(acpi, pad_device_ids);
|
|
|
|
static struct platform_driver acpi_pad_driver = {
|
|
.probe = acpi_pad_probe,
|
|
.remove_new = acpi_pad_remove,
|
|
.driver = {
|
|
.dev_groups = acpi_pad_groups,
|
|
.name = "processor_aggregator",
|
|
.acpi_match_table = pad_device_ids,
|
|
},
|
|
};
|
|
|
|
static int __init acpi_pad_init(void)
|
|
{
|
|
/* Xen ACPI PAD is used when running as Xen Dom0. */
|
|
if (xen_initial_domain())
|
|
return -ENODEV;
|
|
|
|
power_saving_mwait_init();
|
|
if (power_saving_mwait_eax == 0)
|
|
return -EINVAL;
|
|
|
|
return platform_driver_register(&acpi_pad_driver);
|
|
}
|
|
|
|
static void __exit acpi_pad_exit(void)
|
|
{
|
|
platform_driver_unregister(&acpi_pad_driver);
|
|
}
|
|
|
|
module_init(acpi_pad_init);
|
|
module_exit(acpi_pad_exit);
|
|
MODULE_AUTHOR("Shaohua Li<shaohua.li@intel.com>");
|
|
MODULE_DESCRIPTION("ACPI Processor Aggregator Driver");
|
|
MODULE_LICENSE("GPL");
|