linux/drivers/phy/xilinx/phy-zynqmp.c
Robert Hancock 37291f60d0 phy: xilinx: zynqmp: Fix bus width setting for SGMII
TX_PROT_BUS_WIDTH and RX_PROT_BUS_WIDTH are single registers with
separate bit fields for each lane. The code in xpsgtr_phy_init_sgmii was
not preserving the existing register value for other lanes, so enabling
the PHY in SGMII mode on one lane zeroed out the settings for all other
lanes, causing other PS-GTR peripherals such as USB3 to malfunction.

Use xpsgtr_clr_set to only manipulate the desired bits in the register.

Fixes: 4a33bea003 ("phy: zynqmp: Add PHY driver for the Xilinx ZynqMP Gigabit Transceiver")
Signed-off-by: Robert Hancock <robert.hancock@calian.com>
Acked-by: Michal Simek <michal.simek@xilinx.com>
Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Link: https://lore.kernel.org/r/20220126001600.1592218-1-robert.hancock@calian.com
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2022-01-27 10:55:26 +05:30

1039 lines
26 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* phy-zynqmp.c - PHY driver for Xilinx ZynqMP GT.
*
* Copyright (C) 2018-2020 Xilinx Inc.
*
* Author: Anurag Kumar Vulisha <anuragku@xilinx.com>
* Author: Subbaraya Sundeep <sundeep.lkml@gmail.com>
* Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
*
* This driver is tested for USB, SATA and Display Port currently.
* Other controllers PCIe and SGMII should also work but that is
* experimental as of now.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <dt-bindings/phy/phy.h>
/*
* Lane Registers
*/
/* TX De-emphasis parameters */
#define L0_TX_ANA_TM_18 0x0048
#define L0_TX_ANA_TM_118 0x01d8
#define L0_TX_ANA_TM_118_FORCE_17_0 BIT(0)
/* DN Resistor calibration code parameters */
#define L0_TXPMA_ST_3 0x0b0c
#define L0_DN_CALIB_CODE 0x3f
/* PMA control parameters */
#define L0_TXPMD_TM_45 0x0cb4
#define L0_TXPMD_TM_48 0x0cc0
#define L0_TXPMD_TM_45_OVER_DP_MAIN BIT(0)
#define L0_TXPMD_TM_45_ENABLE_DP_MAIN BIT(1)
#define L0_TXPMD_TM_45_OVER_DP_POST1 BIT(2)
#define L0_TXPMD_TM_45_ENABLE_DP_POST1 BIT(3)
#define L0_TXPMD_TM_45_OVER_DP_POST2 BIT(4)
#define L0_TXPMD_TM_45_ENABLE_DP_POST2 BIT(5)
/* PCS control parameters */
#define L0_TM_DIG_6 0x106c
#define L0_TM_DIS_DESCRAMBLE_DECODER 0x0f
#define L0_TX_DIG_61 0x00f4
#define L0_TM_DISABLE_SCRAMBLE_ENCODER 0x0f
/* PLL Test Mode register parameters */
#define L0_TM_PLL_DIG_37 0x2094
#define L0_TM_COARSE_CODE_LIMIT 0x10
/* PLL SSC step size offsets */
#define L0_PLL_SS_STEPS_0_LSB 0x2368
#define L0_PLL_SS_STEPS_1_MSB 0x236c
#define L0_PLL_SS_STEP_SIZE_0_LSB 0x2370
#define L0_PLL_SS_STEP_SIZE_1 0x2374
#define L0_PLL_SS_STEP_SIZE_2 0x2378
#define L0_PLL_SS_STEP_SIZE_3_MSB 0x237c
#define L0_PLL_STATUS_READ_1 0x23e4
/* SSC step size parameters */
#define STEP_SIZE_0_MASK 0xff
#define STEP_SIZE_1_MASK 0xff
#define STEP_SIZE_2_MASK 0xff
#define STEP_SIZE_3_MASK 0x3
#define STEP_SIZE_SHIFT 8
#define FORCE_STEP_SIZE 0x10
#define FORCE_STEPS 0x20
#define STEPS_0_MASK 0xff
#define STEPS_1_MASK 0x07
/* Reference clock selection parameters */
#define L0_Ln_REF_CLK_SEL(n) (0x2860 + (n) * 4)
#define L0_REF_CLK_SEL_MASK 0x8f
/* Calibration digital logic parameters */
#define L3_TM_CALIB_DIG19 0xec4c
#define L3_CALIB_DONE_STATUS 0xef14
#define L3_TM_CALIB_DIG18 0xec48
#define L3_TM_CALIB_DIG19_NSW 0x07
#define L3_TM_CALIB_DIG18_NSW 0xe0
#define L3_TM_OVERRIDE_NSW_CODE 0x20
#define L3_CALIB_DONE 0x02
#define L3_NSW_SHIFT 5
#define L3_NSW_PIPE_SHIFT 4
#define L3_NSW_CALIB_SHIFT 3
#define PHY_REG_OFFSET 0x4000
/*
* Global Registers
*/
/* Refclk selection parameters */
#define PLL_REF_SEL(n) (0x10000 + (n) * 4)
#define PLL_FREQ_MASK 0x1f
#define PLL_STATUS_LOCKED 0x10
/* Inter Connect Matrix parameters */
#define ICM_CFG0 0x10010
#define ICM_CFG1 0x10014
#define ICM_CFG0_L0_MASK 0x07
#define ICM_CFG0_L1_MASK 0x70
#define ICM_CFG1_L2_MASK 0x07
#define ICM_CFG2_L3_MASK 0x70
#define ICM_CFG_SHIFT 4
/* Inter Connect Matrix allowed protocols */
#define ICM_PROTOCOL_PD 0x0
#define ICM_PROTOCOL_PCIE 0x1
#define ICM_PROTOCOL_SATA 0x2
#define ICM_PROTOCOL_USB 0x3
#define ICM_PROTOCOL_DP 0x4
#define ICM_PROTOCOL_SGMII 0x5
/* Test Mode common reset control parameters */
#define TM_CMN_RST 0x10018
#define TM_CMN_RST_EN 0x1
#define TM_CMN_RST_SET 0x2
#define TM_CMN_RST_MASK 0x3
/* Bus width parameters */
#define TX_PROT_BUS_WIDTH 0x10040
#define RX_PROT_BUS_WIDTH 0x10044
#define PROT_BUS_WIDTH_10 0x0
#define PROT_BUS_WIDTH_20 0x1
#define PROT_BUS_WIDTH_40 0x2
#define PROT_BUS_WIDTH_SHIFT(n) ((n) * 2)
#define PROT_BUS_WIDTH_MASK(n) GENMASK((n) * 2 + 1, (n) * 2)
/* Number of GT lanes */
#define NUM_LANES 4
/* SIOU SATA control register */
#define SATA_CONTROL_OFFSET 0x0100
/* Total number of controllers */
#define CONTROLLERS_PER_LANE 5
/* Protocol Type parameters */
#define XPSGTR_TYPE_USB0 0 /* USB controller 0 */
#define XPSGTR_TYPE_USB1 1 /* USB controller 1 */
#define XPSGTR_TYPE_SATA_0 2 /* SATA controller lane 0 */
#define XPSGTR_TYPE_SATA_1 3 /* SATA controller lane 1 */
#define XPSGTR_TYPE_PCIE_0 4 /* PCIe controller lane 0 */
#define XPSGTR_TYPE_PCIE_1 5 /* PCIe controller lane 1 */
#define XPSGTR_TYPE_PCIE_2 6 /* PCIe controller lane 2 */
#define XPSGTR_TYPE_PCIE_3 7 /* PCIe controller lane 3 */
#define XPSGTR_TYPE_DP_0 8 /* Display Port controller lane 0 */
#define XPSGTR_TYPE_DP_1 9 /* Display Port controller lane 1 */
#define XPSGTR_TYPE_SGMII0 10 /* Ethernet SGMII controller 0 */
#define XPSGTR_TYPE_SGMII1 11 /* Ethernet SGMII controller 1 */
#define XPSGTR_TYPE_SGMII2 12 /* Ethernet SGMII controller 2 */
#define XPSGTR_TYPE_SGMII3 13 /* Ethernet SGMII controller 3 */
/* Timeout values */
#define TIMEOUT_US 1000
struct xpsgtr_dev;
/**
* struct xpsgtr_ssc - structure to hold SSC settings for a lane
* @refclk_rate: PLL reference clock frequency
* @pll_ref_clk: value to be written to register for corresponding ref clk rate
* @steps: number of steps of SSC (Spread Spectrum Clock)
* @step_size: step size of each step
*/
struct xpsgtr_ssc {
u32 refclk_rate;
u8 pll_ref_clk;
u32 steps;
u32 step_size;
};
/**
* struct xpsgtr_phy - representation of a lane
* @phy: pointer to the kernel PHY device
* @type: controller which uses this lane
* @lane: lane number
* @protocol: protocol in which the lane operates
* @skip_phy_init: skip phy_init() if true
* @dev: pointer to the xpsgtr_dev instance
* @refclk: reference clock index
*/
struct xpsgtr_phy {
struct phy *phy;
u8 type;
u8 lane;
u8 protocol;
bool skip_phy_init;
struct xpsgtr_dev *dev;
unsigned int refclk;
};
/**
* struct xpsgtr_dev - representation of a ZynMP GT device
* @dev: pointer to device
* @serdes: serdes base address
* @siou: siou base address
* @gtr_mutex: mutex for locking
* @phys: PHY lanes
* @refclk_sscs: spread spectrum settings for the reference clocks
* @clk: reference clocks
* @tx_term_fix: fix for GT issue
* @saved_icm_cfg0: stored value of ICM CFG0 register
* @saved_icm_cfg1: stored value of ICM CFG1 register
*/
struct xpsgtr_dev {
struct device *dev;
void __iomem *serdes;
void __iomem *siou;
struct mutex gtr_mutex; /* mutex for locking */
struct xpsgtr_phy phys[NUM_LANES];
const struct xpsgtr_ssc *refclk_sscs[NUM_LANES];
struct clk *clk[NUM_LANES];
bool tx_term_fix;
unsigned int saved_icm_cfg0;
unsigned int saved_icm_cfg1;
};
/*
* Configuration Data
*/
/* lookup table to hold all settings needed for a ref clock frequency */
static const struct xpsgtr_ssc ssc_lookup[] = {
{ 19200000, 0x05, 608, 264020 },
{ 20000000, 0x06, 634, 243454 },
{ 24000000, 0x07, 760, 168973 },
{ 26000000, 0x08, 824, 143860 },
{ 27000000, 0x09, 856, 86551 },
{ 38400000, 0x0a, 1218, 65896 },
{ 40000000, 0x0b, 634, 243454 },
{ 52000000, 0x0c, 824, 143860 },
{ 100000000, 0x0d, 1058, 87533 },
{ 108000000, 0x0e, 856, 86551 },
{ 125000000, 0x0f, 992, 119497 },
{ 135000000, 0x10, 1070, 55393 },
{ 150000000, 0x11, 792, 187091 }
};
/*
* I/O Accessors
*/
static inline u32 xpsgtr_read(struct xpsgtr_dev *gtr_dev, u32 reg)
{
return readl(gtr_dev->serdes + reg);
}
static inline void xpsgtr_write(struct xpsgtr_dev *gtr_dev, u32 reg, u32 value)
{
writel(value, gtr_dev->serdes + reg);
}
static inline void xpsgtr_clr_set(struct xpsgtr_dev *gtr_dev, u32 reg,
u32 clr, u32 set)
{
u32 value = xpsgtr_read(gtr_dev, reg);
value &= ~clr;
value |= set;
xpsgtr_write(gtr_dev, reg, value);
}
static inline u32 xpsgtr_read_phy(struct xpsgtr_phy *gtr_phy, u32 reg)
{
void __iomem *addr = gtr_phy->dev->serdes
+ gtr_phy->lane * PHY_REG_OFFSET + reg;
return readl(addr);
}
static inline void xpsgtr_write_phy(struct xpsgtr_phy *gtr_phy,
u32 reg, u32 value)
{
void __iomem *addr = gtr_phy->dev->serdes
+ gtr_phy->lane * PHY_REG_OFFSET + reg;
writel(value, addr);
}
static inline void xpsgtr_clr_set_phy(struct xpsgtr_phy *gtr_phy,
u32 reg, u32 clr, u32 set)
{
void __iomem *addr = gtr_phy->dev->serdes
+ gtr_phy->lane * PHY_REG_OFFSET + reg;
writel((readl(addr) & ~clr) | set, addr);
}
/*
* Hardware Configuration
*/
/* Wait for the PLL to lock (with a timeout). */
static int xpsgtr_wait_pll_lock(struct phy *phy)
{
struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
unsigned int timeout = TIMEOUT_US;
int ret;
dev_dbg(gtr_dev->dev, "Waiting for PLL lock\n");
while (1) {
u32 reg = xpsgtr_read_phy(gtr_phy, L0_PLL_STATUS_READ_1);
if ((reg & PLL_STATUS_LOCKED) == PLL_STATUS_LOCKED) {
ret = 0;
break;
}
if (--timeout == 0) {
ret = -ETIMEDOUT;
break;
}
udelay(1);
}
if (ret == -ETIMEDOUT)
dev_err(gtr_dev->dev,
"lane %u (type %u, protocol %u): PLL lock timeout\n",
gtr_phy->lane, gtr_phy->type, gtr_phy->protocol);
return ret;
}
/* Configure PLL and spread-sprectrum clock. */
static void xpsgtr_configure_pll(struct xpsgtr_phy *gtr_phy)
{
const struct xpsgtr_ssc *ssc;
u32 step_size;
ssc = gtr_phy->dev->refclk_sscs[gtr_phy->refclk];
step_size = ssc->step_size;
xpsgtr_clr_set(gtr_phy->dev, PLL_REF_SEL(gtr_phy->lane),
PLL_FREQ_MASK, ssc->pll_ref_clk);
/* Enable lane clock sharing, if required */
if (gtr_phy->refclk != gtr_phy->lane) {
/* Lane3 Ref Clock Selection Register */
xpsgtr_clr_set(gtr_phy->dev, L0_Ln_REF_CLK_SEL(gtr_phy->lane),
L0_REF_CLK_SEL_MASK, 1 << gtr_phy->refclk);
}
/* SSC step size [7:0] */
xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_0_LSB,
STEP_SIZE_0_MASK, step_size & STEP_SIZE_0_MASK);
/* SSC step size [15:8] */
step_size >>= STEP_SIZE_SHIFT;
xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_1,
STEP_SIZE_1_MASK, step_size & STEP_SIZE_1_MASK);
/* SSC step size [23:16] */
step_size >>= STEP_SIZE_SHIFT;
xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_2,
STEP_SIZE_2_MASK, step_size & STEP_SIZE_2_MASK);
/* SSC steps [7:0] */
xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_0_LSB,
STEPS_0_MASK, ssc->steps & STEPS_0_MASK);
/* SSC steps [10:8] */
xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_1_MSB,
STEPS_1_MASK,
(ssc->steps >> STEP_SIZE_SHIFT) & STEPS_1_MASK);
/* SSC step size [24:25] */
step_size >>= STEP_SIZE_SHIFT;
xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_3_MSB,
STEP_SIZE_3_MASK, (step_size & STEP_SIZE_3_MASK) |
FORCE_STEP_SIZE | FORCE_STEPS);
}
/* Configure the lane protocol. */
static void xpsgtr_lane_set_protocol(struct xpsgtr_phy *gtr_phy)
{
struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
u8 protocol = gtr_phy->protocol;
switch (gtr_phy->lane) {
case 0:
xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L0_MASK, protocol);
break;
case 1:
xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L1_MASK,
protocol << ICM_CFG_SHIFT);
break;
case 2:
xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L0_MASK, protocol);
break;
case 3:
xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L1_MASK,
protocol << ICM_CFG_SHIFT);
break;
default:
/* We already checked 0 <= lane <= 3 */
break;
}
}
/* Bypass (de)scrambler and 8b/10b decoder and encoder. */
static void xpsgtr_bypass_scrambler_8b10b(struct xpsgtr_phy *gtr_phy)
{
xpsgtr_write_phy(gtr_phy, L0_TM_DIG_6, L0_TM_DIS_DESCRAMBLE_DECODER);
xpsgtr_write_phy(gtr_phy, L0_TX_DIG_61, L0_TM_DISABLE_SCRAMBLE_ENCODER);
}
/* DP-specific initialization. */
static void xpsgtr_phy_init_dp(struct xpsgtr_phy *gtr_phy)
{
xpsgtr_write_phy(gtr_phy, L0_TXPMD_TM_45,
L0_TXPMD_TM_45_OVER_DP_MAIN |
L0_TXPMD_TM_45_ENABLE_DP_MAIN |
L0_TXPMD_TM_45_OVER_DP_POST1 |
L0_TXPMD_TM_45_OVER_DP_POST2 |
L0_TXPMD_TM_45_ENABLE_DP_POST2);
xpsgtr_write_phy(gtr_phy, L0_TX_ANA_TM_118,
L0_TX_ANA_TM_118_FORCE_17_0);
}
/* SATA-specific initialization. */
static void xpsgtr_phy_init_sata(struct xpsgtr_phy *gtr_phy)
{
struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
xpsgtr_bypass_scrambler_8b10b(gtr_phy);
writel(gtr_phy->lane, gtr_dev->siou + SATA_CONTROL_OFFSET);
}
/* SGMII-specific initialization. */
static void xpsgtr_phy_init_sgmii(struct xpsgtr_phy *gtr_phy)
{
struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
u32 mask = PROT_BUS_WIDTH_MASK(gtr_phy->lane);
u32 val = PROT_BUS_WIDTH_10 << PROT_BUS_WIDTH_SHIFT(gtr_phy->lane);
/* Set SGMII protocol TX and RX bus width to 10 bits. */
xpsgtr_clr_set(gtr_dev, TX_PROT_BUS_WIDTH, mask, val);
xpsgtr_clr_set(gtr_dev, RX_PROT_BUS_WIDTH, mask, val);
xpsgtr_bypass_scrambler_8b10b(gtr_phy);
}
/* Configure TX de-emphasis and margining for DP. */
static void xpsgtr_phy_configure_dp(struct xpsgtr_phy *gtr_phy, unsigned int pre,
unsigned int voltage)
{
static const u8 voltage_swing[4][4] = {
{ 0x2a, 0x27, 0x24, 0x20 },
{ 0x27, 0x23, 0x20, 0xff },
{ 0x24, 0x20, 0xff, 0xff },
{ 0xff, 0xff, 0xff, 0xff }
};
static const u8 pre_emphasis[4][4] = {
{ 0x02, 0x02, 0x02, 0x02 },
{ 0x01, 0x01, 0x01, 0xff },
{ 0x00, 0x00, 0xff, 0xff },
{ 0xff, 0xff, 0xff, 0xff }
};
xpsgtr_write_phy(gtr_phy, L0_TXPMD_TM_48, voltage_swing[pre][voltage]);
xpsgtr_write_phy(gtr_phy, L0_TX_ANA_TM_18, pre_emphasis[pre][voltage]);
}
/*
* PHY Operations
*/
static bool xpsgtr_phy_init_required(struct xpsgtr_phy *gtr_phy)
{
/*
* As USB may save the snapshot of the states during hibernation, doing
* phy_init() will put the USB controller into reset, resulting in the
* losing of the saved snapshot. So try to avoid phy_init() for USB
* except when gtr_phy->skip_phy_init is false (this happens when FPD is
* shutdown during suspend or when gt lane is changed from current one)
*/
if (gtr_phy->protocol == ICM_PROTOCOL_USB && gtr_phy->skip_phy_init)
return false;
else
return true;
}
/*
* There is a functional issue in the GT. The TX termination resistance can be
* out of spec due to a issue in the calibration logic. This is the workaround
* to fix it, required for XCZU9EG silicon.
*/
static int xpsgtr_phy_tx_term_fix(struct xpsgtr_phy *gtr_phy)
{
struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
u32 timeout = TIMEOUT_US;
u32 nsw;
/* Enabling Test Mode control for CMN Rest */
xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET);
/* Set Test Mode reset */
xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_EN);
xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG18, 0x00);
xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG19, L3_TM_OVERRIDE_NSW_CODE);
/*
* As a part of work around sequence for PMOS calibration fix,
* we need to configure any lane ICM_CFG to valid protocol. This
* will deassert the CMN_Resetn signal.
*/
xpsgtr_lane_set_protocol(gtr_phy);
/* Clear Test Mode reset */
xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET);
dev_dbg(gtr_dev->dev, "calibrating...\n");
do {
u32 reg = xpsgtr_read(gtr_dev, L3_CALIB_DONE_STATUS);
if ((reg & L3_CALIB_DONE) == L3_CALIB_DONE)
break;
if (!--timeout) {
dev_err(gtr_dev->dev, "calibration time out\n");
return -ETIMEDOUT;
}
udelay(1);
} while (timeout > 0);
dev_dbg(gtr_dev->dev, "calibration done\n");
/* Reading NMOS Register Code */
nsw = xpsgtr_read(gtr_dev, L0_TXPMA_ST_3) & L0_DN_CALIB_CODE;
/* Set Test Mode reset */
xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_EN);
/* Writing NMOS register values back [5:3] */
xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG19, nsw >> L3_NSW_CALIB_SHIFT);
/* Writing NMOS register value [2:0] */
xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG18,
((nsw & L3_TM_CALIB_DIG19_NSW) << L3_NSW_SHIFT) |
(1 << L3_NSW_PIPE_SHIFT));
/* Clear Test Mode reset */
xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET);
return 0;
}
static int xpsgtr_phy_init(struct phy *phy)
{
struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
int ret = 0;
mutex_lock(&gtr_dev->gtr_mutex);
/* Skip initialization if not required. */
if (!xpsgtr_phy_init_required(gtr_phy))
goto out;
if (gtr_dev->tx_term_fix) {
ret = xpsgtr_phy_tx_term_fix(gtr_phy);
if (ret < 0)
goto out;
gtr_dev->tx_term_fix = false;
}
/* Enable coarse code saturation limiting logic. */
xpsgtr_write_phy(gtr_phy, L0_TM_PLL_DIG_37, L0_TM_COARSE_CODE_LIMIT);
/*
* Configure the PLL, the lane protocol, and perform protocol-specific
* initialization.
*/
xpsgtr_configure_pll(gtr_phy);
xpsgtr_lane_set_protocol(gtr_phy);
switch (gtr_phy->protocol) {
case ICM_PROTOCOL_DP:
xpsgtr_phy_init_dp(gtr_phy);
break;
case ICM_PROTOCOL_SATA:
xpsgtr_phy_init_sata(gtr_phy);
break;
case ICM_PROTOCOL_SGMII:
xpsgtr_phy_init_sgmii(gtr_phy);
break;
}
out:
mutex_unlock(&gtr_dev->gtr_mutex);
return ret;
}
static int xpsgtr_phy_exit(struct phy *phy)
{
struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
gtr_phy->skip_phy_init = false;
return 0;
}
static int xpsgtr_phy_power_on(struct phy *phy)
{
struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
int ret = 0;
/* Skip initialization if not required. */
if (!xpsgtr_phy_init_required(gtr_phy))
return ret;
/*
* Wait for the PLL to lock. For DP, only wait on DP0 to avoid
* cumulating waits for both lanes. The user is expected to initialize
* lane 0 last.
*/
if (gtr_phy->protocol != ICM_PROTOCOL_DP ||
gtr_phy->type == XPSGTR_TYPE_DP_0)
ret = xpsgtr_wait_pll_lock(phy);
return ret;
}
static int xpsgtr_phy_configure(struct phy *phy, union phy_configure_opts *opts)
{
struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
if (gtr_phy->protocol != ICM_PROTOCOL_DP)
return 0;
xpsgtr_phy_configure_dp(gtr_phy, opts->dp.pre[0], opts->dp.voltage[0]);
return 0;
}
static const struct phy_ops xpsgtr_phyops = {
.init = xpsgtr_phy_init,
.exit = xpsgtr_phy_exit,
.power_on = xpsgtr_phy_power_on,
.configure = xpsgtr_phy_configure,
.owner = THIS_MODULE,
};
/*
* OF Xlate Support
*/
/* Set the lane type and protocol based on the PHY type and instance number. */
static int xpsgtr_set_lane_type(struct xpsgtr_phy *gtr_phy, u8 phy_type,
unsigned int phy_instance)
{
unsigned int num_phy_types;
const int *phy_types;
switch (phy_type) {
case PHY_TYPE_SATA: {
static const int types[] = {
XPSGTR_TYPE_SATA_0,
XPSGTR_TYPE_SATA_1,
};
phy_types = types;
num_phy_types = ARRAY_SIZE(types);
gtr_phy->protocol = ICM_PROTOCOL_SATA;
break;
}
case PHY_TYPE_USB3: {
static const int types[] = {
XPSGTR_TYPE_USB0,
XPSGTR_TYPE_USB1,
};
phy_types = types;
num_phy_types = ARRAY_SIZE(types);
gtr_phy->protocol = ICM_PROTOCOL_USB;
break;
}
case PHY_TYPE_DP: {
static const int types[] = {
XPSGTR_TYPE_DP_0,
XPSGTR_TYPE_DP_1,
};
phy_types = types;
num_phy_types = ARRAY_SIZE(types);
gtr_phy->protocol = ICM_PROTOCOL_DP;
break;
}
case PHY_TYPE_PCIE: {
static const int types[] = {
XPSGTR_TYPE_PCIE_0,
XPSGTR_TYPE_PCIE_1,
XPSGTR_TYPE_PCIE_2,
XPSGTR_TYPE_PCIE_3,
};
phy_types = types;
num_phy_types = ARRAY_SIZE(types);
gtr_phy->protocol = ICM_PROTOCOL_PCIE;
break;
}
case PHY_TYPE_SGMII: {
static const int types[] = {
XPSGTR_TYPE_SGMII0,
XPSGTR_TYPE_SGMII1,
XPSGTR_TYPE_SGMII2,
XPSGTR_TYPE_SGMII3,
};
phy_types = types;
num_phy_types = ARRAY_SIZE(types);
gtr_phy->protocol = ICM_PROTOCOL_SGMII;
break;
}
default:
return -EINVAL;
}
if (phy_instance >= num_phy_types)
return -EINVAL;
gtr_phy->type = phy_types[phy_instance];
return 0;
}
/*
* Valid combinations of controllers and lanes (Interconnect Matrix).
*/
static const unsigned int icm_matrix[NUM_LANES][CONTROLLERS_PER_LANE] = {
{ XPSGTR_TYPE_PCIE_0, XPSGTR_TYPE_SATA_0, XPSGTR_TYPE_USB0,
XPSGTR_TYPE_DP_1, XPSGTR_TYPE_SGMII0 },
{ XPSGTR_TYPE_PCIE_1, XPSGTR_TYPE_SATA_1, XPSGTR_TYPE_USB0,
XPSGTR_TYPE_DP_0, XPSGTR_TYPE_SGMII1 },
{ XPSGTR_TYPE_PCIE_2, XPSGTR_TYPE_SATA_0, XPSGTR_TYPE_USB0,
XPSGTR_TYPE_DP_1, XPSGTR_TYPE_SGMII2 },
{ XPSGTR_TYPE_PCIE_3, XPSGTR_TYPE_SATA_1, XPSGTR_TYPE_USB1,
XPSGTR_TYPE_DP_0, XPSGTR_TYPE_SGMII3 }
};
/* Translate OF phandle and args to PHY instance. */
static struct phy *xpsgtr_xlate(struct device *dev,
struct of_phandle_args *args)
{
struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev);
struct xpsgtr_phy *gtr_phy;
unsigned int phy_instance;
unsigned int phy_lane;
unsigned int phy_type;
unsigned int refclk;
unsigned int i;
int ret;
if (args->args_count != 4) {
dev_err(dev, "Invalid number of cells in 'phy' property\n");
return ERR_PTR(-EINVAL);
}
/*
* Get the PHY parameters from the OF arguments and derive the lane
* type.
*/
phy_lane = args->args[0];
if (phy_lane >= ARRAY_SIZE(gtr_dev->phys)) {
dev_err(dev, "Invalid lane number %u\n", phy_lane);
return ERR_PTR(-ENODEV);
}
gtr_phy = &gtr_dev->phys[phy_lane];
phy_type = args->args[1];
phy_instance = args->args[2];
ret = xpsgtr_set_lane_type(gtr_phy, phy_type, phy_instance);
if (ret < 0) {
dev_err(gtr_dev->dev, "Invalid PHY type and/or instance\n");
return ERR_PTR(ret);
}
refclk = args->args[3];
if (refclk >= ARRAY_SIZE(gtr_dev->refclk_sscs) ||
!gtr_dev->refclk_sscs[refclk]) {
dev_err(dev, "Invalid reference clock number %u\n", refclk);
return ERR_PTR(-EINVAL);
}
gtr_phy->refclk = refclk;
/*
* Ensure that the Interconnect Matrix is obeyed, i.e a given lane type
* is allowed to operate on the lane.
*/
for (i = 0; i < CONTROLLERS_PER_LANE; i++) {
if (icm_matrix[phy_lane][i] == gtr_phy->type)
return gtr_phy->phy;
}
return ERR_PTR(-EINVAL);
}
/*
* Power Management
*/
static int __maybe_unused xpsgtr_suspend(struct device *dev)
{
struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev);
unsigned int i;
/* Save the snapshot ICM_CFG registers. */
gtr_dev->saved_icm_cfg0 = xpsgtr_read(gtr_dev, ICM_CFG0);
gtr_dev->saved_icm_cfg1 = xpsgtr_read(gtr_dev, ICM_CFG1);
for (i = 0; i < ARRAY_SIZE(gtr_dev->clk); i++)
clk_disable_unprepare(gtr_dev->clk[i]);
return 0;
}
static int __maybe_unused xpsgtr_resume(struct device *dev)
{
struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev);
unsigned int icm_cfg0, icm_cfg1;
unsigned int i;
bool skip_phy_init;
int err;
for (i = 0; i < ARRAY_SIZE(gtr_dev->clk); i++) {
err = clk_prepare_enable(gtr_dev->clk[i]);
if (err)
goto err_clk_put;
}
icm_cfg0 = xpsgtr_read(gtr_dev, ICM_CFG0);
icm_cfg1 = xpsgtr_read(gtr_dev, ICM_CFG1);
/* Return if no GT lanes got configured before suspend. */
if (!gtr_dev->saved_icm_cfg0 && !gtr_dev->saved_icm_cfg1)
return 0;
/* Check if the ICM configurations changed after suspend. */
if (icm_cfg0 == gtr_dev->saved_icm_cfg0 &&
icm_cfg1 == gtr_dev->saved_icm_cfg1)
skip_phy_init = true;
else
skip_phy_init = false;
/* Update the skip_phy_init for all gtr_phy instances. */
for (i = 0; i < ARRAY_SIZE(gtr_dev->phys); i++)
gtr_dev->phys[i].skip_phy_init = skip_phy_init;
return 0;
err_clk_put:
while (i--)
clk_disable_unprepare(gtr_dev->clk[i]);
return err;
}
static const struct dev_pm_ops xpsgtr_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(xpsgtr_suspend, xpsgtr_resume)
};
/*
* Probe & Platform Driver
*/
static int xpsgtr_get_ref_clocks(struct xpsgtr_dev *gtr_dev)
{
unsigned int refclk;
int ret;
for (refclk = 0; refclk < ARRAY_SIZE(gtr_dev->refclk_sscs); ++refclk) {
unsigned long rate;
unsigned int i;
struct clk *clk;
char name[8];
snprintf(name, sizeof(name), "ref%u", refclk);
clk = devm_clk_get_optional(gtr_dev->dev, name);
if (IS_ERR(clk)) {
ret = dev_err_probe(gtr_dev->dev, PTR_ERR(clk),
"Failed to get reference clock %u\n",
refclk);
goto err_clk_put;
}
if (!clk)
continue;
ret = clk_prepare_enable(clk);
if (ret)
goto err_clk_put;
gtr_dev->clk[refclk] = clk;
/*
* Get the spread spectrum (SSC) settings for the reference
* clock rate.
*/
rate = clk_get_rate(clk);
for (i = 0 ; i < ARRAY_SIZE(ssc_lookup); i++) {
if (rate == ssc_lookup[i].refclk_rate) {
gtr_dev->refclk_sscs[refclk] = &ssc_lookup[i];
break;
}
}
if (i == ARRAY_SIZE(ssc_lookup)) {
dev_err(gtr_dev->dev,
"Invalid rate %lu for reference clock %u\n",
rate, refclk);
ret = -EINVAL;
goto err_clk_put;
}
}
return 0;
err_clk_put:
while (refclk--)
clk_disable_unprepare(gtr_dev->clk[refclk]);
return ret;
}
static int xpsgtr_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct xpsgtr_dev *gtr_dev;
struct phy_provider *provider;
unsigned int port;
unsigned int i;
int ret;
gtr_dev = devm_kzalloc(&pdev->dev, sizeof(*gtr_dev), GFP_KERNEL);
if (!gtr_dev)
return -ENOMEM;
gtr_dev->dev = &pdev->dev;
platform_set_drvdata(pdev, gtr_dev);
mutex_init(&gtr_dev->gtr_mutex);
if (of_device_is_compatible(np, "xlnx,zynqmp-psgtr"))
gtr_dev->tx_term_fix =
of_property_read_bool(np, "xlnx,tx-termination-fix");
/* Acquire resources. */
gtr_dev->serdes = devm_platform_ioremap_resource_byname(pdev, "serdes");
if (IS_ERR(gtr_dev->serdes))
return PTR_ERR(gtr_dev->serdes);
gtr_dev->siou = devm_platform_ioremap_resource_byname(pdev, "siou");
if (IS_ERR(gtr_dev->siou))
return PTR_ERR(gtr_dev->siou);
ret = xpsgtr_get_ref_clocks(gtr_dev);
if (ret)
return ret;
/* Create PHYs. */
for (port = 0; port < ARRAY_SIZE(gtr_dev->phys); ++port) {
struct xpsgtr_phy *gtr_phy = &gtr_dev->phys[port];
struct phy *phy;
gtr_phy->lane = port;
gtr_phy->dev = gtr_dev;
phy = devm_phy_create(&pdev->dev, np, &xpsgtr_phyops);
if (IS_ERR(phy)) {
dev_err(&pdev->dev, "failed to create PHY\n");
ret = PTR_ERR(phy);
goto err_clk_put;
}
gtr_phy->phy = phy;
phy_set_drvdata(phy, gtr_phy);
}
/* Register the PHY provider. */
provider = devm_of_phy_provider_register(&pdev->dev, xpsgtr_xlate);
if (IS_ERR(provider)) {
dev_err(&pdev->dev, "registering provider failed\n");
ret = PTR_ERR(provider);
goto err_clk_put;
}
return 0;
err_clk_put:
for (i = 0; i < ARRAY_SIZE(gtr_dev->clk); i++)
clk_disable_unprepare(gtr_dev->clk[i]);
return ret;
}
static const struct of_device_id xpsgtr_of_match[] = {
{ .compatible = "xlnx,zynqmp-psgtr", },
{ .compatible = "xlnx,zynqmp-psgtr-v1.1", },
{},
};
MODULE_DEVICE_TABLE(of, xpsgtr_of_match);
static struct platform_driver xpsgtr_driver = {
.probe = xpsgtr_probe,
.driver = {
.name = "xilinx-psgtr",
.of_match_table = xpsgtr_of_match,
.pm = &xpsgtr_pm_ops,
},
};
module_platform_driver(xpsgtr_driver);
MODULE_AUTHOR("Xilinx Inc.");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Xilinx ZynqMP High speed Gigabit Transceiver");