mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-25 12:04:46 +08:00
d8b07445c0
[ Upstream commit71ce046327
] Some drivers require the mapped tt pages to be decrypted. In an ideal world this would have been handled by the dma layer, but the TTM page fault handling would have to be rewritten to able to do that. A side-effect of the TTM page fault handling is using a dma allocation per order (via ttm_pool_alloc_page) which makes it impossible to just trivially use dma_mmap_attrs. As a result ttm has to be very careful about trying to make its pgprot for the mapped tt pages match what the dma layer thinks it is. At the ttm layer it's possible to deduce the requirement to have tt pages decrypted by checking whether coherent dma allocations have been requested and the system is running with confidential computing technologies. This approach isn't ideal but keeping TTM matching DMAs expectations for the page properties is in general fragile, unfortunately proper fix would require a rewrite of TTM's page fault handling. Fixes vmwgfx with SEV enabled. v2: Explicitly include cc_platform.h v3: Use CC_ATTR_GUEST_MEM_ENCRYPT instead of CC_ATTR_MEM_ENCRYPT to limit the scope to guests and log when memory decryption is enabled. Signed-off-by: Zack Rusin <zack.rusin@broadcom.com> Fixes:3bf3710e37
("drm/ttm: Add a generic TTM memcpy move for page-based iomem") Reviewed-by: Thomas Hellström <thomas.hellstrom@linux.intel.com> Acked-by: Christian König <christian.koenig@amd.com> Cc: Huang Rui <ray.huang@amd.com> Cc: dri-devel@lists.freedesktop.org Cc: linux-kernel@vger.kernel.org Cc: <stable@vger.kernel.org> # v5.14+ Link: https://patchwork.freedesktop.org/patch/msgid/20230926040359.3040017-1-zack@kde.org Signed-off-by: Sasha Levin <sashal@kernel.org>
771 lines
20 KiB
C
771 lines
20 KiB
C
/* SPDX-License-Identifier: GPL-2.0 OR MIT */
|
|
/**************************************************************************
|
|
*
|
|
* Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA
|
|
* All Rights Reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the
|
|
* "Software"), to deal in the Software without restriction, including
|
|
* without limitation the rights to use, copy, modify, merge, publish,
|
|
* distribute, sub license, and/or sell copies of the Software, and to
|
|
* permit persons to whom the Software is furnished to do so, subject to
|
|
* the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the
|
|
* next paragraph) shall be included in all copies or substantial portions
|
|
* of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
|
|
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
|
|
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
|
|
* USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
**************************************************************************/
|
|
/*
|
|
* Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
|
|
*/
|
|
|
|
#include <linux/vmalloc.h>
|
|
|
|
#include <drm/ttm/ttm_bo.h>
|
|
#include <drm/ttm/ttm_placement.h>
|
|
#include <drm/ttm/ttm_tt.h>
|
|
|
|
#include <drm/drm_cache.h>
|
|
|
|
struct ttm_transfer_obj {
|
|
struct ttm_buffer_object base;
|
|
struct ttm_buffer_object *bo;
|
|
};
|
|
|
|
int ttm_mem_io_reserve(struct ttm_device *bdev,
|
|
struct ttm_resource *mem)
|
|
{
|
|
if (mem->bus.offset || mem->bus.addr)
|
|
return 0;
|
|
|
|
mem->bus.is_iomem = false;
|
|
if (!bdev->funcs->io_mem_reserve)
|
|
return 0;
|
|
|
|
return bdev->funcs->io_mem_reserve(bdev, mem);
|
|
}
|
|
|
|
void ttm_mem_io_free(struct ttm_device *bdev,
|
|
struct ttm_resource *mem)
|
|
{
|
|
if (!mem)
|
|
return;
|
|
|
|
if (!mem->bus.offset && !mem->bus.addr)
|
|
return;
|
|
|
|
if (bdev->funcs->io_mem_free)
|
|
bdev->funcs->io_mem_free(bdev, mem);
|
|
|
|
mem->bus.offset = 0;
|
|
mem->bus.addr = NULL;
|
|
}
|
|
|
|
/**
|
|
* ttm_move_memcpy - Helper to perform a memcpy ttm move operation.
|
|
* @clear: Whether to clear rather than copy.
|
|
* @num_pages: Number of pages of the operation.
|
|
* @dst_iter: A struct ttm_kmap_iter representing the destination resource.
|
|
* @src_iter: A struct ttm_kmap_iter representing the source resource.
|
|
*
|
|
* This function is intended to be able to move out async under a
|
|
* dma-fence if desired.
|
|
*/
|
|
void ttm_move_memcpy(bool clear,
|
|
u32 num_pages,
|
|
struct ttm_kmap_iter *dst_iter,
|
|
struct ttm_kmap_iter *src_iter)
|
|
{
|
|
const struct ttm_kmap_iter_ops *dst_ops = dst_iter->ops;
|
|
const struct ttm_kmap_iter_ops *src_ops = src_iter->ops;
|
|
struct iosys_map src_map, dst_map;
|
|
pgoff_t i;
|
|
|
|
/* Single TTM move. NOP */
|
|
if (dst_ops->maps_tt && src_ops->maps_tt)
|
|
return;
|
|
|
|
/* Don't move nonexistent data. Clear destination instead. */
|
|
if (clear) {
|
|
for (i = 0; i < num_pages; ++i) {
|
|
dst_ops->map_local(dst_iter, &dst_map, i);
|
|
if (dst_map.is_iomem)
|
|
memset_io(dst_map.vaddr_iomem, 0, PAGE_SIZE);
|
|
else
|
|
memset(dst_map.vaddr, 0, PAGE_SIZE);
|
|
if (dst_ops->unmap_local)
|
|
dst_ops->unmap_local(dst_iter, &dst_map);
|
|
}
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < num_pages; ++i) {
|
|
dst_ops->map_local(dst_iter, &dst_map, i);
|
|
src_ops->map_local(src_iter, &src_map, i);
|
|
|
|
drm_memcpy_from_wc(&dst_map, &src_map, PAGE_SIZE);
|
|
|
|
if (src_ops->unmap_local)
|
|
src_ops->unmap_local(src_iter, &src_map);
|
|
if (dst_ops->unmap_local)
|
|
dst_ops->unmap_local(dst_iter, &dst_map);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(ttm_move_memcpy);
|
|
|
|
/**
|
|
* ttm_bo_move_memcpy
|
|
*
|
|
* @bo: A pointer to a struct ttm_buffer_object.
|
|
* @ctx: operation context
|
|
* @dst_mem: struct ttm_resource indicating where to move.
|
|
*
|
|
* Fallback move function for a mappable buffer object in mappable memory.
|
|
* The function will, if successful,
|
|
* free any old aperture space, and set (@new_mem)->mm_node to NULL,
|
|
* and update the (@bo)->mem placement flags. If unsuccessful, the old
|
|
* data remains untouched, and it's up to the caller to free the
|
|
* memory space indicated by @new_mem.
|
|
* Returns:
|
|
* !0: Failure.
|
|
*/
|
|
int ttm_bo_move_memcpy(struct ttm_buffer_object *bo,
|
|
struct ttm_operation_ctx *ctx,
|
|
struct ttm_resource *dst_mem)
|
|
{
|
|
struct ttm_device *bdev = bo->bdev;
|
|
struct ttm_resource_manager *dst_man =
|
|
ttm_manager_type(bo->bdev, dst_mem->mem_type);
|
|
struct ttm_tt *ttm = bo->ttm;
|
|
struct ttm_resource *src_mem = bo->resource;
|
|
struct ttm_resource_manager *src_man;
|
|
union {
|
|
struct ttm_kmap_iter_tt tt;
|
|
struct ttm_kmap_iter_linear_io io;
|
|
} _dst_iter, _src_iter;
|
|
struct ttm_kmap_iter *dst_iter, *src_iter;
|
|
bool clear;
|
|
int ret = 0;
|
|
|
|
if (WARN_ON(!src_mem))
|
|
return -EINVAL;
|
|
|
|
src_man = ttm_manager_type(bdev, src_mem->mem_type);
|
|
if (ttm && ((ttm->page_flags & TTM_TT_FLAG_SWAPPED) ||
|
|
dst_man->use_tt)) {
|
|
ret = ttm_tt_populate(bdev, ttm, ctx);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
dst_iter = ttm_kmap_iter_linear_io_init(&_dst_iter.io, bdev, dst_mem);
|
|
if (PTR_ERR(dst_iter) == -EINVAL && dst_man->use_tt)
|
|
dst_iter = ttm_kmap_iter_tt_init(&_dst_iter.tt, bo->ttm);
|
|
if (IS_ERR(dst_iter))
|
|
return PTR_ERR(dst_iter);
|
|
|
|
src_iter = ttm_kmap_iter_linear_io_init(&_src_iter.io, bdev, src_mem);
|
|
if (PTR_ERR(src_iter) == -EINVAL && src_man->use_tt)
|
|
src_iter = ttm_kmap_iter_tt_init(&_src_iter.tt, bo->ttm);
|
|
if (IS_ERR(src_iter)) {
|
|
ret = PTR_ERR(src_iter);
|
|
goto out_src_iter;
|
|
}
|
|
|
|
clear = src_iter->ops->maps_tt && (!ttm || !ttm_tt_is_populated(ttm));
|
|
if (!(clear && ttm && !(ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC)))
|
|
ttm_move_memcpy(clear, PFN_UP(dst_mem->size), dst_iter, src_iter);
|
|
|
|
if (!src_iter->ops->maps_tt)
|
|
ttm_kmap_iter_linear_io_fini(&_src_iter.io, bdev, src_mem);
|
|
ttm_bo_move_sync_cleanup(bo, dst_mem);
|
|
|
|
out_src_iter:
|
|
if (!dst_iter->ops->maps_tt)
|
|
ttm_kmap_iter_linear_io_fini(&_dst_iter.io, bdev, dst_mem);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(ttm_bo_move_memcpy);
|
|
|
|
static void ttm_transfered_destroy(struct ttm_buffer_object *bo)
|
|
{
|
|
struct ttm_transfer_obj *fbo;
|
|
|
|
fbo = container_of(bo, struct ttm_transfer_obj, base);
|
|
dma_resv_fini(&fbo->base.base._resv);
|
|
ttm_bo_put(fbo->bo);
|
|
kfree(fbo);
|
|
}
|
|
|
|
/**
|
|
* ttm_buffer_object_transfer
|
|
*
|
|
* @bo: A pointer to a struct ttm_buffer_object.
|
|
* @new_obj: A pointer to a pointer to a newly created ttm_buffer_object,
|
|
* holding the data of @bo with the old placement.
|
|
*
|
|
* This is a utility function that may be called after an accelerated move
|
|
* has been scheduled. A new buffer object is created as a placeholder for
|
|
* the old data while it's being copied. When that buffer object is idle,
|
|
* it can be destroyed, releasing the space of the old placement.
|
|
* Returns:
|
|
* !0: Failure.
|
|
*/
|
|
|
|
static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo,
|
|
struct ttm_buffer_object **new_obj)
|
|
{
|
|
struct ttm_transfer_obj *fbo;
|
|
int ret;
|
|
|
|
fbo = kmalloc(sizeof(*fbo), GFP_KERNEL);
|
|
if (!fbo)
|
|
return -ENOMEM;
|
|
|
|
fbo->base = *bo;
|
|
|
|
/**
|
|
* Fix up members that we shouldn't copy directly:
|
|
* TODO: Explicit member copy would probably be better here.
|
|
*/
|
|
|
|
atomic_inc(&ttm_glob.bo_count);
|
|
drm_vma_node_reset(&fbo->base.base.vma_node);
|
|
|
|
kref_init(&fbo->base.kref);
|
|
fbo->base.destroy = &ttm_transfered_destroy;
|
|
fbo->base.pin_count = 0;
|
|
if (bo->type != ttm_bo_type_sg)
|
|
fbo->base.base.resv = &fbo->base.base._resv;
|
|
|
|
dma_resv_init(&fbo->base.base._resv);
|
|
fbo->base.base.dev = NULL;
|
|
ret = dma_resv_trylock(&fbo->base.base._resv);
|
|
WARN_ON(!ret);
|
|
|
|
if (fbo->base.resource) {
|
|
ttm_resource_set_bo(fbo->base.resource, &fbo->base);
|
|
bo->resource = NULL;
|
|
ttm_bo_set_bulk_move(&fbo->base, NULL);
|
|
} else {
|
|
fbo->base.bulk_move = NULL;
|
|
}
|
|
|
|
ret = dma_resv_reserve_fences(&fbo->base.base._resv, 1);
|
|
if (ret) {
|
|
kfree(fbo);
|
|
return ret;
|
|
}
|
|
|
|
ttm_bo_get(bo);
|
|
fbo->bo = bo;
|
|
|
|
ttm_bo_move_to_lru_tail_unlocked(&fbo->base);
|
|
|
|
*new_obj = &fbo->base;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ttm_io_prot
|
|
*
|
|
* @bo: ttm buffer object
|
|
* @res: ttm resource object
|
|
* @tmp: Page protection flag for a normal, cached mapping.
|
|
*
|
|
* Utility function that returns the pgprot_t that should be used for
|
|
* setting up a PTE with the caching model indicated by @c_state.
|
|
*/
|
|
pgprot_t ttm_io_prot(struct ttm_buffer_object *bo, struct ttm_resource *res,
|
|
pgprot_t tmp)
|
|
{
|
|
struct ttm_resource_manager *man;
|
|
enum ttm_caching caching;
|
|
|
|
man = ttm_manager_type(bo->bdev, res->mem_type);
|
|
if (man->use_tt) {
|
|
caching = bo->ttm->caching;
|
|
if (bo->ttm->page_flags & TTM_TT_FLAG_DECRYPTED)
|
|
tmp = pgprot_decrypted(tmp);
|
|
} else {
|
|
caching = res->bus.caching;
|
|
}
|
|
|
|
return ttm_prot_from_caching(caching, tmp);
|
|
}
|
|
EXPORT_SYMBOL(ttm_io_prot);
|
|
|
|
static int ttm_bo_ioremap(struct ttm_buffer_object *bo,
|
|
unsigned long offset,
|
|
unsigned long size,
|
|
struct ttm_bo_kmap_obj *map)
|
|
{
|
|
struct ttm_resource *mem = bo->resource;
|
|
|
|
if (bo->resource->bus.addr) {
|
|
map->bo_kmap_type = ttm_bo_map_premapped;
|
|
map->virtual = ((u8 *)bo->resource->bus.addr) + offset;
|
|
} else {
|
|
resource_size_t res = bo->resource->bus.offset + offset;
|
|
|
|
map->bo_kmap_type = ttm_bo_map_iomap;
|
|
if (mem->bus.caching == ttm_write_combined)
|
|
map->virtual = ioremap_wc(res, size);
|
|
#ifdef CONFIG_X86
|
|
else if (mem->bus.caching == ttm_cached)
|
|
map->virtual = ioremap_cache(res, size);
|
|
#endif
|
|
else
|
|
map->virtual = ioremap(res, size);
|
|
}
|
|
return (!map->virtual) ? -ENOMEM : 0;
|
|
}
|
|
|
|
static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo,
|
|
unsigned long start_page,
|
|
unsigned long num_pages,
|
|
struct ttm_bo_kmap_obj *map)
|
|
{
|
|
struct ttm_resource *mem = bo->resource;
|
|
struct ttm_operation_ctx ctx = {
|
|
.interruptible = false,
|
|
.no_wait_gpu = false
|
|
};
|
|
struct ttm_tt *ttm = bo->ttm;
|
|
struct ttm_resource_manager *man =
|
|
ttm_manager_type(bo->bdev, bo->resource->mem_type);
|
|
pgprot_t prot;
|
|
int ret;
|
|
|
|
BUG_ON(!ttm);
|
|
|
|
ret = ttm_tt_populate(bo->bdev, ttm, &ctx);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (num_pages == 1 && ttm->caching == ttm_cached &&
|
|
!(man->use_tt && (ttm->page_flags & TTM_TT_FLAG_DECRYPTED))) {
|
|
/*
|
|
* We're mapping a single page, and the desired
|
|
* page protection is consistent with the bo.
|
|
*/
|
|
|
|
map->bo_kmap_type = ttm_bo_map_kmap;
|
|
map->page = ttm->pages[start_page];
|
|
map->virtual = kmap(map->page);
|
|
} else {
|
|
/*
|
|
* We need to use vmap to get the desired page protection
|
|
* or to make the buffer object look contiguous.
|
|
*/
|
|
prot = ttm_io_prot(bo, mem, PAGE_KERNEL);
|
|
map->bo_kmap_type = ttm_bo_map_vmap;
|
|
map->virtual = vmap(ttm->pages + start_page, num_pages,
|
|
0, prot);
|
|
}
|
|
return (!map->virtual) ? -ENOMEM : 0;
|
|
}
|
|
|
|
/**
|
|
* ttm_bo_kmap
|
|
*
|
|
* @bo: The buffer object.
|
|
* @start_page: The first page to map.
|
|
* @num_pages: Number of pages to map.
|
|
* @map: pointer to a struct ttm_bo_kmap_obj representing the map.
|
|
*
|
|
* Sets up a kernel virtual mapping, using ioremap, vmap or kmap to the
|
|
* data in the buffer object. The ttm_kmap_obj_virtual function can then be
|
|
* used to obtain a virtual address to the data.
|
|
*
|
|
* Returns
|
|
* -ENOMEM: Out of memory.
|
|
* -EINVAL: Invalid range.
|
|
*/
|
|
int ttm_bo_kmap(struct ttm_buffer_object *bo,
|
|
unsigned long start_page, unsigned long num_pages,
|
|
struct ttm_bo_kmap_obj *map)
|
|
{
|
|
unsigned long offset, size;
|
|
int ret;
|
|
|
|
map->virtual = NULL;
|
|
map->bo = bo;
|
|
if (num_pages > PFN_UP(bo->resource->size))
|
|
return -EINVAL;
|
|
if ((start_page + num_pages) > PFN_UP(bo->resource->size))
|
|
return -EINVAL;
|
|
|
|
ret = ttm_mem_io_reserve(bo->bdev, bo->resource);
|
|
if (ret)
|
|
return ret;
|
|
if (!bo->resource->bus.is_iomem) {
|
|
return ttm_bo_kmap_ttm(bo, start_page, num_pages, map);
|
|
} else {
|
|
offset = start_page << PAGE_SHIFT;
|
|
size = num_pages << PAGE_SHIFT;
|
|
return ttm_bo_ioremap(bo, offset, size, map);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(ttm_bo_kmap);
|
|
|
|
/**
|
|
* ttm_bo_kunmap
|
|
*
|
|
* @map: Object describing the map to unmap.
|
|
*
|
|
* Unmaps a kernel map set up by ttm_bo_kmap.
|
|
*/
|
|
void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map)
|
|
{
|
|
if (!map->virtual)
|
|
return;
|
|
switch (map->bo_kmap_type) {
|
|
case ttm_bo_map_iomap:
|
|
iounmap(map->virtual);
|
|
break;
|
|
case ttm_bo_map_vmap:
|
|
vunmap(map->virtual);
|
|
break;
|
|
case ttm_bo_map_kmap:
|
|
kunmap(map->page);
|
|
break;
|
|
case ttm_bo_map_premapped:
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
ttm_mem_io_free(map->bo->bdev, map->bo->resource);
|
|
map->virtual = NULL;
|
|
map->page = NULL;
|
|
}
|
|
EXPORT_SYMBOL(ttm_bo_kunmap);
|
|
|
|
/**
|
|
* ttm_bo_vmap
|
|
*
|
|
* @bo: The buffer object.
|
|
* @map: pointer to a struct iosys_map representing the map.
|
|
*
|
|
* Sets up a kernel virtual mapping, using ioremap or vmap to the
|
|
* data in the buffer object. The parameter @map returns the virtual
|
|
* address as struct iosys_map. Unmap the buffer with ttm_bo_vunmap().
|
|
*
|
|
* Returns
|
|
* -ENOMEM: Out of memory.
|
|
* -EINVAL: Invalid range.
|
|
*/
|
|
int ttm_bo_vmap(struct ttm_buffer_object *bo, struct iosys_map *map)
|
|
{
|
|
struct ttm_resource *mem = bo->resource;
|
|
int ret;
|
|
|
|
dma_resv_assert_held(bo->base.resv);
|
|
|
|
ret = ttm_mem_io_reserve(bo->bdev, mem);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (mem->bus.is_iomem) {
|
|
void __iomem *vaddr_iomem;
|
|
|
|
if (mem->bus.addr)
|
|
vaddr_iomem = (void __iomem *)mem->bus.addr;
|
|
else if (mem->bus.caching == ttm_write_combined)
|
|
vaddr_iomem = ioremap_wc(mem->bus.offset,
|
|
bo->base.size);
|
|
#ifdef CONFIG_X86
|
|
else if (mem->bus.caching == ttm_cached)
|
|
vaddr_iomem = ioremap_cache(mem->bus.offset,
|
|
bo->base.size);
|
|
#endif
|
|
else
|
|
vaddr_iomem = ioremap(mem->bus.offset, bo->base.size);
|
|
|
|
if (!vaddr_iomem)
|
|
return -ENOMEM;
|
|
|
|
iosys_map_set_vaddr_iomem(map, vaddr_iomem);
|
|
|
|
} else {
|
|
struct ttm_operation_ctx ctx = {
|
|
.interruptible = false,
|
|
.no_wait_gpu = false
|
|
};
|
|
struct ttm_tt *ttm = bo->ttm;
|
|
pgprot_t prot;
|
|
void *vaddr;
|
|
|
|
ret = ttm_tt_populate(bo->bdev, ttm, &ctx);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* We need to use vmap to get the desired page protection
|
|
* or to make the buffer object look contiguous.
|
|
*/
|
|
prot = ttm_io_prot(bo, mem, PAGE_KERNEL);
|
|
vaddr = vmap(ttm->pages, ttm->num_pages, 0, prot);
|
|
if (!vaddr)
|
|
return -ENOMEM;
|
|
|
|
iosys_map_set_vaddr(map, vaddr);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(ttm_bo_vmap);
|
|
|
|
/**
|
|
* ttm_bo_vunmap
|
|
*
|
|
* @bo: The buffer object.
|
|
* @map: Object describing the map to unmap.
|
|
*
|
|
* Unmaps a kernel map set up by ttm_bo_vmap().
|
|
*/
|
|
void ttm_bo_vunmap(struct ttm_buffer_object *bo, struct iosys_map *map)
|
|
{
|
|
struct ttm_resource *mem = bo->resource;
|
|
|
|
dma_resv_assert_held(bo->base.resv);
|
|
|
|
if (iosys_map_is_null(map))
|
|
return;
|
|
|
|
if (!map->is_iomem)
|
|
vunmap(map->vaddr);
|
|
else if (!mem->bus.addr)
|
|
iounmap(map->vaddr_iomem);
|
|
iosys_map_clear(map);
|
|
|
|
ttm_mem_io_free(bo->bdev, bo->resource);
|
|
}
|
|
EXPORT_SYMBOL(ttm_bo_vunmap);
|
|
|
|
static int ttm_bo_wait_free_node(struct ttm_buffer_object *bo,
|
|
bool dst_use_tt)
|
|
{
|
|
long ret;
|
|
|
|
ret = dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP,
|
|
false, 15 * HZ);
|
|
if (ret == 0)
|
|
return -EBUSY;
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (!dst_use_tt)
|
|
ttm_bo_tt_destroy(bo);
|
|
ttm_resource_free(bo, &bo->resource);
|
|
return 0;
|
|
}
|
|
|
|
static int ttm_bo_move_to_ghost(struct ttm_buffer_object *bo,
|
|
struct dma_fence *fence,
|
|
bool dst_use_tt)
|
|
{
|
|
struct ttm_buffer_object *ghost_obj;
|
|
int ret;
|
|
|
|
/**
|
|
* This should help pipeline ordinary buffer moves.
|
|
*
|
|
* Hang old buffer memory on a new buffer object,
|
|
* and leave it to be released when the GPU
|
|
* operation has completed.
|
|
*/
|
|
|
|
ret = ttm_buffer_object_transfer(bo, &ghost_obj);
|
|
if (ret)
|
|
return ret;
|
|
|
|
dma_resv_add_fence(&ghost_obj->base._resv, fence,
|
|
DMA_RESV_USAGE_KERNEL);
|
|
|
|
/**
|
|
* If we're not moving to fixed memory, the TTM object
|
|
* needs to stay alive. Otherwhise hang it on the ghost
|
|
* bo to be unbound and destroyed.
|
|
*/
|
|
|
|
if (dst_use_tt)
|
|
ghost_obj->ttm = NULL;
|
|
else
|
|
bo->ttm = NULL;
|
|
|
|
dma_resv_unlock(&ghost_obj->base._resv);
|
|
ttm_bo_put(ghost_obj);
|
|
return 0;
|
|
}
|
|
|
|
static void ttm_bo_move_pipeline_evict(struct ttm_buffer_object *bo,
|
|
struct dma_fence *fence)
|
|
{
|
|
struct ttm_device *bdev = bo->bdev;
|
|
struct ttm_resource_manager *from;
|
|
|
|
from = ttm_manager_type(bdev, bo->resource->mem_type);
|
|
|
|
/**
|
|
* BO doesn't have a TTM we need to bind/unbind. Just remember
|
|
* this eviction and free up the allocation
|
|
*/
|
|
spin_lock(&from->move_lock);
|
|
if (!from->move || dma_fence_is_later(fence, from->move)) {
|
|
dma_fence_put(from->move);
|
|
from->move = dma_fence_get(fence);
|
|
}
|
|
spin_unlock(&from->move_lock);
|
|
|
|
ttm_resource_free(bo, &bo->resource);
|
|
}
|
|
|
|
/**
|
|
* ttm_bo_move_accel_cleanup - cleanup helper for hw copies
|
|
*
|
|
* @bo: A pointer to a struct ttm_buffer_object.
|
|
* @fence: A fence object that signals when moving is complete.
|
|
* @evict: This is an evict move. Don't return until the buffer is idle.
|
|
* @pipeline: evictions are to be pipelined.
|
|
* @new_mem: struct ttm_resource indicating where to move.
|
|
*
|
|
* Accelerated move function to be called when an accelerated move
|
|
* has been scheduled. The function will create a new temporary buffer object
|
|
* representing the old placement, and put the sync object on both buffer
|
|
* objects. After that the newly created buffer object is unref'd to be
|
|
* destroyed when the move is complete. This will help pipeline
|
|
* buffer moves.
|
|
*/
|
|
int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo,
|
|
struct dma_fence *fence,
|
|
bool evict,
|
|
bool pipeline,
|
|
struct ttm_resource *new_mem)
|
|
{
|
|
struct ttm_device *bdev = bo->bdev;
|
|
struct ttm_resource_manager *from = ttm_manager_type(bdev, bo->resource->mem_type);
|
|
struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type);
|
|
int ret = 0;
|
|
|
|
dma_resv_add_fence(bo->base.resv, fence, DMA_RESV_USAGE_KERNEL);
|
|
if (!evict)
|
|
ret = ttm_bo_move_to_ghost(bo, fence, man->use_tt);
|
|
else if (!from->use_tt && pipeline)
|
|
ttm_bo_move_pipeline_evict(bo, fence);
|
|
else
|
|
ret = ttm_bo_wait_free_node(bo, man->use_tt);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
ttm_bo_assign_mem(bo, new_mem);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(ttm_bo_move_accel_cleanup);
|
|
|
|
/**
|
|
* ttm_bo_move_sync_cleanup - cleanup by waiting for the move to finish
|
|
*
|
|
* @bo: A pointer to a struct ttm_buffer_object.
|
|
* @new_mem: struct ttm_resource indicating where to move.
|
|
*
|
|
* Special case of ttm_bo_move_accel_cleanup where the bo is guaranteed
|
|
* by the caller to be idle. Typically used after memcpy buffer moves.
|
|
*/
|
|
void ttm_bo_move_sync_cleanup(struct ttm_buffer_object *bo,
|
|
struct ttm_resource *new_mem)
|
|
{
|
|
struct ttm_device *bdev = bo->bdev;
|
|
struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type);
|
|
int ret;
|
|
|
|
ret = ttm_bo_wait_free_node(bo, man->use_tt);
|
|
if (WARN_ON(ret))
|
|
return;
|
|
|
|
ttm_bo_assign_mem(bo, new_mem);
|
|
}
|
|
EXPORT_SYMBOL(ttm_bo_move_sync_cleanup);
|
|
|
|
/**
|
|
* ttm_bo_pipeline_gutting - purge the contents of a bo
|
|
* @bo: The buffer object
|
|
*
|
|
* Purge the contents of a bo, async if the bo is not idle.
|
|
* After a successful call, the bo is left unpopulated in
|
|
* system placement. The function may wait uninterruptible
|
|
* for idle on OOM.
|
|
*
|
|
* Return: 0 if successful, negative error code on failure.
|
|
*/
|
|
int ttm_bo_pipeline_gutting(struct ttm_buffer_object *bo)
|
|
{
|
|
struct ttm_buffer_object *ghost;
|
|
struct ttm_tt *ttm;
|
|
int ret;
|
|
|
|
/* If already idle, no need for ghost object dance. */
|
|
if (dma_resv_test_signaled(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP)) {
|
|
if (!bo->ttm) {
|
|
/* See comment below about clearing. */
|
|
ret = ttm_tt_create(bo, true);
|
|
if (ret)
|
|
return ret;
|
|
} else {
|
|
ttm_tt_unpopulate(bo->bdev, bo->ttm);
|
|
if (bo->type == ttm_bo_type_device)
|
|
ttm_tt_mark_for_clear(bo->ttm);
|
|
}
|
|
ttm_resource_free(bo, &bo->resource);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We need an unpopulated ttm_tt after giving our current one,
|
|
* if any, to the ghost object. And we can't afford to fail
|
|
* creating one *after* the operation. If the bo subsequently gets
|
|
* resurrected, make sure it's cleared (if ttm_bo_type_device)
|
|
* to avoid leaking sensitive information to user-space.
|
|
*/
|
|
|
|
ttm = bo->ttm;
|
|
bo->ttm = NULL;
|
|
ret = ttm_tt_create(bo, true);
|
|
swap(bo->ttm, ttm);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = ttm_buffer_object_transfer(bo, &ghost);
|
|
if (ret)
|
|
goto error_destroy_tt;
|
|
|
|
ret = dma_resv_copy_fences(&ghost->base._resv, bo->base.resv);
|
|
/* Last resort, wait for the BO to be idle when we are OOM */
|
|
if (ret) {
|
|
dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP,
|
|
false, MAX_SCHEDULE_TIMEOUT);
|
|
}
|
|
|
|
dma_resv_unlock(&ghost->base._resv);
|
|
ttm_bo_put(ghost);
|
|
bo->ttm = ttm;
|
|
return 0;
|
|
|
|
error_destroy_tt:
|
|
ttm_tt_destroy(bo->bdev, ttm);
|
|
return ret;
|
|
}
|