linux/drivers/gpu/drm/imagination/pvr_fw.c
Sarah Walker 927f3e0253
drm/imagination: Implement MIPS firmware processor and MMU support
Add support for the MIPS firmware processor, used in the Series AXE GPU.
The MIPS firmware processor uses a separate MMU to the rest of the GPU, so
this patch adds support for that as well.

Changes since v8:
- Corrected license identifiers

Changes since v6:
- Fix integer overflow in VM map error path

Changes since v5:
- Use alloc_page() when allocating MIPS pagetable

Changes since v3:
- Get regs resource (removed from GPU resources commit)

Signed-off-by: Sarah Walker <sarah.walker@imgtec.com>
Signed-off-by: Donald Robson <donald.robson@imgtec.com>
Link: https://lore.kernel.org/r/a114f7b3e97cb07460c7f2842901716a9207b0c4.1700668843.git.donald.robson@imgtec.com
Signed-off-by: Maxime Ripard <mripard@kernel.org>
2023-11-23 09:01:46 +01:00

1490 lines
42 KiB
C

// SPDX-License-Identifier: GPL-2.0-only OR MIT
/* Copyright (c) 2023 Imagination Technologies Ltd. */
#include "pvr_ccb.h"
#include "pvr_device.h"
#include "pvr_device_info.h"
#include "pvr_fw.h"
#include "pvr_fw_info.h"
#include "pvr_fw_startstop.h"
#include "pvr_fw_trace.h"
#include "pvr_gem.h"
#include "pvr_power.h"
#include "pvr_rogue_fwif_dev_info.h"
#include "pvr_rogue_heap_config.h"
#include "pvr_vm.h"
#include <drm/drm_drv.h>
#include <drm/drm_managed.h>
#include <drm/drm_mm.h>
#include <linux/clk.h>
#include <linux/firmware.h>
#include <linux/math.h>
#include <linux/minmax.h>
#include <linux/sizes.h>
#define FW_MAX_SUPPORTED_MAJOR_VERSION 1
#define FW_BOOT_TIMEOUT_USEC 5000000
/* Config heap occupies top 192k of the firmware heap. */
#define PVR_ROGUE_FW_CONFIG_HEAP_GRANULARITY SZ_64K
#define PVR_ROGUE_FW_CONFIG_HEAP_SIZE (3 * PVR_ROGUE_FW_CONFIG_HEAP_GRANULARITY)
/* Main firmware allocations should come from the remainder of the heap. */
#define PVR_ROGUE_FW_MAIN_HEAP_BASE ROGUE_FW_HEAP_BASE
/* Offsets from start of configuration area of FW heap. */
#define PVR_ROGUE_FWIF_CONNECTION_CTL_OFFSET 0
#define PVR_ROGUE_FWIF_OSINIT_OFFSET \
(PVR_ROGUE_FWIF_CONNECTION_CTL_OFFSET + PVR_ROGUE_FW_CONFIG_HEAP_GRANULARITY)
#define PVR_ROGUE_FWIF_SYSINIT_OFFSET \
(PVR_ROGUE_FWIF_OSINIT_OFFSET + PVR_ROGUE_FW_CONFIG_HEAP_GRANULARITY)
#define PVR_ROGUE_FAULT_PAGE_SIZE SZ_4K
#define PVR_SYNC_OBJ_SIZE sizeof(u32)
const struct pvr_fw_layout_entry *
pvr_fw_find_layout_entry(struct pvr_device *pvr_dev, enum pvr_fw_section_id id)
{
const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries;
u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num;
u32 entry;
for (entry = 0; entry < num_layout_entries; entry++) {
if (layout_entries[entry].id == id)
return &layout_entries[entry];
}
return NULL;
}
static const struct pvr_fw_layout_entry *
pvr_fw_find_private_data(struct pvr_device *pvr_dev)
{
const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries;
u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num;
u32 entry;
for (entry = 0; entry < num_layout_entries; entry++) {
if (layout_entries[entry].id == META_PRIVATE_DATA ||
layout_entries[entry].id == MIPS_PRIVATE_DATA ||
layout_entries[entry].id == RISCV_PRIVATE_DATA)
return &layout_entries[entry];
}
return NULL;
}
#define DEV_INFO_MASK_SIZE(x) DIV_ROUND_UP(x, 64)
/**
* pvr_fw_validate() - Parse firmware header and check compatibility
* @pvr_dev: Device pointer.
*
* Returns:
* * 0 on success, or
* * -EINVAL if firmware is incompatible.
*/
static int
pvr_fw_validate(struct pvr_device *pvr_dev)
{
struct drm_device *drm_dev = from_pvr_device(pvr_dev);
const struct firmware *firmware = pvr_dev->fw_dev.firmware;
const struct pvr_fw_layout_entry *layout_entries;
const struct pvr_fw_info_header *header;
const u8 *fw = firmware->data;
u32 fw_offset = firmware->size - SZ_4K;
u32 layout_table_size;
u32 entry;
if (firmware->size < SZ_4K || (firmware->size % FW_BLOCK_SIZE))
return -EINVAL;
header = (const struct pvr_fw_info_header *)&fw[fw_offset];
if (header->info_version != PVR_FW_INFO_VERSION) {
drm_err(drm_dev, "Unsupported fw info version %u\n",
header->info_version);
return -EINVAL;
}
if (header->header_len != sizeof(struct pvr_fw_info_header) ||
header->layout_entry_size != sizeof(struct pvr_fw_layout_entry) ||
header->layout_entry_num > PVR_FW_INFO_MAX_NUM_ENTRIES) {
drm_err(drm_dev, "FW info format mismatch\n");
return -EINVAL;
}
if (!(header->flags & PVR_FW_FLAGS_OPEN_SOURCE) ||
header->fw_version_major > FW_MAX_SUPPORTED_MAJOR_VERSION ||
header->fw_version_major == 0) {
drm_err(drm_dev, "Unsupported FW version %u.%u (build: %u%s)\n",
header->fw_version_major, header->fw_version_minor,
header->fw_version_build,
(header->flags & PVR_FW_FLAGS_OPEN_SOURCE) ? " OS" : "");
return -EINVAL;
}
if (pvr_gpu_id_to_packed_bvnc(&pvr_dev->gpu_id) != header->bvnc) {
struct pvr_gpu_id fw_gpu_id;
packed_bvnc_to_pvr_gpu_id(header->bvnc, &fw_gpu_id);
drm_err(drm_dev, "FW built for incorrect GPU ID %i.%i.%i.%i (expected %i.%i.%i.%i)\n",
fw_gpu_id.b, fw_gpu_id.v, fw_gpu_id.n, fw_gpu_id.c,
pvr_dev->gpu_id.b, pvr_dev->gpu_id.v, pvr_dev->gpu_id.n, pvr_dev->gpu_id.c);
return -EINVAL;
}
fw_offset += header->header_len;
layout_table_size =
header->layout_entry_size * header->layout_entry_num;
if ((fw_offset + layout_table_size) > firmware->size)
return -EINVAL;
layout_entries = (const struct pvr_fw_layout_entry *)&fw[fw_offset];
for (entry = 0; entry < header->layout_entry_num; entry++) {
u32 start_addr = layout_entries[entry].base_addr;
u32 end_addr = start_addr + layout_entries[entry].alloc_size;
if (start_addr >= end_addr)
return -EINVAL;
}
fw_offset = (firmware->size - SZ_4K) - header->device_info_size;
drm_info(drm_dev, "FW version v%u.%u (build %u OS)\n", header->fw_version_major,
header->fw_version_minor, header->fw_version_build);
pvr_dev->fw_version.major = header->fw_version_major;
pvr_dev->fw_version.minor = header->fw_version_minor;
pvr_dev->fw_dev.header = header;
pvr_dev->fw_dev.layout_entries = layout_entries;
return 0;
}
static int
pvr_fw_get_device_info(struct pvr_device *pvr_dev)
{
const struct firmware *firmware = pvr_dev->fw_dev.firmware;
struct pvr_fw_device_info_header *header;
const u8 *fw = firmware->data;
const u64 *dev_info;
u32 fw_offset;
fw_offset = (firmware->size - SZ_4K) - pvr_dev->fw_dev.header->device_info_size;
header = (struct pvr_fw_device_info_header *)&fw[fw_offset];
dev_info = (u64 *)(header + 1);
pvr_device_info_set_quirks(pvr_dev, dev_info, header->brn_mask_size);
dev_info += header->brn_mask_size;
pvr_device_info_set_enhancements(pvr_dev, dev_info, header->ern_mask_size);
dev_info += header->ern_mask_size;
return pvr_device_info_set_features(pvr_dev, dev_info, header->feature_mask_size,
header->feature_param_size);
}
static void
layout_get_sizes(struct pvr_device *pvr_dev)
{
const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries;
u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num;
struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem;
fw_mem->code_alloc_size = 0;
fw_mem->data_alloc_size = 0;
fw_mem->core_code_alloc_size = 0;
fw_mem->core_data_alloc_size = 0;
/* Extract section sizes from FW layout table. */
for (u32 entry = 0; entry < num_layout_entries; entry++) {
switch (layout_entries[entry].type) {
case FW_CODE:
fw_mem->code_alloc_size += layout_entries[entry].alloc_size;
break;
case FW_DATA:
fw_mem->data_alloc_size += layout_entries[entry].alloc_size;
break;
case FW_COREMEM_CODE:
fw_mem->core_code_alloc_size +=
layout_entries[entry].alloc_size;
break;
case FW_COREMEM_DATA:
fw_mem->core_data_alloc_size +=
layout_entries[entry].alloc_size;
break;
case NONE:
break;
}
}
}
int
pvr_fw_find_mmu_segment(struct pvr_device *pvr_dev, u32 addr, u32 size, void *fw_code_ptr,
void *fw_data_ptr, void *fw_core_code_ptr, void *fw_core_data_ptr,
void **host_addr_out)
{
const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries;
u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num;
u32 end_addr = addr + size;
int entry = 0;
/* Ensure requested range is not zero, and size is not causing addr to overflow. */
if (end_addr <= addr)
return -EINVAL;
for (entry = 0; entry < num_layout_entries; entry++) {
u32 entry_start_addr = layout_entries[entry].base_addr;
u32 entry_end_addr = entry_start_addr + layout_entries[entry].alloc_size;
if (addr >= entry_start_addr && addr < entry_end_addr &&
end_addr > entry_start_addr && end_addr <= entry_end_addr) {
switch (layout_entries[entry].type) {
case FW_CODE:
*host_addr_out = fw_code_ptr;
break;
case FW_DATA:
*host_addr_out = fw_data_ptr;
break;
case FW_COREMEM_CODE:
*host_addr_out = fw_core_code_ptr;
break;
case FW_COREMEM_DATA:
*host_addr_out = fw_core_data_ptr;
break;
default:
return -EINVAL;
}
/* Direct Mem write to mapped memory */
addr -= layout_entries[entry].base_addr;
addr += layout_entries[entry].alloc_offset;
/*
* Add offset to pointer to FW allocation only if that
* allocation is available
*/
*(u8 **)host_addr_out += addr;
return 0;
}
}
return -EINVAL;
}
static int
pvr_fw_create_fwif_connection_ctl(struct pvr_device *pvr_dev)
{
struct drm_device *drm_dev = from_pvr_device(pvr_dev);
struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
fw_dev->fwif_connection_ctl =
pvr_fw_object_create_and_map_offset(pvr_dev,
fw_dev->fw_heap_info.config_offset +
PVR_ROGUE_FWIF_CONNECTION_CTL_OFFSET,
sizeof(*fw_dev->fwif_connection_ctl),
PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
NULL, NULL,
&fw_dev->mem.fwif_connection_ctl_obj);
if (IS_ERR(fw_dev->fwif_connection_ctl)) {
drm_err(drm_dev,
"Unable to allocate FWIF connection control memory\n");
return PTR_ERR(fw_dev->fwif_connection_ctl);
}
return 0;
}
static void
pvr_fw_fini_fwif_connection_ctl(struct pvr_device *pvr_dev)
{
struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
pvr_fw_object_unmap_and_destroy(fw_dev->mem.fwif_connection_ctl_obj);
}
static void
fw_osinit_init(void *cpu_ptr, void *priv)
{
struct rogue_fwif_osinit *fwif_osinit = cpu_ptr;
struct pvr_device *pvr_dev = priv;
struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
struct pvr_fw_mem *fw_mem = &fw_dev->mem;
fwif_osinit->kernel_ccbctl_fw_addr = pvr_dev->kccb.ccb.ctrl_fw_addr;
fwif_osinit->kernel_ccb_fw_addr = pvr_dev->kccb.ccb.ccb_fw_addr;
pvr_fw_object_get_fw_addr(pvr_dev->kccb.rtn_obj,
&fwif_osinit->kernel_ccb_rtn_slots_fw_addr);
fwif_osinit->firmware_ccbctl_fw_addr = pvr_dev->fwccb.ctrl_fw_addr;
fwif_osinit->firmware_ccb_fw_addr = pvr_dev->fwccb.ccb_fw_addr;
fwif_osinit->work_est_firmware_ccbctl_fw_addr = 0;
fwif_osinit->work_est_firmware_ccb_fw_addr = 0;
pvr_fw_object_get_fw_addr(fw_mem->hwrinfobuf_obj,
&fwif_osinit->rogue_fwif_hwr_info_buf_ctl_fw_addr);
pvr_fw_object_get_fw_addr(fw_mem->osdata_obj, &fwif_osinit->fw_os_data_fw_addr);
fwif_osinit->hwr_debug_dump_limit = 0;
rogue_fwif_compchecks_bvnc_init(&fwif_osinit->rogue_comp_checks.hw_bvnc);
rogue_fwif_compchecks_bvnc_init(&fwif_osinit->rogue_comp_checks.fw_bvnc);
}
static void
fw_osdata_init(void *cpu_ptr, void *priv)
{
struct rogue_fwif_osdata *fwif_osdata = cpu_ptr;
struct pvr_device *pvr_dev = priv;
struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem;
pvr_fw_object_get_fw_addr(fw_mem->power_sync_obj, &fwif_osdata->power_sync_fw_addr);
}
static void
fw_fault_page_init(void *cpu_ptr, void *priv)
{
u32 *fault_page = cpu_ptr;
for (int i = 0; i < PVR_ROGUE_FAULT_PAGE_SIZE / sizeof(*fault_page); i++)
fault_page[i] = 0xdeadbee0;
}
static void
fw_sysinit_init(void *cpu_ptr, void *priv)
{
struct rogue_fwif_sysinit *fwif_sysinit = cpu_ptr;
struct pvr_device *pvr_dev = priv;
struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
struct pvr_fw_mem *fw_mem = &fw_dev->mem;
dma_addr_t fault_dma_addr = 0;
u32 clock_speed_hz = clk_get_rate(pvr_dev->core_clk);
WARN_ON(!clock_speed_hz);
WARN_ON(pvr_fw_object_get_dma_addr(fw_mem->fault_page_obj, 0, &fault_dma_addr));
fwif_sysinit->fault_phys_addr = (u64)fault_dma_addr;
fwif_sysinit->pds_exec_base = ROGUE_PDSCODEDATA_HEAP_BASE;
fwif_sysinit->usc_exec_base = ROGUE_USCCODE_HEAP_BASE;
pvr_fw_object_get_fw_addr(fw_mem->runtime_cfg_obj, &fwif_sysinit->runtime_cfg_fw_addr);
pvr_fw_object_get_fw_addr(fw_dev->fw_trace.tracebuf_ctrl_obj,
&fwif_sysinit->trace_buf_ctl_fw_addr);
pvr_fw_object_get_fw_addr(fw_mem->sysdata_obj, &fwif_sysinit->fw_sys_data_fw_addr);
pvr_fw_object_get_fw_addr(fw_mem->gpu_util_fwcb_obj,
&fwif_sysinit->gpu_util_fw_cb_ctl_fw_addr);
if (fw_mem->core_data_obj) {
pvr_fw_object_get_fw_addr(fw_mem->core_data_obj,
&fwif_sysinit->coremem_data_store.fw_addr);
}
/* Currently unsupported. */
fwif_sysinit->counter_dump_ctl.buffer_fw_addr = 0;
fwif_sysinit->counter_dump_ctl.size_in_dwords = 0;
/* Skip alignment checks. */
fwif_sysinit->align_checks = 0;
fwif_sysinit->filter_flags = 0;
fwif_sysinit->hw_perf_filter = 0;
fwif_sysinit->firmware_perf = FW_PERF_CONF_NONE;
fwif_sysinit->initial_core_clock_speed = clock_speed_hz;
fwif_sysinit->active_pm_latency_ms = 0;
fwif_sysinit->gpio_validation_mode = ROGUE_FWIF_GPIO_VAL_OFF;
fwif_sysinit->firmware_started = false;
fwif_sysinit->marker_val = 1;
memset(&fwif_sysinit->bvnc_km_feature_flags, 0,
sizeof(fwif_sysinit->bvnc_km_feature_flags));
}
#define ROGUE_FWIF_SLC_MIN_SIZE_FOR_DM_OVERLAP_KB 4
static void
fw_sysdata_init(void *cpu_ptr, void *priv)
{
struct rogue_fwif_sysdata *fwif_sysdata = cpu_ptr;
struct pvr_device *pvr_dev = priv;
u32 slc_size_in_kilobytes = 0;
u32 config_flags = 0;
WARN_ON(PVR_FEATURE_VALUE(pvr_dev, slc_size_in_kilobytes, &slc_size_in_kilobytes));
if (slc_size_in_kilobytes < ROGUE_FWIF_SLC_MIN_SIZE_FOR_DM_OVERLAP_KB)
config_flags |= ROGUE_FWIF_INICFG_DISABLE_DM_OVERLAP;
fwif_sysdata->config_flags = config_flags;
}
static void
fw_runtime_cfg_init(void *cpu_ptr, void *priv)
{
struct rogue_fwif_runtime_cfg *runtime_cfg = cpu_ptr;
struct pvr_device *pvr_dev = priv;
u32 clock_speed_hz = clk_get_rate(pvr_dev->core_clk);
WARN_ON(!clock_speed_hz);
runtime_cfg->core_clock_speed = clock_speed_hz;
runtime_cfg->active_pm_latency_ms = 0;
runtime_cfg->active_pm_latency_persistant = true;
WARN_ON(PVR_FEATURE_VALUE(pvr_dev, num_clusters,
&runtime_cfg->default_dusts_num_init) != 0);
}
static void
fw_gpu_util_fwcb_init(void *cpu_ptr, void *priv)
{
struct rogue_fwif_gpu_util_fwcb *gpu_util_fwcb = cpu_ptr;
gpu_util_fwcb->last_word = PVR_FWIF_GPU_UTIL_STATE_IDLE;
}
static int
pvr_fw_create_structures(struct pvr_device *pvr_dev)
{
struct drm_device *drm_dev = from_pvr_device(pvr_dev);
struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
struct pvr_fw_mem *fw_mem = &fw_dev->mem;
int err;
fw_dev->power_sync = pvr_fw_object_create_and_map(pvr_dev, sizeof(*fw_dev->power_sync),
PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
NULL, NULL, &fw_mem->power_sync_obj);
if (IS_ERR(fw_dev->power_sync)) {
drm_err(drm_dev, "Unable to allocate FW power_sync structure\n");
return PTR_ERR(fw_dev->power_sync);
}
fw_dev->hwrinfobuf = pvr_fw_object_create_and_map(pvr_dev, sizeof(*fw_dev->hwrinfobuf),
PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
NULL, NULL, &fw_mem->hwrinfobuf_obj);
if (IS_ERR(fw_dev->hwrinfobuf)) {
drm_err(drm_dev,
"Unable to allocate FW hwrinfobuf structure\n");
err = PTR_ERR(fw_dev->hwrinfobuf);
goto err_release_power_sync;
}
err = pvr_fw_object_create(pvr_dev, PVR_SYNC_OBJ_SIZE,
PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
NULL, NULL, &fw_mem->mmucache_sync_obj);
if (err) {
drm_err(drm_dev,
"Unable to allocate MMU cache sync object\n");
goto err_release_hwrinfobuf;
}
fw_dev->fwif_sysdata = pvr_fw_object_create_and_map(pvr_dev,
sizeof(*fw_dev->fwif_sysdata),
PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
fw_sysdata_init, pvr_dev,
&fw_mem->sysdata_obj);
if (IS_ERR(fw_dev->fwif_sysdata)) {
drm_err(drm_dev, "Unable to allocate FW SYSDATA structure\n");
err = PTR_ERR(fw_dev->fwif_sysdata);
goto err_release_mmucache_sync_obj;
}
err = pvr_fw_object_create(pvr_dev, PVR_ROGUE_FAULT_PAGE_SIZE,
PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
fw_fault_page_init, NULL, &fw_mem->fault_page_obj);
if (err) {
drm_err(drm_dev, "Unable to allocate FW fault page\n");
goto err_release_sysdata;
}
err = pvr_fw_object_create(pvr_dev, sizeof(struct rogue_fwif_gpu_util_fwcb),
PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
fw_gpu_util_fwcb_init, pvr_dev, &fw_mem->gpu_util_fwcb_obj);
if (err) {
drm_err(drm_dev, "Unable to allocate GPU util FWCB\n");
goto err_release_fault_page;
}
err = pvr_fw_object_create(pvr_dev, sizeof(struct rogue_fwif_runtime_cfg),
PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
fw_runtime_cfg_init, pvr_dev, &fw_mem->runtime_cfg_obj);
if (err) {
drm_err(drm_dev, "Unable to allocate FW runtime config\n");
goto err_release_gpu_util_fwcb;
}
err = pvr_fw_trace_init(pvr_dev);
if (err)
goto err_release_runtime_cfg;
fw_dev->fwif_osdata = pvr_fw_object_create_and_map(pvr_dev,
sizeof(*fw_dev->fwif_osdata),
PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
fw_osdata_init, pvr_dev,
&fw_mem->osdata_obj);
if (IS_ERR(fw_dev->fwif_osdata)) {
drm_err(drm_dev, "Unable to allocate FW OSDATA structure\n");
err = PTR_ERR(fw_dev->fwif_osdata);
goto err_fw_trace_fini;
}
fw_dev->fwif_osinit =
pvr_fw_object_create_and_map_offset(pvr_dev,
fw_dev->fw_heap_info.config_offset +
PVR_ROGUE_FWIF_OSINIT_OFFSET,
sizeof(*fw_dev->fwif_osinit),
PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
fw_osinit_init, pvr_dev, &fw_mem->osinit_obj);
if (IS_ERR(fw_dev->fwif_osinit)) {
drm_err(drm_dev, "Unable to allocate FW OSINIT structure\n");
err = PTR_ERR(fw_dev->fwif_osinit);
goto err_release_osdata;
}
fw_dev->fwif_sysinit =
pvr_fw_object_create_and_map_offset(pvr_dev,
fw_dev->fw_heap_info.config_offset +
PVR_ROGUE_FWIF_SYSINIT_OFFSET,
sizeof(*fw_dev->fwif_sysinit),
PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
fw_sysinit_init, pvr_dev, &fw_mem->sysinit_obj);
if (IS_ERR(fw_dev->fwif_sysinit)) {
drm_err(drm_dev, "Unable to allocate FW SYSINIT structure\n");
err = PTR_ERR(fw_dev->fwif_sysinit);
goto err_release_osinit;
}
return 0;
err_release_osinit:
pvr_fw_object_unmap_and_destroy(fw_mem->osinit_obj);
err_release_osdata:
pvr_fw_object_unmap_and_destroy(fw_mem->osdata_obj);
err_fw_trace_fini:
pvr_fw_trace_fini(pvr_dev);
err_release_runtime_cfg:
pvr_fw_object_destroy(fw_mem->runtime_cfg_obj);
err_release_gpu_util_fwcb:
pvr_fw_object_destroy(fw_mem->gpu_util_fwcb_obj);
err_release_fault_page:
pvr_fw_object_destroy(fw_mem->fault_page_obj);
err_release_sysdata:
pvr_fw_object_unmap_and_destroy(fw_mem->sysdata_obj);
err_release_mmucache_sync_obj:
pvr_fw_object_destroy(fw_mem->mmucache_sync_obj);
err_release_hwrinfobuf:
pvr_fw_object_unmap_and_destroy(fw_mem->hwrinfobuf_obj);
err_release_power_sync:
pvr_fw_object_unmap_and_destroy(fw_mem->power_sync_obj);
return err;
}
static void
pvr_fw_destroy_structures(struct pvr_device *pvr_dev)
{
struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
struct pvr_fw_mem *fw_mem = &fw_dev->mem;
pvr_fw_trace_fini(pvr_dev);
pvr_fw_object_destroy(fw_mem->runtime_cfg_obj);
pvr_fw_object_destroy(fw_mem->gpu_util_fwcb_obj);
pvr_fw_object_destroy(fw_mem->fault_page_obj);
pvr_fw_object_unmap_and_destroy(fw_mem->sysdata_obj);
pvr_fw_object_unmap_and_destroy(fw_mem->sysinit_obj);
pvr_fw_object_destroy(fw_mem->mmucache_sync_obj);
pvr_fw_object_unmap_and_destroy(fw_mem->hwrinfobuf_obj);
pvr_fw_object_unmap_and_destroy(fw_mem->power_sync_obj);
pvr_fw_object_unmap_and_destroy(fw_mem->osdata_obj);
pvr_fw_object_unmap_and_destroy(fw_mem->osinit_obj);
}
/**
* pvr_fw_process() - Process firmware image, allocate FW memory and create boot
* arguments
* @pvr_dev: Device pointer.
*
* Returns:
* * 0 on success, or
* * Any error returned by pvr_fw_object_create_and_map_offset(), or
* * Any error returned by pvr_fw_object_create_and_map().
*/
static int
pvr_fw_process(struct pvr_device *pvr_dev)
{
struct drm_device *drm_dev = from_pvr_device(pvr_dev);
struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem;
const u8 *fw = pvr_dev->fw_dev.firmware->data;
const struct pvr_fw_layout_entry *private_data;
u8 *fw_code_ptr;
u8 *fw_data_ptr;
u8 *fw_core_code_ptr;
u8 *fw_core_data_ptr;
int err;
layout_get_sizes(pvr_dev);
private_data = pvr_fw_find_private_data(pvr_dev);
if (!private_data)
return -EINVAL;
/* Allocate and map memory for firmware sections. */
/*
* Code allocation must be at the start of the firmware heap, otherwise
* firmware processor will be unable to boot.
*
* This has the useful side-effect that for every other object in the
* driver, a firmware address of 0 is invalid.
*/
fw_code_ptr = pvr_fw_object_create_and_map_offset(pvr_dev, 0, fw_mem->code_alloc_size,
PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
NULL, NULL, &fw_mem->code_obj);
if (IS_ERR(fw_code_ptr)) {
drm_err(drm_dev, "Unable to allocate FW code memory\n");
return PTR_ERR(fw_code_ptr);
}
if (pvr_dev->fw_dev.defs->has_fixed_data_addr()) {
u32 base_addr = private_data->base_addr & pvr_dev->fw_dev.fw_heap_info.offset_mask;
fw_data_ptr =
pvr_fw_object_create_and_map_offset(pvr_dev, base_addr,
fw_mem->data_alloc_size,
PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
NULL, NULL, &fw_mem->data_obj);
} else {
fw_data_ptr = pvr_fw_object_create_and_map(pvr_dev, fw_mem->data_alloc_size,
PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
NULL, NULL, &fw_mem->data_obj);
}
if (IS_ERR(fw_data_ptr)) {
drm_err(drm_dev, "Unable to allocate FW data memory\n");
err = PTR_ERR(fw_data_ptr);
goto err_free_fw_code_obj;
}
/* Core code and data sections are optional. */
if (fw_mem->core_code_alloc_size) {
fw_core_code_ptr =
pvr_fw_object_create_and_map(pvr_dev, fw_mem->core_code_alloc_size,
PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
NULL, NULL, &fw_mem->core_code_obj);
if (IS_ERR(fw_core_code_ptr)) {
drm_err(drm_dev,
"Unable to allocate FW core code memory\n");
err = PTR_ERR(fw_core_code_ptr);
goto err_free_fw_data_obj;
}
} else {
fw_core_code_ptr = NULL;
}
if (fw_mem->core_data_alloc_size) {
fw_core_data_ptr =
pvr_fw_object_create_and_map(pvr_dev, fw_mem->core_data_alloc_size,
PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
NULL, NULL, &fw_mem->core_data_obj);
if (IS_ERR(fw_core_data_ptr)) {
drm_err(drm_dev,
"Unable to allocate FW core data memory\n");
err = PTR_ERR(fw_core_data_ptr);
goto err_free_fw_core_code_obj;
}
} else {
fw_core_data_ptr = NULL;
}
fw_mem->code = kzalloc(fw_mem->code_alloc_size, GFP_KERNEL);
fw_mem->data = kzalloc(fw_mem->data_alloc_size, GFP_KERNEL);
if (fw_mem->core_code_alloc_size)
fw_mem->core_code = kzalloc(fw_mem->core_code_alloc_size, GFP_KERNEL);
if (fw_mem->core_data_alloc_size)
fw_mem->core_data = kzalloc(fw_mem->core_data_alloc_size, GFP_KERNEL);
if (!fw_mem->code || !fw_mem->data ||
(!fw_mem->core_code && fw_mem->core_code_alloc_size) ||
(!fw_mem->core_data && fw_mem->core_data_alloc_size)) {
err = -ENOMEM;
goto err_free_kdata;
}
err = pvr_dev->fw_dev.defs->fw_process(pvr_dev, fw,
fw_mem->code, fw_mem->data, fw_mem->core_code,
fw_mem->core_data, fw_mem->core_code_alloc_size);
if (err)
goto err_free_fw_core_data_obj;
memcpy(fw_code_ptr, fw_mem->code, fw_mem->code_alloc_size);
memcpy(fw_data_ptr, fw_mem->data, fw_mem->data_alloc_size);
if (fw_mem->core_code)
memcpy(fw_core_code_ptr, fw_mem->core_code, fw_mem->core_code_alloc_size);
if (fw_mem->core_data)
memcpy(fw_core_data_ptr, fw_mem->core_data, fw_mem->core_data_alloc_size);
/* We're finished with the firmware section memory on the CPU, unmap. */
if (fw_core_data_ptr)
pvr_fw_object_vunmap(fw_mem->core_data_obj);
if (fw_core_code_ptr)
pvr_fw_object_vunmap(fw_mem->core_code_obj);
pvr_fw_object_vunmap(fw_mem->data_obj);
fw_data_ptr = NULL;
pvr_fw_object_vunmap(fw_mem->code_obj);
fw_code_ptr = NULL;
err = pvr_fw_create_fwif_connection_ctl(pvr_dev);
if (err)
goto err_free_fw_core_data_obj;
return 0;
err_free_kdata:
kfree(fw_mem->core_data);
kfree(fw_mem->core_code);
kfree(fw_mem->data);
kfree(fw_mem->code);
err_free_fw_core_data_obj:
if (fw_core_data_ptr)
pvr_fw_object_unmap_and_destroy(fw_mem->core_data_obj);
err_free_fw_core_code_obj:
if (fw_core_code_ptr)
pvr_fw_object_unmap_and_destroy(fw_mem->core_code_obj);
err_free_fw_data_obj:
if (fw_data_ptr)
pvr_fw_object_vunmap(fw_mem->data_obj);
pvr_fw_object_destroy(fw_mem->data_obj);
err_free_fw_code_obj:
if (fw_code_ptr)
pvr_fw_object_vunmap(fw_mem->code_obj);
pvr_fw_object_destroy(fw_mem->code_obj);
return err;
}
static int
pvr_copy_to_fw(struct pvr_fw_object *dest_obj, u8 *src_ptr, u32 size)
{
u8 *dest_ptr = pvr_fw_object_vmap(dest_obj);
if (IS_ERR(dest_ptr))
return PTR_ERR(dest_ptr);
memcpy(dest_ptr, src_ptr, size);
pvr_fw_object_vunmap(dest_obj);
return 0;
}
static int
pvr_fw_reinit_code_data(struct pvr_device *pvr_dev)
{
struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem;
int err;
err = pvr_copy_to_fw(fw_mem->code_obj, fw_mem->code, fw_mem->code_alloc_size);
if (err)
return err;
err = pvr_copy_to_fw(fw_mem->data_obj, fw_mem->data, fw_mem->data_alloc_size);
if (err)
return err;
if (fw_mem->core_code) {
err = pvr_copy_to_fw(fw_mem->core_code_obj, fw_mem->core_code,
fw_mem->core_code_alloc_size);
if (err)
return err;
}
if (fw_mem->core_data) {
err = pvr_copy_to_fw(fw_mem->core_data_obj, fw_mem->core_data,
fw_mem->core_data_alloc_size);
if (err)
return err;
}
return 0;
}
static void
pvr_fw_cleanup(struct pvr_device *pvr_dev)
{
struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem;
pvr_fw_fini_fwif_connection_ctl(pvr_dev);
if (fw_mem->core_code_obj)
pvr_fw_object_destroy(fw_mem->core_code_obj);
if (fw_mem->core_data_obj)
pvr_fw_object_destroy(fw_mem->core_data_obj);
pvr_fw_object_destroy(fw_mem->code_obj);
pvr_fw_object_destroy(fw_mem->data_obj);
}
/**
* pvr_wait_for_fw_boot() - Wait for firmware to finish booting
* @pvr_dev: Target PowerVR device.
*
* Returns:
* * 0 on success, or
* * -%ETIMEDOUT if firmware fails to boot within timeout.
*/
int
pvr_wait_for_fw_boot(struct pvr_device *pvr_dev)
{
ktime_t deadline = ktime_add_us(ktime_get(), FW_BOOT_TIMEOUT_USEC);
struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
while (ktime_to_ns(ktime_sub(deadline, ktime_get())) > 0) {
if (READ_ONCE(fw_dev->fwif_sysinit->firmware_started))
return 0;
}
return -ETIMEDOUT;
}
/*
* pvr_fw_heap_info_init() - Calculate size and masks for FW heap
* @pvr_dev: Target PowerVR device.
* @log2_size: Log2 of raw heap size.
* @reserved_size: Size of reserved area of heap, in bytes. May be zero.
*/
void
pvr_fw_heap_info_init(struct pvr_device *pvr_dev, u32 log2_size, u32 reserved_size)
{
struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
fw_dev->fw_heap_info.gpu_addr = PVR_ROGUE_FW_MAIN_HEAP_BASE;
fw_dev->fw_heap_info.log2_size = log2_size;
fw_dev->fw_heap_info.reserved_size = reserved_size;
fw_dev->fw_heap_info.raw_size = 1 << fw_dev->fw_heap_info.log2_size;
fw_dev->fw_heap_info.offset_mask = fw_dev->fw_heap_info.raw_size - 1;
fw_dev->fw_heap_info.config_offset = fw_dev->fw_heap_info.raw_size -
PVR_ROGUE_FW_CONFIG_HEAP_SIZE;
fw_dev->fw_heap_info.size = fw_dev->fw_heap_info.raw_size -
(PVR_ROGUE_FW_CONFIG_HEAP_SIZE + reserved_size);
}
/**
* pvr_fw_validate_init_device_info() - Validate firmware and initialise device information
* @pvr_dev: Target PowerVR device.
*
* This function must be called before querying device information.
*
* Returns:
* * 0 on success, or
* * -%EINVAL if firmware validation fails.
*/
int
pvr_fw_validate_init_device_info(struct pvr_device *pvr_dev)
{
int err;
err = pvr_fw_validate(pvr_dev);
if (err)
return err;
return pvr_fw_get_device_info(pvr_dev);
}
/**
* pvr_fw_init() - Initialise and boot firmware
* @pvr_dev: Target PowerVR device
*
* On successful completion of the function the PowerVR device will be
* initialised and ready to use.
*
* Returns:
* * 0 on success,
* * -%EINVAL on invalid firmware image,
* * -%ENOMEM on out of memory, or
* * -%ETIMEDOUT if firmware processor fails to boot or on register poll timeout.
*/
int
pvr_fw_init(struct pvr_device *pvr_dev)
{
u32 kccb_size_log2 = ROGUE_FWIF_KCCB_NUMCMDS_LOG2_DEFAULT;
u32 kccb_rtn_size = (1 << kccb_size_log2) * sizeof(*pvr_dev->kccb.rtn);
struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
int err;
if (fw_dev->processor_type == PVR_FW_PROCESSOR_TYPE_META)
fw_dev->defs = &pvr_fw_defs_meta;
else if (fw_dev->processor_type == PVR_FW_PROCESSOR_TYPE_MIPS)
fw_dev->defs = &pvr_fw_defs_mips;
else
return -EINVAL;
err = fw_dev->defs->init(pvr_dev);
if (err)
return err;
drm_mm_init(&fw_dev->fw_mm, ROGUE_FW_HEAP_BASE, fw_dev->fw_heap_info.raw_size);
fw_dev->fw_mm_base = ROGUE_FW_HEAP_BASE;
spin_lock_init(&fw_dev->fw_mm_lock);
INIT_LIST_HEAD(&fw_dev->fw_objs.list);
err = drmm_mutex_init(from_pvr_device(pvr_dev), &fw_dev->fw_objs.lock);
if (err)
goto err_mm_takedown;
err = pvr_fw_process(pvr_dev);
if (err)
goto err_mm_takedown;
/* Initialise KCCB and FWCCB. */
err = pvr_kccb_init(pvr_dev);
if (err)
goto err_fw_cleanup;
err = pvr_fwccb_init(pvr_dev);
if (err)
goto err_kccb_fini;
/* Allocate memory for KCCB return slots. */
pvr_dev->kccb.rtn = pvr_fw_object_create_and_map(pvr_dev, kccb_rtn_size,
PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
NULL, NULL, &pvr_dev->kccb.rtn_obj);
if (IS_ERR(pvr_dev->kccb.rtn)) {
err = PTR_ERR(pvr_dev->kccb.rtn);
goto err_fwccb_fini;
}
err = pvr_fw_create_structures(pvr_dev);
if (err)
goto err_kccb_rtn_release;
err = pvr_fw_start(pvr_dev);
if (err)
goto err_destroy_structures;
err = pvr_wait_for_fw_boot(pvr_dev);
if (err) {
drm_err(from_pvr_device(pvr_dev), "Firmware failed to boot\n");
goto err_fw_stop;
}
fw_dev->booted = true;
return 0;
err_fw_stop:
pvr_fw_stop(pvr_dev);
err_destroy_structures:
pvr_fw_destroy_structures(pvr_dev);
err_kccb_rtn_release:
pvr_fw_object_unmap_and_destroy(pvr_dev->kccb.rtn_obj);
err_fwccb_fini:
pvr_ccb_fini(&pvr_dev->fwccb);
err_kccb_fini:
pvr_kccb_fini(pvr_dev);
err_fw_cleanup:
pvr_fw_cleanup(pvr_dev);
err_mm_takedown:
drm_mm_takedown(&fw_dev->fw_mm);
if (fw_dev->defs->fini)
fw_dev->defs->fini(pvr_dev);
return err;
}
/**
* pvr_fw_fini() - Shutdown firmware processor and free associated memory
* @pvr_dev: Target PowerVR device
*/
void
pvr_fw_fini(struct pvr_device *pvr_dev)
{
struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
fw_dev->booted = false;
pvr_fw_destroy_structures(pvr_dev);
pvr_fw_object_unmap_and_destroy(pvr_dev->kccb.rtn_obj);
/*
* Ensure FWCCB worker has finished executing before destroying FWCCB. The IRQ handler has
* been unregistered at this point so no new work should be being submitted.
*/
pvr_ccb_fini(&pvr_dev->fwccb);
pvr_kccb_fini(pvr_dev);
pvr_fw_cleanup(pvr_dev);
mutex_lock(&pvr_dev->fw_dev.fw_objs.lock);
WARN_ON(!list_empty(&pvr_dev->fw_dev.fw_objs.list));
mutex_unlock(&pvr_dev->fw_dev.fw_objs.lock);
drm_mm_takedown(&fw_dev->fw_mm);
if (fw_dev->defs->fini)
fw_dev->defs->fini(pvr_dev);
}
/**
* pvr_fw_mts_schedule() - Schedule work via an MTS kick
* @pvr_dev: Target PowerVR device
* @val: Kick mask. Should be a combination of %ROGUE_CR_MTS_SCHEDULE_*
*/
void
pvr_fw_mts_schedule(struct pvr_device *pvr_dev, u32 val)
{
/* Ensure memory is flushed before kicking MTS. */
wmb();
pvr_cr_write32(pvr_dev, ROGUE_CR_MTS_SCHEDULE, val);
/* Ensure the MTS kick goes through before continuing. */
mb();
}
/**
* pvr_fw_structure_cleanup() - Send FW cleanup request for an object
* @pvr_dev: Target PowerVR device.
* @type: Type of object to cleanup. Must be one of &enum rogue_fwif_cleanup_type.
* @fw_obj: Pointer to FW object containing object to cleanup.
* @offset: Offset within FW object of object to cleanup.
*
* Returns:
* * 0 on success,
* * -EBUSY if object is busy,
* * -ETIMEDOUT on timeout, or
* * -EIO if device is lost.
*/
int
pvr_fw_structure_cleanup(struct pvr_device *pvr_dev, u32 type, struct pvr_fw_object *fw_obj,
u32 offset)
{
struct rogue_fwif_kccb_cmd cmd;
int slot_nr;
int idx;
int err;
u32 rtn;
struct rogue_fwif_cleanup_request *cleanup_req = &cmd.cmd_data.cleanup_data;
down_read(&pvr_dev->reset_sem);
if (!drm_dev_enter(from_pvr_device(pvr_dev), &idx)) {
err = -EIO;
goto err_up_read;
}
cmd.cmd_type = ROGUE_FWIF_KCCB_CMD_CLEANUP;
cmd.kccb_flags = 0;
cleanup_req->cleanup_type = type;
switch (type) {
case ROGUE_FWIF_CLEANUP_FWCOMMONCONTEXT:
pvr_fw_object_get_fw_addr_offset(fw_obj, offset,
&cleanup_req->cleanup_data.context_fw_addr);
break;
case ROGUE_FWIF_CLEANUP_HWRTDATA:
pvr_fw_object_get_fw_addr_offset(fw_obj, offset,
&cleanup_req->cleanup_data.hwrt_data_fw_addr);
break;
case ROGUE_FWIF_CLEANUP_FREELIST:
pvr_fw_object_get_fw_addr_offset(fw_obj, offset,
&cleanup_req->cleanup_data.freelist_fw_addr);
break;
default:
err = -EINVAL;
goto err_drm_dev_exit;
}
err = pvr_kccb_send_cmd(pvr_dev, &cmd, &slot_nr);
if (err)
goto err_drm_dev_exit;
err = pvr_kccb_wait_for_completion(pvr_dev, slot_nr, HZ, &rtn);
if (err)
goto err_drm_dev_exit;
if (rtn & ROGUE_FWIF_KCCB_RTN_SLOT_CLEANUP_BUSY)
err = -EBUSY;
err_drm_dev_exit:
drm_dev_exit(idx);
err_up_read:
up_read(&pvr_dev->reset_sem);
return err;
}
/**
* pvr_fw_object_fw_map() - Map a FW object in firmware address space
* @pvr_dev: Device pointer.
* @fw_obj: FW object to map.
* @dev_addr: Desired address in device space, if a specific address is
* required. 0 otherwise.
*
* Returns:
* * 0 on success, or
* * -%EINVAL if @fw_obj is already mapped but has no references, or
* * Any error returned by DRM.
*/
static int
pvr_fw_object_fw_map(struct pvr_device *pvr_dev, struct pvr_fw_object *fw_obj, u64 dev_addr)
{
struct pvr_gem_object *pvr_obj = fw_obj->gem;
struct drm_gem_object *gem_obj = gem_from_pvr_gem(pvr_obj);
struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
int err;
spin_lock(&fw_dev->fw_mm_lock);
if (drm_mm_node_allocated(&fw_obj->fw_mm_node)) {
err = -EINVAL;
goto err_unlock;
}
if (!dev_addr) {
/*
* Allocate from the main heap only (firmware heap minus
* config space).
*/
err = drm_mm_insert_node_in_range(&fw_dev->fw_mm, &fw_obj->fw_mm_node,
gem_obj->size, 0, 0,
fw_dev->fw_heap_info.gpu_addr,
fw_dev->fw_heap_info.gpu_addr +
fw_dev->fw_heap_info.size, 0);
if (err)
goto err_unlock;
} else {
fw_obj->fw_mm_node.start = dev_addr;
fw_obj->fw_mm_node.size = gem_obj->size;
err = drm_mm_reserve_node(&fw_dev->fw_mm, &fw_obj->fw_mm_node);
if (err)
goto err_unlock;
}
spin_unlock(&fw_dev->fw_mm_lock);
/* Map object on GPU. */
err = fw_dev->defs->vm_map(pvr_dev, fw_obj);
if (err)
goto err_remove_node;
fw_obj->fw_addr_offset = (u32)(fw_obj->fw_mm_node.start - fw_dev->fw_mm_base);
return 0;
err_remove_node:
spin_lock(&fw_dev->fw_mm_lock);
drm_mm_remove_node(&fw_obj->fw_mm_node);
err_unlock:
spin_unlock(&fw_dev->fw_mm_lock);
return err;
}
/**
* pvr_fw_object_fw_unmap() - Unmap a previously mapped FW object
* @fw_obj: FW object to unmap.
*
* Returns:
* * 0 on success, or
* * -%EINVAL if object is not currently mapped.
*/
static int
pvr_fw_object_fw_unmap(struct pvr_fw_object *fw_obj)
{
struct pvr_gem_object *pvr_obj = fw_obj->gem;
struct drm_gem_object *gem_obj = gem_from_pvr_gem(pvr_obj);
struct pvr_device *pvr_dev = to_pvr_device(gem_obj->dev);
struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
fw_dev->defs->vm_unmap(pvr_dev, fw_obj);
spin_lock(&fw_dev->fw_mm_lock);
if (!drm_mm_node_allocated(&fw_obj->fw_mm_node)) {
spin_unlock(&fw_dev->fw_mm_lock);
return -EINVAL;
}
drm_mm_remove_node(&fw_obj->fw_mm_node);
spin_unlock(&fw_dev->fw_mm_lock);
return 0;
}
static void *
pvr_fw_object_create_and_map_common(struct pvr_device *pvr_dev, size_t size,
u64 flags, u64 dev_addr,
void (*init)(void *cpu_ptr, void *priv),
void *init_priv, struct pvr_fw_object **fw_obj_out)
{
struct pvr_fw_object *fw_obj;
void *cpu_ptr;
int err;
/* %DRM_PVR_BO_PM_FW_PROTECT is implicit for FW objects. */
flags |= DRM_PVR_BO_PM_FW_PROTECT;
fw_obj = kzalloc(sizeof(*fw_obj), GFP_KERNEL);
if (!fw_obj)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&fw_obj->node);
fw_obj->init = init;
fw_obj->init_priv = init_priv;
fw_obj->gem = pvr_gem_object_create(pvr_dev, size, flags);
if (IS_ERR(fw_obj->gem)) {
err = PTR_ERR(fw_obj->gem);
fw_obj->gem = NULL;
goto err_put_object;
}
err = pvr_fw_object_fw_map(pvr_dev, fw_obj, dev_addr);
if (err)
goto err_put_object;
cpu_ptr = pvr_fw_object_vmap(fw_obj);
if (IS_ERR(cpu_ptr)) {
err = PTR_ERR(cpu_ptr);
goto err_put_object;
}
*fw_obj_out = fw_obj;
if (fw_obj->init)
fw_obj->init(cpu_ptr, fw_obj->init_priv);
mutex_lock(&pvr_dev->fw_dev.fw_objs.lock);
list_add_tail(&fw_obj->node, &pvr_dev->fw_dev.fw_objs.list);
mutex_unlock(&pvr_dev->fw_dev.fw_objs.lock);
return cpu_ptr;
err_put_object:
pvr_fw_object_destroy(fw_obj);
return ERR_PTR(err);
}
/**
* pvr_fw_object_create() - Create a FW object and map to firmware
* @pvr_dev: PowerVR device pointer.
* @size: Size of object, in bytes.
* @flags: Options which affect both this operation and future mapping
* operations performed on the returned object. Must be a combination of
* DRM_PVR_BO_* and/or PVR_BO_* flags.
* @init: Initialisation callback.
* @init_priv: Private pointer to pass to initialisation callback.
* @fw_obj_out: Pointer to location to store created object pointer.
*
* %DRM_PVR_BO_DEVICE_PM_FW_PROTECT is implied for all FW objects. Consequently,
* this function will fail if @flags has %DRM_PVR_BO_CPU_ALLOW_USERSPACE_ACCESS
* set.
*
* Returns:
* * 0 on success, or
* * Any error returned by pvr_fw_object_create_common().
*/
int
pvr_fw_object_create(struct pvr_device *pvr_dev, size_t size, u64 flags,
void (*init)(void *cpu_ptr, void *priv), void *init_priv,
struct pvr_fw_object **fw_obj_out)
{
void *cpu_ptr;
cpu_ptr = pvr_fw_object_create_and_map_common(pvr_dev, size, flags, 0, init, init_priv,
fw_obj_out);
if (IS_ERR(cpu_ptr))
return PTR_ERR(cpu_ptr);
pvr_fw_object_vunmap(*fw_obj_out);
return 0;
}
/**
* pvr_fw_object_create_and_map() - Create a FW object and map to firmware and CPU
* @pvr_dev: PowerVR device pointer.
* @size: Size of object, in bytes.
* @flags: Options which affect both this operation and future mapping
* operations performed on the returned object. Must be a combination of
* DRM_PVR_BO_* and/or PVR_BO_* flags.
* @init: Initialisation callback.
* @init_priv: Private pointer to pass to initialisation callback.
* @fw_obj_out: Pointer to location to store created object pointer.
*
* %DRM_PVR_BO_DEVICE_PM_FW_PROTECT is implied for all FW objects. Consequently,
* this function will fail if @flags has %DRM_PVR_BO_CPU_ALLOW_USERSPACE_ACCESS
* set.
*
* Caller is responsible for calling pvr_fw_object_vunmap() to release the CPU
* mapping.
*
* Returns:
* * Pointer to CPU mapping of newly created object, or
* * Any error returned by pvr_fw_object_create(), or
* * Any error returned by pvr_fw_object_vmap().
*/
void *
pvr_fw_object_create_and_map(struct pvr_device *pvr_dev, size_t size, u64 flags,
void (*init)(void *cpu_ptr, void *priv),
void *init_priv, struct pvr_fw_object **fw_obj_out)
{
return pvr_fw_object_create_and_map_common(pvr_dev, size, flags, 0, init, init_priv,
fw_obj_out);
}
/**
* pvr_fw_object_create_and_map_offset() - Create a FW object and map to
* firmware at the provided offset and to the CPU.
* @pvr_dev: PowerVR device pointer.
* @dev_offset: Base address of desired FW mapping, offset from start of FW heap.
* @size: Size of object, in bytes.
* @flags: Options which affect both this operation and future mapping
* operations performed on the returned object. Must be a combination of
* DRM_PVR_BO_* and/or PVR_BO_* flags.
* @init: Initialisation callback.
* @init_priv: Private pointer to pass to initialisation callback.
* @fw_obj_out: Pointer to location to store created object pointer.
*
* %DRM_PVR_BO_DEVICE_PM_FW_PROTECT is implied for all FW objects. Consequently,
* this function will fail if @flags has %DRM_PVR_BO_CPU_ALLOW_USERSPACE_ACCESS
* set.
*
* Caller is responsible for calling pvr_fw_object_vunmap() to release the CPU
* mapping.
*
* Returns:
* * Pointer to CPU mapping of newly created object, or
* * Any error returned by pvr_fw_object_create(), or
* * Any error returned by pvr_fw_object_vmap().
*/
void *
pvr_fw_object_create_and_map_offset(struct pvr_device *pvr_dev,
u32 dev_offset, size_t size, u64 flags,
void (*init)(void *cpu_ptr, void *priv),
void *init_priv, struct pvr_fw_object **fw_obj_out)
{
u64 dev_addr = pvr_dev->fw_dev.fw_mm_base + dev_offset;
return pvr_fw_object_create_and_map_common(pvr_dev, size, flags, dev_addr, init, init_priv,
fw_obj_out);
}
/**
* pvr_fw_object_destroy() - Destroy a pvr_fw_object
* @fw_obj: Pointer to object to destroy.
*/
void pvr_fw_object_destroy(struct pvr_fw_object *fw_obj)
{
struct pvr_gem_object *pvr_obj = fw_obj->gem;
struct drm_gem_object *gem_obj = gem_from_pvr_gem(pvr_obj);
struct pvr_device *pvr_dev = to_pvr_device(gem_obj->dev);
mutex_lock(&pvr_dev->fw_dev.fw_objs.lock);
list_del(&fw_obj->node);
mutex_unlock(&pvr_dev->fw_dev.fw_objs.lock);
if (drm_mm_node_allocated(&fw_obj->fw_mm_node)) {
/* If we can't unmap, leak the memory. */
if (WARN_ON(pvr_fw_object_fw_unmap(fw_obj)))
return;
}
if (fw_obj->gem)
pvr_gem_object_put(fw_obj->gem);
kfree(fw_obj);
}
/**
* pvr_fw_object_get_fw_addr_offset() - Return address of object in firmware address space, with
* given offset.
* @fw_obj: Pointer to object.
* @offset: Desired offset from start of object.
* @fw_addr_out: Location to store address to.
*/
void pvr_fw_object_get_fw_addr_offset(struct pvr_fw_object *fw_obj, u32 offset, u32 *fw_addr_out)
{
struct pvr_gem_object *pvr_obj = fw_obj->gem;
struct pvr_device *pvr_dev = to_pvr_device(gem_from_pvr_gem(pvr_obj)->dev);
*fw_addr_out = pvr_dev->fw_dev.defs->get_fw_addr_with_offset(fw_obj, offset);
}
/*
* pvr_fw_hard_reset() - Re-initialise the FW code and data segments, and reset all global FW
* structures
* @pvr_dev: Device pointer
*
* If this function returns an error then the caller must regard the device as lost.
*
* Returns:
* * 0 on success, or
* * Any error returned by pvr_fw_init_dev_structures() or pvr_fw_reset_all().
*/
int
pvr_fw_hard_reset(struct pvr_device *pvr_dev)
{
struct list_head *pos;
int err;
/* Reset all FW objects */
mutex_lock(&pvr_dev->fw_dev.fw_objs.lock);
list_for_each(pos, &pvr_dev->fw_dev.fw_objs.list) {
struct pvr_fw_object *fw_obj = container_of(pos, struct pvr_fw_object, node);
void *cpu_ptr = pvr_fw_object_vmap(fw_obj);
WARN_ON(IS_ERR(cpu_ptr));
if (!(fw_obj->gem->flags & PVR_BO_FW_NO_CLEAR_ON_RESET)) {
memset(cpu_ptr, 0, pvr_gem_object_size(fw_obj->gem));
if (fw_obj->init)
fw_obj->init(cpu_ptr, fw_obj->init_priv);
}
pvr_fw_object_vunmap(fw_obj);
}
mutex_unlock(&pvr_dev->fw_dev.fw_objs.lock);
err = pvr_fw_reinit_code_data(pvr_dev);
if (err)
return err;
return 0;
}