mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-26 20:44:32 +08:00
5dd01be145
On ppc big endian this check fails, the mutex doesn't necessarily need to be identical for all pages after pthread_mutex_lock/unlock cycles. The count verification (outside of the pthread_mutex_t structure) suffices and that is retained. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Dr. David Alan Gilbert <dgilbert@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Shuah Khan <shuahkh@osg.samsung.com> Cc: Thierry Reding <treding@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
646 lines
17 KiB
C
646 lines
17 KiB
C
/*
|
|
* Stress userfaultfd syscall.
|
|
*
|
|
* Copyright (C) 2015 Red Hat, Inc.
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2. See
|
|
* the COPYING file in the top-level directory.
|
|
*
|
|
* This test allocates two virtual areas and bounces the physical
|
|
* memory across the two virtual areas (from area_src to area_dst)
|
|
* using userfaultfd.
|
|
*
|
|
* There are three threads running per CPU:
|
|
*
|
|
* 1) one per-CPU thread takes a per-page pthread_mutex in a random
|
|
* page of the area_dst (while the physical page may still be in
|
|
* area_src), and increments a per-page counter in the same page,
|
|
* and checks its value against a verification region.
|
|
*
|
|
* 2) another per-CPU thread handles the userfaults generated by
|
|
* thread 1 above. userfaultfd blocking reads or poll() modes are
|
|
* exercised interleaved.
|
|
*
|
|
* 3) one last per-CPU thread transfers the memory in the background
|
|
* at maximum bandwidth (if not already transferred by thread
|
|
* 2). Each cpu thread takes cares of transferring a portion of the
|
|
* area.
|
|
*
|
|
* When all threads of type 3 completed the transfer, one bounce is
|
|
* complete. area_src and area_dst are then swapped. All threads are
|
|
* respawned and so the bounce is immediately restarted in the
|
|
* opposite direction.
|
|
*
|
|
* per-CPU threads 1 by triggering userfaults inside
|
|
* pthread_mutex_lock will also verify the atomicity of the memory
|
|
* transfer (UFFDIO_COPY).
|
|
*
|
|
* The program takes two parameters: the amounts of physical memory in
|
|
* megabytes (MiB) of the area and the number of bounces to execute.
|
|
*
|
|
* # 100MiB 99999 bounces
|
|
* ./userfaultfd 100 99999
|
|
*
|
|
* # 1GiB 99 bounces
|
|
* ./userfaultfd 1000 99
|
|
*
|
|
* # 10MiB-~6GiB 999 bounces, continue forever unless an error triggers
|
|
* while ./userfaultfd $[RANDOM % 6000 + 10] 999; do true; done
|
|
*/
|
|
|
|
#define _GNU_SOURCE
|
|
#include <stdio.h>
|
|
#include <errno.h>
|
|
#include <unistd.h>
|
|
#include <stdlib.h>
|
|
#include <sys/types.h>
|
|
#include <sys/stat.h>
|
|
#include <fcntl.h>
|
|
#include <time.h>
|
|
#include <signal.h>
|
|
#include <poll.h>
|
|
#include <string.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/syscall.h>
|
|
#include <sys/ioctl.h>
|
|
#include <pthread.h>
|
|
#include <linux/userfaultfd.h>
|
|
|
|
#ifdef __NR_userfaultfd
|
|
|
|
static unsigned long nr_cpus, nr_pages, nr_pages_per_cpu, page_size;
|
|
|
|
#define BOUNCE_RANDOM (1<<0)
|
|
#define BOUNCE_RACINGFAULTS (1<<1)
|
|
#define BOUNCE_VERIFY (1<<2)
|
|
#define BOUNCE_POLL (1<<3)
|
|
static int bounces;
|
|
|
|
static unsigned long long *count_verify;
|
|
static int uffd, finished, *pipefd;
|
|
static char *area_src, *area_dst;
|
|
static char *zeropage;
|
|
pthread_attr_t attr;
|
|
|
|
/* pthread_mutex_t starts at page offset 0 */
|
|
#define area_mutex(___area, ___nr) \
|
|
((pthread_mutex_t *) ((___area) + (___nr)*page_size))
|
|
/*
|
|
* count is placed in the page after pthread_mutex_t naturally aligned
|
|
* to avoid non alignment faults on non-x86 archs.
|
|
*/
|
|
#define area_count(___area, ___nr) \
|
|
((volatile unsigned long long *) ((unsigned long) \
|
|
((___area) + (___nr)*page_size + \
|
|
sizeof(pthread_mutex_t) + \
|
|
sizeof(unsigned long long) - 1) & \
|
|
~(unsigned long)(sizeof(unsigned long long) \
|
|
- 1)))
|
|
|
|
static int my_bcmp(char *str1, char *str2, size_t n)
|
|
{
|
|
unsigned long i;
|
|
for (i = 0; i < n; i++)
|
|
if (str1[i] != str2[i])
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static void *locking_thread(void *arg)
|
|
{
|
|
unsigned long cpu = (unsigned long) arg;
|
|
struct random_data rand;
|
|
unsigned long page_nr = *(&(page_nr)); /* uninitialized warning */
|
|
int32_t rand_nr;
|
|
unsigned long long count;
|
|
char randstate[64];
|
|
unsigned int seed;
|
|
time_t start;
|
|
|
|
if (bounces & BOUNCE_RANDOM) {
|
|
seed = (unsigned int) time(NULL) - bounces;
|
|
if (!(bounces & BOUNCE_RACINGFAULTS))
|
|
seed += cpu;
|
|
bzero(&rand, sizeof(rand));
|
|
bzero(&randstate, sizeof(randstate));
|
|
if (initstate_r(seed, randstate, sizeof(randstate), &rand))
|
|
fprintf(stderr, "srandom_r error\n"), exit(1);
|
|
} else {
|
|
page_nr = -bounces;
|
|
if (!(bounces & BOUNCE_RACINGFAULTS))
|
|
page_nr += cpu * nr_pages_per_cpu;
|
|
}
|
|
|
|
while (!finished) {
|
|
if (bounces & BOUNCE_RANDOM) {
|
|
if (random_r(&rand, &rand_nr))
|
|
fprintf(stderr, "random_r 1 error\n"), exit(1);
|
|
page_nr = rand_nr;
|
|
if (sizeof(page_nr) > sizeof(rand_nr)) {
|
|
if (random_r(&rand, &rand_nr))
|
|
fprintf(stderr, "random_r 2 error\n"), exit(1);
|
|
page_nr |= (((unsigned long) rand_nr) << 16) <<
|
|
16;
|
|
}
|
|
} else
|
|
page_nr += 1;
|
|
page_nr %= nr_pages;
|
|
|
|
start = time(NULL);
|
|
if (bounces & BOUNCE_VERIFY) {
|
|
count = *area_count(area_dst, page_nr);
|
|
if (!count)
|
|
fprintf(stderr,
|
|
"page_nr %lu wrong count %Lu %Lu\n",
|
|
page_nr, count,
|
|
count_verify[page_nr]), exit(1);
|
|
|
|
|
|
/*
|
|
* We can't use bcmp (or memcmp) because that
|
|
* returns 0 erroneously if the memory is
|
|
* changing under it (even if the end of the
|
|
* page is never changing and always
|
|
* different).
|
|
*/
|
|
#if 1
|
|
if (!my_bcmp(area_dst + page_nr * page_size, zeropage,
|
|
page_size))
|
|
fprintf(stderr,
|
|
"my_bcmp page_nr %lu wrong count %Lu %Lu\n",
|
|
page_nr, count,
|
|
count_verify[page_nr]), exit(1);
|
|
#else
|
|
unsigned long loops;
|
|
|
|
loops = 0;
|
|
/* uncomment the below line to test with mutex */
|
|
/* pthread_mutex_lock(area_mutex(area_dst, page_nr)); */
|
|
while (!bcmp(area_dst + page_nr * page_size, zeropage,
|
|
page_size)) {
|
|
loops += 1;
|
|
if (loops > 10)
|
|
break;
|
|
}
|
|
/* uncomment below line to test with mutex */
|
|
/* pthread_mutex_unlock(area_mutex(area_dst, page_nr)); */
|
|
if (loops) {
|
|
fprintf(stderr,
|
|
"page_nr %lu all zero thread %lu %p %lu\n",
|
|
page_nr, cpu, area_dst + page_nr * page_size,
|
|
loops);
|
|
if (loops > 10)
|
|
exit(1);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
pthread_mutex_lock(area_mutex(area_dst, page_nr));
|
|
count = *area_count(area_dst, page_nr);
|
|
if (count != count_verify[page_nr]) {
|
|
fprintf(stderr,
|
|
"page_nr %lu memory corruption %Lu %Lu\n",
|
|
page_nr, count,
|
|
count_verify[page_nr]), exit(1);
|
|
}
|
|
count++;
|
|
*area_count(area_dst, page_nr) = count_verify[page_nr] = count;
|
|
pthread_mutex_unlock(area_mutex(area_dst, page_nr));
|
|
|
|
if (time(NULL) - start > 1)
|
|
fprintf(stderr,
|
|
"userfault too slow %ld "
|
|
"possible false positive with overcommit\n",
|
|
time(NULL) - start);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int copy_page(unsigned long offset)
|
|
{
|
|
struct uffdio_copy uffdio_copy;
|
|
|
|
if (offset >= nr_pages * page_size)
|
|
fprintf(stderr, "unexpected offset %lu\n",
|
|
offset), exit(1);
|
|
uffdio_copy.dst = (unsigned long) area_dst + offset;
|
|
uffdio_copy.src = (unsigned long) area_src + offset;
|
|
uffdio_copy.len = page_size;
|
|
uffdio_copy.mode = 0;
|
|
uffdio_copy.copy = 0;
|
|
if (ioctl(uffd, UFFDIO_COPY, &uffdio_copy)) {
|
|
/* real retval in ufdio_copy.copy */
|
|
if (uffdio_copy.copy != -EEXIST)
|
|
fprintf(stderr, "UFFDIO_COPY error %Ld\n",
|
|
uffdio_copy.copy), exit(1);
|
|
} else if (uffdio_copy.copy != page_size) {
|
|
fprintf(stderr, "UFFDIO_COPY unexpected copy %Ld\n",
|
|
uffdio_copy.copy), exit(1);
|
|
} else
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static void *uffd_poll_thread(void *arg)
|
|
{
|
|
unsigned long cpu = (unsigned long) arg;
|
|
struct pollfd pollfd[2];
|
|
struct uffd_msg msg;
|
|
int ret;
|
|
unsigned long offset;
|
|
char tmp_chr;
|
|
unsigned long userfaults = 0;
|
|
|
|
pollfd[0].fd = uffd;
|
|
pollfd[0].events = POLLIN;
|
|
pollfd[1].fd = pipefd[cpu*2];
|
|
pollfd[1].events = POLLIN;
|
|
|
|
for (;;) {
|
|
ret = poll(pollfd, 2, -1);
|
|
if (!ret)
|
|
fprintf(stderr, "poll error %d\n", ret), exit(1);
|
|
if (ret < 0)
|
|
perror("poll"), exit(1);
|
|
if (pollfd[1].revents & POLLIN) {
|
|
if (read(pollfd[1].fd, &tmp_chr, 1) != 1)
|
|
fprintf(stderr, "read pipefd error\n"),
|
|
exit(1);
|
|
break;
|
|
}
|
|
if (!(pollfd[0].revents & POLLIN))
|
|
fprintf(stderr, "pollfd[0].revents %d\n",
|
|
pollfd[0].revents), exit(1);
|
|
ret = read(uffd, &msg, sizeof(msg));
|
|
if (ret < 0) {
|
|
if (errno == EAGAIN)
|
|
continue;
|
|
perror("nonblocking read error"), exit(1);
|
|
}
|
|
if (msg.event != UFFD_EVENT_PAGEFAULT)
|
|
fprintf(stderr, "unexpected msg event %u\n",
|
|
msg.event), exit(1);
|
|
if (msg.arg.pagefault.flags & UFFD_PAGEFAULT_FLAG_WRITE)
|
|
fprintf(stderr, "unexpected write fault\n"), exit(1);
|
|
offset = (char *)(unsigned long)msg.arg.pagefault.address -
|
|
area_dst;
|
|
offset &= ~(page_size-1);
|
|
if (copy_page(offset))
|
|
userfaults++;
|
|
}
|
|
return (void *)userfaults;
|
|
}
|
|
|
|
pthread_mutex_t uffd_read_mutex = PTHREAD_MUTEX_INITIALIZER;
|
|
|
|
static void *uffd_read_thread(void *arg)
|
|
{
|
|
unsigned long *this_cpu_userfaults;
|
|
struct uffd_msg msg;
|
|
unsigned long offset;
|
|
int ret;
|
|
|
|
this_cpu_userfaults = (unsigned long *) arg;
|
|
*this_cpu_userfaults = 0;
|
|
|
|
pthread_mutex_unlock(&uffd_read_mutex);
|
|
/* from here cancellation is ok */
|
|
|
|
for (;;) {
|
|
ret = read(uffd, &msg, sizeof(msg));
|
|
if (ret != sizeof(msg)) {
|
|
if (ret < 0)
|
|
perror("blocking read error"), exit(1);
|
|
else
|
|
fprintf(stderr, "short read\n"), exit(1);
|
|
}
|
|
if (msg.event != UFFD_EVENT_PAGEFAULT)
|
|
fprintf(stderr, "unexpected msg event %u\n",
|
|
msg.event), exit(1);
|
|
if (bounces & BOUNCE_VERIFY &&
|
|
msg.arg.pagefault.flags & UFFD_PAGEFAULT_FLAG_WRITE)
|
|
fprintf(stderr, "unexpected write fault\n"), exit(1);
|
|
offset = (char *)(unsigned long)msg.arg.pagefault.address -
|
|
area_dst;
|
|
offset &= ~(page_size-1);
|
|
if (copy_page(offset))
|
|
(*this_cpu_userfaults)++;
|
|
}
|
|
return (void *)NULL;
|
|
}
|
|
|
|
static void *background_thread(void *arg)
|
|
{
|
|
unsigned long cpu = (unsigned long) arg;
|
|
unsigned long page_nr;
|
|
|
|
for (page_nr = cpu * nr_pages_per_cpu;
|
|
page_nr < (cpu+1) * nr_pages_per_cpu;
|
|
page_nr++)
|
|
copy_page(page_nr * page_size);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int stress(unsigned long *userfaults)
|
|
{
|
|
unsigned long cpu;
|
|
pthread_t locking_threads[nr_cpus];
|
|
pthread_t uffd_threads[nr_cpus];
|
|
pthread_t background_threads[nr_cpus];
|
|
void **_userfaults = (void **) userfaults;
|
|
|
|
finished = 0;
|
|
for (cpu = 0; cpu < nr_cpus; cpu++) {
|
|
if (pthread_create(&locking_threads[cpu], &attr,
|
|
locking_thread, (void *)cpu))
|
|
return 1;
|
|
if (bounces & BOUNCE_POLL) {
|
|
if (pthread_create(&uffd_threads[cpu], &attr,
|
|
uffd_poll_thread, (void *)cpu))
|
|
return 1;
|
|
} else {
|
|
if (pthread_create(&uffd_threads[cpu], &attr,
|
|
uffd_read_thread,
|
|
&_userfaults[cpu]))
|
|
return 1;
|
|
pthread_mutex_lock(&uffd_read_mutex);
|
|
}
|
|
if (pthread_create(&background_threads[cpu], &attr,
|
|
background_thread, (void *)cpu))
|
|
return 1;
|
|
}
|
|
for (cpu = 0; cpu < nr_cpus; cpu++)
|
|
if (pthread_join(background_threads[cpu], NULL))
|
|
return 1;
|
|
|
|
/*
|
|
* Be strict and immediately zap area_src, the whole area has
|
|
* been transferred already by the background treads. The
|
|
* area_src could then be faulted in in a racy way by still
|
|
* running uffdio_threads reading zeropages after we zapped
|
|
* area_src (but they're guaranteed to get -EEXIST from
|
|
* UFFDIO_COPY without writing zero pages into area_dst
|
|
* because the background threads already completed).
|
|
*/
|
|
if (madvise(area_src, nr_pages * page_size, MADV_DONTNEED)) {
|
|
perror("madvise");
|
|
return 1;
|
|
}
|
|
|
|
for (cpu = 0; cpu < nr_cpus; cpu++) {
|
|
char c;
|
|
if (bounces & BOUNCE_POLL) {
|
|
if (write(pipefd[cpu*2+1], &c, 1) != 1) {
|
|
fprintf(stderr, "pipefd write error\n");
|
|
return 1;
|
|
}
|
|
if (pthread_join(uffd_threads[cpu], &_userfaults[cpu]))
|
|
return 1;
|
|
} else {
|
|
if (pthread_cancel(uffd_threads[cpu]))
|
|
return 1;
|
|
if (pthread_join(uffd_threads[cpu], NULL))
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
finished = 1;
|
|
for (cpu = 0; cpu < nr_cpus; cpu++)
|
|
if (pthread_join(locking_threads[cpu], NULL))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int userfaultfd_stress(void)
|
|
{
|
|
void *area;
|
|
char *tmp_area;
|
|
unsigned long nr;
|
|
struct uffdio_register uffdio_register;
|
|
struct uffdio_api uffdio_api;
|
|
unsigned long cpu;
|
|
int uffd_flags, err;
|
|
unsigned long userfaults[nr_cpus];
|
|
|
|
if (posix_memalign(&area, page_size, nr_pages * page_size)) {
|
|
fprintf(stderr, "out of memory\n");
|
|
return 1;
|
|
}
|
|
area_src = area;
|
|
if (posix_memalign(&area, page_size, nr_pages * page_size)) {
|
|
fprintf(stderr, "out of memory\n");
|
|
return 1;
|
|
}
|
|
area_dst = area;
|
|
|
|
uffd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK);
|
|
if (uffd < 0) {
|
|
fprintf(stderr,
|
|
"userfaultfd syscall not available in this kernel\n");
|
|
return 1;
|
|
}
|
|
uffd_flags = fcntl(uffd, F_GETFD, NULL);
|
|
|
|
uffdio_api.api = UFFD_API;
|
|
uffdio_api.features = 0;
|
|
if (ioctl(uffd, UFFDIO_API, &uffdio_api)) {
|
|
fprintf(stderr, "UFFDIO_API\n");
|
|
return 1;
|
|
}
|
|
if (uffdio_api.api != UFFD_API) {
|
|
fprintf(stderr, "UFFDIO_API error %Lu\n", uffdio_api.api);
|
|
return 1;
|
|
}
|
|
|
|
count_verify = malloc(nr_pages * sizeof(unsigned long long));
|
|
if (!count_verify) {
|
|
perror("count_verify");
|
|
return 1;
|
|
}
|
|
|
|
for (nr = 0; nr < nr_pages; nr++) {
|
|
*area_mutex(area_src, nr) = (pthread_mutex_t)
|
|
PTHREAD_MUTEX_INITIALIZER;
|
|
count_verify[nr] = *area_count(area_src, nr) = 1;
|
|
/*
|
|
* In the transition between 255 to 256, powerpc will
|
|
* read out of order in my_bcmp and see both bytes as
|
|
* zero, so leave a placeholder below always non-zero
|
|
* after the count, to avoid my_bcmp to trigger false
|
|
* positives.
|
|
*/
|
|
*(area_count(area_src, nr) + 1) = 1;
|
|
}
|
|
|
|
pipefd = malloc(sizeof(int) * nr_cpus * 2);
|
|
if (!pipefd) {
|
|
perror("pipefd");
|
|
return 1;
|
|
}
|
|
for (cpu = 0; cpu < nr_cpus; cpu++) {
|
|
if (pipe2(&pipefd[cpu*2], O_CLOEXEC | O_NONBLOCK)) {
|
|
perror("pipe");
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
if (posix_memalign(&area, page_size, page_size)) {
|
|
fprintf(stderr, "out of memory\n");
|
|
return 1;
|
|
}
|
|
zeropage = area;
|
|
bzero(zeropage, page_size);
|
|
|
|
pthread_mutex_lock(&uffd_read_mutex);
|
|
|
|
pthread_attr_init(&attr);
|
|
pthread_attr_setstacksize(&attr, 16*1024*1024);
|
|
|
|
err = 0;
|
|
while (bounces--) {
|
|
unsigned long expected_ioctls;
|
|
|
|
printf("bounces: %d, mode:", bounces);
|
|
if (bounces & BOUNCE_RANDOM)
|
|
printf(" rnd");
|
|
if (bounces & BOUNCE_RACINGFAULTS)
|
|
printf(" racing");
|
|
if (bounces & BOUNCE_VERIFY)
|
|
printf(" ver");
|
|
if (bounces & BOUNCE_POLL)
|
|
printf(" poll");
|
|
printf(", ");
|
|
fflush(stdout);
|
|
|
|
if (bounces & BOUNCE_POLL)
|
|
fcntl(uffd, F_SETFL, uffd_flags | O_NONBLOCK);
|
|
else
|
|
fcntl(uffd, F_SETFL, uffd_flags & ~O_NONBLOCK);
|
|
|
|
/* register */
|
|
uffdio_register.range.start = (unsigned long) area_dst;
|
|
uffdio_register.range.len = nr_pages * page_size;
|
|
uffdio_register.mode = UFFDIO_REGISTER_MODE_MISSING;
|
|
if (ioctl(uffd, UFFDIO_REGISTER, &uffdio_register)) {
|
|
fprintf(stderr, "register failure\n");
|
|
return 1;
|
|
}
|
|
expected_ioctls = (1 << _UFFDIO_WAKE) |
|
|
(1 << _UFFDIO_COPY) |
|
|
(1 << _UFFDIO_ZEROPAGE);
|
|
if ((uffdio_register.ioctls & expected_ioctls) !=
|
|
expected_ioctls) {
|
|
fprintf(stderr,
|
|
"unexpected missing ioctl for anon memory\n");
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* The madvise done previously isn't enough: some
|
|
* uffd_thread could have read userfaults (one of
|
|
* those already resolved by the background thread)
|
|
* and it may be in the process of calling
|
|
* UFFDIO_COPY. UFFDIO_COPY will read the zapped
|
|
* area_src and it would map a zero page in it (of
|
|
* course such a UFFDIO_COPY is perfectly safe as it'd
|
|
* return -EEXIST). The problem comes at the next
|
|
* bounce though: that racing UFFDIO_COPY would
|
|
* generate zeropages in the area_src, so invalidating
|
|
* the previous MADV_DONTNEED. Without this additional
|
|
* MADV_DONTNEED those zeropages leftovers in the
|
|
* area_src would lead to -EEXIST failure during the
|
|
* next bounce, effectively leaving a zeropage in the
|
|
* area_dst.
|
|
*
|
|
* Try to comment this out madvise to see the memory
|
|
* corruption being caught pretty quick.
|
|
*
|
|
* khugepaged is also inhibited to collapse THP after
|
|
* MADV_DONTNEED only after the UFFDIO_REGISTER, so it's
|
|
* required to MADV_DONTNEED here.
|
|
*/
|
|
if (madvise(area_dst, nr_pages * page_size, MADV_DONTNEED)) {
|
|
perror("madvise 2");
|
|
return 1;
|
|
}
|
|
|
|
/* bounce pass */
|
|
if (stress(userfaults))
|
|
return 1;
|
|
|
|
/* unregister */
|
|
if (ioctl(uffd, UFFDIO_UNREGISTER, &uffdio_register.range)) {
|
|
fprintf(stderr, "register failure\n");
|
|
return 1;
|
|
}
|
|
|
|
/* verification */
|
|
if (bounces & BOUNCE_VERIFY) {
|
|
for (nr = 0; nr < nr_pages; nr++) {
|
|
if (*area_count(area_dst, nr) != count_verify[nr]) {
|
|
fprintf(stderr,
|
|
"error area_count %Lu %Lu %lu\n",
|
|
*area_count(area_src, nr),
|
|
count_verify[nr],
|
|
nr);
|
|
err = 1;
|
|
bounces = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* prepare next bounce */
|
|
tmp_area = area_src;
|
|
area_src = area_dst;
|
|
area_dst = tmp_area;
|
|
|
|
printf("userfaults:");
|
|
for (cpu = 0; cpu < nr_cpus; cpu++)
|
|
printf(" %lu", userfaults[cpu]);
|
|
printf("\n");
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
if (argc < 3)
|
|
fprintf(stderr, "Usage: <MiB> <bounces>\n"), exit(1);
|
|
nr_cpus = sysconf(_SC_NPROCESSORS_ONLN);
|
|
page_size = sysconf(_SC_PAGE_SIZE);
|
|
if ((unsigned long) area_count(NULL, 0) + sizeof(unsigned long long) * 2
|
|
> page_size)
|
|
fprintf(stderr, "Impossible to run this test\n"), exit(2);
|
|
nr_pages_per_cpu = atol(argv[1]) * 1024*1024 / page_size /
|
|
nr_cpus;
|
|
if (!nr_pages_per_cpu) {
|
|
fprintf(stderr, "invalid MiB\n");
|
|
fprintf(stderr, "Usage: <MiB> <bounces>\n"), exit(1);
|
|
}
|
|
bounces = atoi(argv[2]);
|
|
if (bounces <= 0) {
|
|
fprintf(stderr, "invalid bounces\n");
|
|
fprintf(stderr, "Usage: <MiB> <bounces>\n"), exit(1);
|
|
}
|
|
nr_pages = nr_pages_per_cpu * nr_cpus;
|
|
printf("nr_pages: %lu, nr_pages_per_cpu: %lu\n",
|
|
nr_pages, nr_pages_per_cpu);
|
|
return userfaultfd_stress();
|
|
}
|
|
|
|
#else /* __NR_userfaultfd */
|
|
|
|
#warning "missing __NR_userfaultfd definition"
|
|
|
|
int main(void)
|
|
{
|
|
printf("skip: Skipping userfaultfd test (missing __NR_userfaultfd)\n");
|
|
return 0;
|
|
}
|
|
|
|
#endif /* __NR_userfaultfd */
|