mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-18 17:54:13 +08:00
25985edced
Fixes generated by 'codespell' and manually reviewed. Signed-off-by: Lucas De Marchi <lucas.demarchi@profusion.mobi>
6712 lines
171 KiB
C
6712 lines
171 KiB
C
/*
|
|
* libata-core.c - helper library for ATA
|
|
*
|
|
* Maintained by: Jeff Garzik <jgarzik@pobox.com>
|
|
* Please ALWAYS copy linux-ide@vger.kernel.org
|
|
* on emails.
|
|
*
|
|
* Copyright 2003-2004 Red Hat, Inc. All rights reserved.
|
|
* Copyright 2003-2004 Jeff Garzik
|
|
*
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; see the file COPYING. If not, write to
|
|
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*
|
|
*
|
|
* libata documentation is available via 'make {ps|pdf}docs',
|
|
* as Documentation/DocBook/libata.*
|
|
*
|
|
* Hardware documentation available from http://www.t13.org/ and
|
|
* http://www.sata-io.org/
|
|
*
|
|
* Standards documents from:
|
|
* http://www.t13.org (ATA standards, PCI DMA IDE spec)
|
|
* http://www.t10.org (SCSI MMC - for ATAPI MMC)
|
|
* http://www.sata-io.org (SATA)
|
|
* http://www.compactflash.org (CF)
|
|
* http://www.qic.org (QIC157 - Tape and DSC)
|
|
* http://www.ce-ata.org (CE-ATA: not supported)
|
|
*
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/init.h>
|
|
#include <linux/list.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/suspend.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/io.h>
|
|
#include <linux/async.h>
|
|
#include <linux/log2.h>
|
|
#include <linux/slab.h>
|
|
#include <scsi/scsi.h>
|
|
#include <scsi/scsi_cmnd.h>
|
|
#include <scsi/scsi_host.h>
|
|
#include <linux/libata.h>
|
|
#include <asm/byteorder.h>
|
|
#include <linux/cdrom.h>
|
|
#include <linux/ratelimit.h>
|
|
|
|
#include "libata.h"
|
|
#include "libata-transport.h"
|
|
|
|
/* debounce timing parameters in msecs { interval, duration, timeout } */
|
|
const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
|
|
const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
|
|
const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
|
|
|
|
const struct ata_port_operations ata_base_port_ops = {
|
|
.prereset = ata_std_prereset,
|
|
.postreset = ata_std_postreset,
|
|
.error_handler = ata_std_error_handler,
|
|
};
|
|
|
|
const struct ata_port_operations sata_port_ops = {
|
|
.inherits = &ata_base_port_ops,
|
|
|
|
.qc_defer = ata_std_qc_defer,
|
|
.hardreset = sata_std_hardreset,
|
|
};
|
|
|
|
static unsigned int ata_dev_init_params(struct ata_device *dev,
|
|
u16 heads, u16 sectors);
|
|
static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
|
|
static void ata_dev_xfermask(struct ata_device *dev);
|
|
static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
|
|
|
|
unsigned int ata_print_id = 1;
|
|
|
|
struct ata_force_param {
|
|
const char *name;
|
|
unsigned int cbl;
|
|
int spd_limit;
|
|
unsigned long xfer_mask;
|
|
unsigned int horkage_on;
|
|
unsigned int horkage_off;
|
|
unsigned int lflags;
|
|
};
|
|
|
|
struct ata_force_ent {
|
|
int port;
|
|
int device;
|
|
struct ata_force_param param;
|
|
};
|
|
|
|
static struct ata_force_ent *ata_force_tbl;
|
|
static int ata_force_tbl_size;
|
|
|
|
static char ata_force_param_buf[PAGE_SIZE] __initdata;
|
|
/* param_buf is thrown away after initialization, disallow read */
|
|
module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
|
|
MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
|
|
|
|
static int atapi_enabled = 1;
|
|
module_param(atapi_enabled, int, 0444);
|
|
MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
|
|
|
|
static int atapi_dmadir = 0;
|
|
module_param(atapi_dmadir, int, 0444);
|
|
MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
|
|
|
|
int atapi_passthru16 = 1;
|
|
module_param(atapi_passthru16, int, 0444);
|
|
MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
|
|
|
|
int libata_fua = 0;
|
|
module_param_named(fua, libata_fua, int, 0444);
|
|
MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
|
|
|
|
static int ata_ignore_hpa;
|
|
module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
|
|
MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
|
|
|
|
static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
|
|
module_param_named(dma, libata_dma_mask, int, 0444);
|
|
MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
|
|
|
|
static int ata_probe_timeout;
|
|
module_param(ata_probe_timeout, int, 0444);
|
|
MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
|
|
|
|
int libata_noacpi = 0;
|
|
module_param_named(noacpi, libata_noacpi, int, 0444);
|
|
MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
|
|
|
|
int libata_allow_tpm = 0;
|
|
module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
|
|
MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
|
|
|
|
static int atapi_an;
|
|
module_param(atapi_an, int, 0444);
|
|
MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
|
|
|
|
MODULE_AUTHOR("Jeff Garzik");
|
|
MODULE_DESCRIPTION("Library module for ATA devices");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_VERSION(DRV_VERSION);
|
|
|
|
|
|
static bool ata_sstatus_online(u32 sstatus)
|
|
{
|
|
return (sstatus & 0xf) == 0x3;
|
|
}
|
|
|
|
/**
|
|
* ata_link_next - link iteration helper
|
|
* @link: the previous link, NULL to start
|
|
* @ap: ATA port containing links to iterate
|
|
* @mode: iteration mode, one of ATA_LITER_*
|
|
*
|
|
* LOCKING:
|
|
* Host lock or EH context.
|
|
*
|
|
* RETURNS:
|
|
* Pointer to the next link.
|
|
*/
|
|
struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
|
|
enum ata_link_iter_mode mode)
|
|
{
|
|
BUG_ON(mode != ATA_LITER_EDGE &&
|
|
mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
|
|
|
|
/* NULL link indicates start of iteration */
|
|
if (!link)
|
|
switch (mode) {
|
|
case ATA_LITER_EDGE:
|
|
case ATA_LITER_PMP_FIRST:
|
|
if (sata_pmp_attached(ap))
|
|
return ap->pmp_link;
|
|
/* fall through */
|
|
case ATA_LITER_HOST_FIRST:
|
|
return &ap->link;
|
|
}
|
|
|
|
/* we just iterated over the host link, what's next? */
|
|
if (link == &ap->link)
|
|
switch (mode) {
|
|
case ATA_LITER_HOST_FIRST:
|
|
if (sata_pmp_attached(ap))
|
|
return ap->pmp_link;
|
|
/* fall through */
|
|
case ATA_LITER_PMP_FIRST:
|
|
if (unlikely(ap->slave_link))
|
|
return ap->slave_link;
|
|
/* fall through */
|
|
case ATA_LITER_EDGE:
|
|
return NULL;
|
|
}
|
|
|
|
/* slave_link excludes PMP */
|
|
if (unlikely(link == ap->slave_link))
|
|
return NULL;
|
|
|
|
/* we were over a PMP link */
|
|
if (++link < ap->pmp_link + ap->nr_pmp_links)
|
|
return link;
|
|
|
|
if (mode == ATA_LITER_PMP_FIRST)
|
|
return &ap->link;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* ata_dev_next - device iteration helper
|
|
* @dev: the previous device, NULL to start
|
|
* @link: ATA link containing devices to iterate
|
|
* @mode: iteration mode, one of ATA_DITER_*
|
|
*
|
|
* LOCKING:
|
|
* Host lock or EH context.
|
|
*
|
|
* RETURNS:
|
|
* Pointer to the next device.
|
|
*/
|
|
struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
|
|
enum ata_dev_iter_mode mode)
|
|
{
|
|
BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
|
|
mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
|
|
|
|
/* NULL dev indicates start of iteration */
|
|
if (!dev)
|
|
switch (mode) {
|
|
case ATA_DITER_ENABLED:
|
|
case ATA_DITER_ALL:
|
|
dev = link->device;
|
|
goto check;
|
|
case ATA_DITER_ENABLED_REVERSE:
|
|
case ATA_DITER_ALL_REVERSE:
|
|
dev = link->device + ata_link_max_devices(link) - 1;
|
|
goto check;
|
|
}
|
|
|
|
next:
|
|
/* move to the next one */
|
|
switch (mode) {
|
|
case ATA_DITER_ENABLED:
|
|
case ATA_DITER_ALL:
|
|
if (++dev < link->device + ata_link_max_devices(link))
|
|
goto check;
|
|
return NULL;
|
|
case ATA_DITER_ENABLED_REVERSE:
|
|
case ATA_DITER_ALL_REVERSE:
|
|
if (--dev >= link->device)
|
|
goto check;
|
|
return NULL;
|
|
}
|
|
|
|
check:
|
|
if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
|
|
!ata_dev_enabled(dev))
|
|
goto next;
|
|
return dev;
|
|
}
|
|
|
|
/**
|
|
* ata_dev_phys_link - find physical link for a device
|
|
* @dev: ATA device to look up physical link for
|
|
*
|
|
* Look up physical link which @dev is attached to. Note that
|
|
* this is different from @dev->link only when @dev is on slave
|
|
* link. For all other cases, it's the same as @dev->link.
|
|
*
|
|
* LOCKING:
|
|
* Don't care.
|
|
*
|
|
* RETURNS:
|
|
* Pointer to the found physical link.
|
|
*/
|
|
struct ata_link *ata_dev_phys_link(struct ata_device *dev)
|
|
{
|
|
struct ata_port *ap = dev->link->ap;
|
|
|
|
if (!ap->slave_link)
|
|
return dev->link;
|
|
if (!dev->devno)
|
|
return &ap->link;
|
|
return ap->slave_link;
|
|
}
|
|
|
|
/**
|
|
* ata_force_cbl - force cable type according to libata.force
|
|
* @ap: ATA port of interest
|
|
*
|
|
* Force cable type according to libata.force and whine about it.
|
|
* The last entry which has matching port number is used, so it
|
|
* can be specified as part of device force parameters. For
|
|
* example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
|
|
* same effect.
|
|
*
|
|
* LOCKING:
|
|
* EH context.
|
|
*/
|
|
void ata_force_cbl(struct ata_port *ap)
|
|
{
|
|
int i;
|
|
|
|
for (i = ata_force_tbl_size - 1; i >= 0; i--) {
|
|
const struct ata_force_ent *fe = &ata_force_tbl[i];
|
|
|
|
if (fe->port != -1 && fe->port != ap->print_id)
|
|
continue;
|
|
|
|
if (fe->param.cbl == ATA_CBL_NONE)
|
|
continue;
|
|
|
|
ap->cbl = fe->param.cbl;
|
|
ata_port_printk(ap, KERN_NOTICE,
|
|
"FORCE: cable set to %s\n", fe->param.name);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ata_force_link_limits - force link limits according to libata.force
|
|
* @link: ATA link of interest
|
|
*
|
|
* Force link flags and SATA spd limit according to libata.force
|
|
* and whine about it. When only the port part is specified
|
|
* (e.g. 1:), the limit applies to all links connected to both
|
|
* the host link and all fan-out ports connected via PMP. If the
|
|
* device part is specified as 0 (e.g. 1.00:), it specifies the
|
|
* first fan-out link not the host link. Device number 15 always
|
|
* points to the host link whether PMP is attached or not. If the
|
|
* controller has slave link, device number 16 points to it.
|
|
*
|
|
* LOCKING:
|
|
* EH context.
|
|
*/
|
|
static void ata_force_link_limits(struct ata_link *link)
|
|
{
|
|
bool did_spd = false;
|
|
int linkno = link->pmp;
|
|
int i;
|
|
|
|
if (ata_is_host_link(link))
|
|
linkno += 15;
|
|
|
|
for (i = ata_force_tbl_size - 1; i >= 0; i--) {
|
|
const struct ata_force_ent *fe = &ata_force_tbl[i];
|
|
|
|
if (fe->port != -1 && fe->port != link->ap->print_id)
|
|
continue;
|
|
|
|
if (fe->device != -1 && fe->device != linkno)
|
|
continue;
|
|
|
|
/* only honor the first spd limit */
|
|
if (!did_spd && fe->param.spd_limit) {
|
|
link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
|
|
ata_link_printk(link, KERN_NOTICE,
|
|
"FORCE: PHY spd limit set to %s\n",
|
|
fe->param.name);
|
|
did_spd = true;
|
|
}
|
|
|
|
/* let lflags stack */
|
|
if (fe->param.lflags) {
|
|
link->flags |= fe->param.lflags;
|
|
ata_link_printk(link, KERN_NOTICE,
|
|
"FORCE: link flag 0x%x forced -> 0x%x\n",
|
|
fe->param.lflags, link->flags);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ata_force_xfermask - force xfermask according to libata.force
|
|
* @dev: ATA device of interest
|
|
*
|
|
* Force xfer_mask according to libata.force and whine about it.
|
|
* For consistency with link selection, device number 15 selects
|
|
* the first device connected to the host link.
|
|
*
|
|
* LOCKING:
|
|
* EH context.
|
|
*/
|
|
static void ata_force_xfermask(struct ata_device *dev)
|
|
{
|
|
int devno = dev->link->pmp + dev->devno;
|
|
int alt_devno = devno;
|
|
int i;
|
|
|
|
/* allow n.15/16 for devices attached to host port */
|
|
if (ata_is_host_link(dev->link))
|
|
alt_devno += 15;
|
|
|
|
for (i = ata_force_tbl_size - 1; i >= 0; i--) {
|
|
const struct ata_force_ent *fe = &ata_force_tbl[i];
|
|
unsigned long pio_mask, mwdma_mask, udma_mask;
|
|
|
|
if (fe->port != -1 && fe->port != dev->link->ap->print_id)
|
|
continue;
|
|
|
|
if (fe->device != -1 && fe->device != devno &&
|
|
fe->device != alt_devno)
|
|
continue;
|
|
|
|
if (!fe->param.xfer_mask)
|
|
continue;
|
|
|
|
ata_unpack_xfermask(fe->param.xfer_mask,
|
|
&pio_mask, &mwdma_mask, &udma_mask);
|
|
if (udma_mask)
|
|
dev->udma_mask = udma_mask;
|
|
else if (mwdma_mask) {
|
|
dev->udma_mask = 0;
|
|
dev->mwdma_mask = mwdma_mask;
|
|
} else {
|
|
dev->udma_mask = 0;
|
|
dev->mwdma_mask = 0;
|
|
dev->pio_mask = pio_mask;
|
|
}
|
|
|
|
ata_dev_printk(dev, KERN_NOTICE,
|
|
"FORCE: xfer_mask set to %s\n", fe->param.name);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ata_force_horkage - force horkage according to libata.force
|
|
* @dev: ATA device of interest
|
|
*
|
|
* Force horkage according to libata.force and whine about it.
|
|
* For consistency with link selection, device number 15 selects
|
|
* the first device connected to the host link.
|
|
*
|
|
* LOCKING:
|
|
* EH context.
|
|
*/
|
|
static void ata_force_horkage(struct ata_device *dev)
|
|
{
|
|
int devno = dev->link->pmp + dev->devno;
|
|
int alt_devno = devno;
|
|
int i;
|
|
|
|
/* allow n.15/16 for devices attached to host port */
|
|
if (ata_is_host_link(dev->link))
|
|
alt_devno += 15;
|
|
|
|
for (i = 0; i < ata_force_tbl_size; i++) {
|
|
const struct ata_force_ent *fe = &ata_force_tbl[i];
|
|
|
|
if (fe->port != -1 && fe->port != dev->link->ap->print_id)
|
|
continue;
|
|
|
|
if (fe->device != -1 && fe->device != devno &&
|
|
fe->device != alt_devno)
|
|
continue;
|
|
|
|
if (!(~dev->horkage & fe->param.horkage_on) &&
|
|
!(dev->horkage & fe->param.horkage_off))
|
|
continue;
|
|
|
|
dev->horkage |= fe->param.horkage_on;
|
|
dev->horkage &= ~fe->param.horkage_off;
|
|
|
|
ata_dev_printk(dev, KERN_NOTICE,
|
|
"FORCE: horkage modified (%s)\n", fe->param.name);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* atapi_cmd_type - Determine ATAPI command type from SCSI opcode
|
|
* @opcode: SCSI opcode
|
|
*
|
|
* Determine ATAPI command type from @opcode.
|
|
*
|
|
* LOCKING:
|
|
* None.
|
|
*
|
|
* RETURNS:
|
|
* ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
|
|
*/
|
|
int atapi_cmd_type(u8 opcode)
|
|
{
|
|
switch (opcode) {
|
|
case GPCMD_READ_10:
|
|
case GPCMD_READ_12:
|
|
return ATAPI_READ;
|
|
|
|
case GPCMD_WRITE_10:
|
|
case GPCMD_WRITE_12:
|
|
case GPCMD_WRITE_AND_VERIFY_10:
|
|
return ATAPI_WRITE;
|
|
|
|
case GPCMD_READ_CD:
|
|
case GPCMD_READ_CD_MSF:
|
|
return ATAPI_READ_CD;
|
|
|
|
case ATA_16:
|
|
case ATA_12:
|
|
if (atapi_passthru16)
|
|
return ATAPI_PASS_THRU;
|
|
/* fall thru */
|
|
default:
|
|
return ATAPI_MISC;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
|
|
* @tf: Taskfile to convert
|
|
* @pmp: Port multiplier port
|
|
* @is_cmd: This FIS is for command
|
|
* @fis: Buffer into which data will output
|
|
*
|
|
* Converts a standard ATA taskfile to a Serial ATA
|
|
* FIS structure (Register - Host to Device).
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
|
|
{
|
|
fis[0] = 0x27; /* Register - Host to Device FIS */
|
|
fis[1] = pmp & 0xf; /* Port multiplier number*/
|
|
if (is_cmd)
|
|
fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
|
|
|
|
fis[2] = tf->command;
|
|
fis[3] = tf->feature;
|
|
|
|
fis[4] = tf->lbal;
|
|
fis[5] = tf->lbam;
|
|
fis[6] = tf->lbah;
|
|
fis[7] = tf->device;
|
|
|
|
fis[8] = tf->hob_lbal;
|
|
fis[9] = tf->hob_lbam;
|
|
fis[10] = tf->hob_lbah;
|
|
fis[11] = tf->hob_feature;
|
|
|
|
fis[12] = tf->nsect;
|
|
fis[13] = tf->hob_nsect;
|
|
fis[14] = 0;
|
|
fis[15] = tf->ctl;
|
|
|
|
fis[16] = 0;
|
|
fis[17] = 0;
|
|
fis[18] = 0;
|
|
fis[19] = 0;
|
|
}
|
|
|
|
/**
|
|
* ata_tf_from_fis - Convert SATA FIS to ATA taskfile
|
|
* @fis: Buffer from which data will be input
|
|
* @tf: Taskfile to output
|
|
*
|
|
* Converts a serial ATA FIS structure to a standard ATA taskfile.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
|
|
void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
|
|
{
|
|
tf->command = fis[2]; /* status */
|
|
tf->feature = fis[3]; /* error */
|
|
|
|
tf->lbal = fis[4];
|
|
tf->lbam = fis[5];
|
|
tf->lbah = fis[6];
|
|
tf->device = fis[7];
|
|
|
|
tf->hob_lbal = fis[8];
|
|
tf->hob_lbam = fis[9];
|
|
tf->hob_lbah = fis[10];
|
|
|
|
tf->nsect = fis[12];
|
|
tf->hob_nsect = fis[13];
|
|
}
|
|
|
|
static const u8 ata_rw_cmds[] = {
|
|
/* pio multi */
|
|
ATA_CMD_READ_MULTI,
|
|
ATA_CMD_WRITE_MULTI,
|
|
ATA_CMD_READ_MULTI_EXT,
|
|
ATA_CMD_WRITE_MULTI_EXT,
|
|
0,
|
|
0,
|
|
0,
|
|
ATA_CMD_WRITE_MULTI_FUA_EXT,
|
|
/* pio */
|
|
ATA_CMD_PIO_READ,
|
|
ATA_CMD_PIO_WRITE,
|
|
ATA_CMD_PIO_READ_EXT,
|
|
ATA_CMD_PIO_WRITE_EXT,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
/* dma */
|
|
ATA_CMD_READ,
|
|
ATA_CMD_WRITE,
|
|
ATA_CMD_READ_EXT,
|
|
ATA_CMD_WRITE_EXT,
|
|
0,
|
|
0,
|
|
0,
|
|
ATA_CMD_WRITE_FUA_EXT
|
|
};
|
|
|
|
/**
|
|
* ata_rwcmd_protocol - set taskfile r/w commands and protocol
|
|
* @tf: command to examine and configure
|
|
* @dev: device tf belongs to
|
|
*
|
|
* Examine the device configuration and tf->flags to calculate
|
|
* the proper read/write commands and protocol to use.
|
|
*
|
|
* LOCKING:
|
|
* caller.
|
|
*/
|
|
static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
|
|
{
|
|
u8 cmd;
|
|
|
|
int index, fua, lba48, write;
|
|
|
|
fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
|
|
lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
|
|
write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
|
|
|
|
if (dev->flags & ATA_DFLAG_PIO) {
|
|
tf->protocol = ATA_PROT_PIO;
|
|
index = dev->multi_count ? 0 : 8;
|
|
} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
|
|
/* Unable to use DMA due to host limitation */
|
|
tf->protocol = ATA_PROT_PIO;
|
|
index = dev->multi_count ? 0 : 8;
|
|
} else {
|
|
tf->protocol = ATA_PROT_DMA;
|
|
index = 16;
|
|
}
|
|
|
|
cmd = ata_rw_cmds[index + fua + lba48 + write];
|
|
if (cmd) {
|
|
tf->command = cmd;
|
|
return 0;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/**
|
|
* ata_tf_read_block - Read block address from ATA taskfile
|
|
* @tf: ATA taskfile of interest
|
|
* @dev: ATA device @tf belongs to
|
|
*
|
|
* LOCKING:
|
|
* None.
|
|
*
|
|
* Read block address from @tf. This function can handle all
|
|
* three address formats - LBA, LBA48 and CHS. tf->protocol and
|
|
* flags select the address format to use.
|
|
*
|
|
* RETURNS:
|
|
* Block address read from @tf.
|
|
*/
|
|
u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
|
|
{
|
|
u64 block = 0;
|
|
|
|
if (tf->flags & ATA_TFLAG_LBA) {
|
|
if (tf->flags & ATA_TFLAG_LBA48) {
|
|
block |= (u64)tf->hob_lbah << 40;
|
|
block |= (u64)tf->hob_lbam << 32;
|
|
block |= (u64)tf->hob_lbal << 24;
|
|
} else
|
|
block |= (tf->device & 0xf) << 24;
|
|
|
|
block |= tf->lbah << 16;
|
|
block |= tf->lbam << 8;
|
|
block |= tf->lbal;
|
|
} else {
|
|
u32 cyl, head, sect;
|
|
|
|
cyl = tf->lbam | (tf->lbah << 8);
|
|
head = tf->device & 0xf;
|
|
sect = tf->lbal;
|
|
|
|
if (!sect) {
|
|
ata_dev_printk(dev, KERN_WARNING, "device reported "
|
|
"invalid CHS sector 0\n");
|
|
sect = 1; /* oh well */
|
|
}
|
|
|
|
block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
|
|
}
|
|
|
|
return block;
|
|
}
|
|
|
|
/**
|
|
* ata_build_rw_tf - Build ATA taskfile for given read/write request
|
|
* @tf: Target ATA taskfile
|
|
* @dev: ATA device @tf belongs to
|
|
* @block: Block address
|
|
* @n_block: Number of blocks
|
|
* @tf_flags: RW/FUA etc...
|
|
* @tag: tag
|
|
*
|
|
* LOCKING:
|
|
* None.
|
|
*
|
|
* Build ATA taskfile @tf for read/write request described by
|
|
* @block, @n_block, @tf_flags and @tag on @dev.
|
|
*
|
|
* RETURNS:
|
|
*
|
|
* 0 on success, -ERANGE if the request is too large for @dev,
|
|
* -EINVAL if the request is invalid.
|
|
*/
|
|
int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
|
|
u64 block, u32 n_block, unsigned int tf_flags,
|
|
unsigned int tag)
|
|
{
|
|
tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
|
|
tf->flags |= tf_flags;
|
|
|
|
if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
|
|
/* yay, NCQ */
|
|
if (!lba_48_ok(block, n_block))
|
|
return -ERANGE;
|
|
|
|
tf->protocol = ATA_PROT_NCQ;
|
|
tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
|
|
|
|
if (tf->flags & ATA_TFLAG_WRITE)
|
|
tf->command = ATA_CMD_FPDMA_WRITE;
|
|
else
|
|
tf->command = ATA_CMD_FPDMA_READ;
|
|
|
|
tf->nsect = tag << 3;
|
|
tf->hob_feature = (n_block >> 8) & 0xff;
|
|
tf->feature = n_block & 0xff;
|
|
|
|
tf->hob_lbah = (block >> 40) & 0xff;
|
|
tf->hob_lbam = (block >> 32) & 0xff;
|
|
tf->hob_lbal = (block >> 24) & 0xff;
|
|
tf->lbah = (block >> 16) & 0xff;
|
|
tf->lbam = (block >> 8) & 0xff;
|
|
tf->lbal = block & 0xff;
|
|
|
|
tf->device = 1 << 6;
|
|
if (tf->flags & ATA_TFLAG_FUA)
|
|
tf->device |= 1 << 7;
|
|
} else if (dev->flags & ATA_DFLAG_LBA) {
|
|
tf->flags |= ATA_TFLAG_LBA;
|
|
|
|
if (lba_28_ok(block, n_block)) {
|
|
/* use LBA28 */
|
|
tf->device |= (block >> 24) & 0xf;
|
|
} else if (lba_48_ok(block, n_block)) {
|
|
if (!(dev->flags & ATA_DFLAG_LBA48))
|
|
return -ERANGE;
|
|
|
|
/* use LBA48 */
|
|
tf->flags |= ATA_TFLAG_LBA48;
|
|
|
|
tf->hob_nsect = (n_block >> 8) & 0xff;
|
|
|
|
tf->hob_lbah = (block >> 40) & 0xff;
|
|
tf->hob_lbam = (block >> 32) & 0xff;
|
|
tf->hob_lbal = (block >> 24) & 0xff;
|
|
} else
|
|
/* request too large even for LBA48 */
|
|
return -ERANGE;
|
|
|
|
if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
|
|
return -EINVAL;
|
|
|
|
tf->nsect = n_block & 0xff;
|
|
|
|
tf->lbah = (block >> 16) & 0xff;
|
|
tf->lbam = (block >> 8) & 0xff;
|
|
tf->lbal = block & 0xff;
|
|
|
|
tf->device |= ATA_LBA;
|
|
} else {
|
|
/* CHS */
|
|
u32 sect, head, cyl, track;
|
|
|
|
/* The request -may- be too large for CHS addressing. */
|
|
if (!lba_28_ok(block, n_block))
|
|
return -ERANGE;
|
|
|
|
if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
|
|
return -EINVAL;
|
|
|
|
/* Convert LBA to CHS */
|
|
track = (u32)block / dev->sectors;
|
|
cyl = track / dev->heads;
|
|
head = track % dev->heads;
|
|
sect = (u32)block % dev->sectors + 1;
|
|
|
|
DPRINTK("block %u track %u cyl %u head %u sect %u\n",
|
|
(u32)block, track, cyl, head, sect);
|
|
|
|
/* Check whether the converted CHS can fit.
|
|
Cylinder: 0-65535
|
|
Head: 0-15
|
|
Sector: 1-255*/
|
|
if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
|
|
return -ERANGE;
|
|
|
|
tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
|
|
tf->lbal = sect;
|
|
tf->lbam = cyl;
|
|
tf->lbah = cyl >> 8;
|
|
tf->device |= head;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
|
|
* @pio_mask: pio_mask
|
|
* @mwdma_mask: mwdma_mask
|
|
* @udma_mask: udma_mask
|
|
*
|
|
* Pack @pio_mask, @mwdma_mask and @udma_mask into a single
|
|
* unsigned int xfer_mask.
|
|
*
|
|
* LOCKING:
|
|
* None.
|
|
*
|
|
* RETURNS:
|
|
* Packed xfer_mask.
|
|
*/
|
|
unsigned long ata_pack_xfermask(unsigned long pio_mask,
|
|
unsigned long mwdma_mask,
|
|
unsigned long udma_mask)
|
|
{
|
|
return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
|
|
((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
|
|
((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
|
|
}
|
|
|
|
/**
|
|
* ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
|
|
* @xfer_mask: xfer_mask to unpack
|
|
* @pio_mask: resulting pio_mask
|
|
* @mwdma_mask: resulting mwdma_mask
|
|
* @udma_mask: resulting udma_mask
|
|
*
|
|
* Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
|
|
* Any NULL distination masks will be ignored.
|
|
*/
|
|
void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
|
|
unsigned long *mwdma_mask, unsigned long *udma_mask)
|
|
{
|
|
if (pio_mask)
|
|
*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
|
|
if (mwdma_mask)
|
|
*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
|
|
if (udma_mask)
|
|
*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
|
|
}
|
|
|
|
static const struct ata_xfer_ent {
|
|
int shift, bits;
|
|
u8 base;
|
|
} ata_xfer_tbl[] = {
|
|
{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
|
|
{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
|
|
{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
|
|
{ -1, },
|
|
};
|
|
|
|
/**
|
|
* ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
|
|
* @xfer_mask: xfer_mask of interest
|
|
*
|
|
* Return matching XFER_* value for @xfer_mask. Only the highest
|
|
* bit of @xfer_mask is considered.
|
|
*
|
|
* LOCKING:
|
|
* None.
|
|
*
|
|
* RETURNS:
|
|
* Matching XFER_* value, 0xff if no match found.
|
|
*/
|
|
u8 ata_xfer_mask2mode(unsigned long xfer_mask)
|
|
{
|
|
int highbit = fls(xfer_mask) - 1;
|
|
const struct ata_xfer_ent *ent;
|
|
|
|
for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
|
|
if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
|
|
return ent->base + highbit - ent->shift;
|
|
return 0xff;
|
|
}
|
|
|
|
/**
|
|
* ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
|
|
* @xfer_mode: XFER_* of interest
|
|
*
|
|
* Return matching xfer_mask for @xfer_mode.
|
|
*
|
|
* LOCKING:
|
|
* None.
|
|
*
|
|
* RETURNS:
|
|
* Matching xfer_mask, 0 if no match found.
|
|
*/
|
|
unsigned long ata_xfer_mode2mask(u8 xfer_mode)
|
|
{
|
|
const struct ata_xfer_ent *ent;
|
|
|
|
for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
|
|
if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
|
|
return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
|
|
& ~((1 << ent->shift) - 1);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
|
|
* @xfer_mode: XFER_* of interest
|
|
*
|
|
* Return matching xfer_shift for @xfer_mode.
|
|
*
|
|
* LOCKING:
|
|
* None.
|
|
*
|
|
* RETURNS:
|
|
* Matching xfer_shift, -1 if no match found.
|
|
*/
|
|
int ata_xfer_mode2shift(unsigned long xfer_mode)
|
|
{
|
|
const struct ata_xfer_ent *ent;
|
|
|
|
for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
|
|
if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
|
|
return ent->shift;
|
|
return -1;
|
|
}
|
|
|
|
/**
|
|
* ata_mode_string - convert xfer_mask to string
|
|
* @xfer_mask: mask of bits supported; only highest bit counts.
|
|
*
|
|
* Determine string which represents the highest speed
|
|
* (highest bit in @modemask).
|
|
*
|
|
* LOCKING:
|
|
* None.
|
|
*
|
|
* RETURNS:
|
|
* Constant C string representing highest speed listed in
|
|
* @mode_mask, or the constant C string "<n/a>".
|
|
*/
|
|
const char *ata_mode_string(unsigned long xfer_mask)
|
|
{
|
|
static const char * const xfer_mode_str[] = {
|
|
"PIO0",
|
|
"PIO1",
|
|
"PIO2",
|
|
"PIO3",
|
|
"PIO4",
|
|
"PIO5",
|
|
"PIO6",
|
|
"MWDMA0",
|
|
"MWDMA1",
|
|
"MWDMA2",
|
|
"MWDMA3",
|
|
"MWDMA4",
|
|
"UDMA/16",
|
|
"UDMA/25",
|
|
"UDMA/33",
|
|
"UDMA/44",
|
|
"UDMA/66",
|
|
"UDMA/100",
|
|
"UDMA/133",
|
|
"UDMA7",
|
|
};
|
|
int highbit;
|
|
|
|
highbit = fls(xfer_mask) - 1;
|
|
if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
|
|
return xfer_mode_str[highbit];
|
|
return "<n/a>";
|
|
}
|
|
|
|
const char *sata_spd_string(unsigned int spd)
|
|
{
|
|
static const char * const spd_str[] = {
|
|
"1.5 Gbps",
|
|
"3.0 Gbps",
|
|
"6.0 Gbps",
|
|
};
|
|
|
|
if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
|
|
return "<unknown>";
|
|
return spd_str[spd - 1];
|
|
}
|
|
|
|
/**
|
|
* ata_dev_classify - determine device type based on ATA-spec signature
|
|
* @tf: ATA taskfile register set for device to be identified
|
|
*
|
|
* Determine from taskfile register contents whether a device is
|
|
* ATA or ATAPI, as per "Signature and persistence" section
|
|
* of ATA/PI spec (volume 1, sect 5.14).
|
|
*
|
|
* LOCKING:
|
|
* None.
|
|
*
|
|
* RETURNS:
|
|
* Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
|
|
* %ATA_DEV_UNKNOWN the event of failure.
|
|
*/
|
|
unsigned int ata_dev_classify(const struct ata_taskfile *tf)
|
|
{
|
|
/* Apple's open source Darwin code hints that some devices only
|
|
* put a proper signature into the LBA mid/high registers,
|
|
* So, we only check those. It's sufficient for uniqueness.
|
|
*
|
|
* ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
|
|
* signatures for ATA and ATAPI devices attached on SerialATA,
|
|
* 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
|
|
* spec has never mentioned about using different signatures
|
|
* for ATA/ATAPI devices. Then, Serial ATA II: Port
|
|
* Multiplier specification began to use 0x69/0x96 to identify
|
|
* port multpliers and 0x3c/0xc3 to identify SEMB device.
|
|
* ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
|
|
* 0x69/0x96 shortly and described them as reserved for
|
|
* SerialATA.
|
|
*
|
|
* We follow the current spec and consider that 0x69/0x96
|
|
* identifies a port multiplier and 0x3c/0xc3 a SEMB device.
|
|
* Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
|
|
* SEMB signature. This is worked around in
|
|
* ata_dev_read_id().
|
|
*/
|
|
if ((tf->lbam == 0) && (tf->lbah == 0)) {
|
|
DPRINTK("found ATA device by sig\n");
|
|
return ATA_DEV_ATA;
|
|
}
|
|
|
|
if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
|
|
DPRINTK("found ATAPI device by sig\n");
|
|
return ATA_DEV_ATAPI;
|
|
}
|
|
|
|
if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
|
|
DPRINTK("found PMP device by sig\n");
|
|
return ATA_DEV_PMP;
|
|
}
|
|
|
|
if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
|
|
DPRINTK("found SEMB device by sig (could be ATA device)\n");
|
|
return ATA_DEV_SEMB;
|
|
}
|
|
|
|
DPRINTK("unknown device\n");
|
|
return ATA_DEV_UNKNOWN;
|
|
}
|
|
|
|
/**
|
|
* ata_id_string - Convert IDENTIFY DEVICE page into string
|
|
* @id: IDENTIFY DEVICE results we will examine
|
|
* @s: string into which data is output
|
|
* @ofs: offset into identify device page
|
|
* @len: length of string to return. must be an even number.
|
|
*
|
|
* The strings in the IDENTIFY DEVICE page are broken up into
|
|
* 16-bit chunks. Run through the string, and output each
|
|
* 8-bit chunk linearly, regardless of platform.
|
|
*
|
|
* LOCKING:
|
|
* caller.
|
|
*/
|
|
|
|
void ata_id_string(const u16 *id, unsigned char *s,
|
|
unsigned int ofs, unsigned int len)
|
|
{
|
|
unsigned int c;
|
|
|
|
BUG_ON(len & 1);
|
|
|
|
while (len > 0) {
|
|
c = id[ofs] >> 8;
|
|
*s = c;
|
|
s++;
|
|
|
|
c = id[ofs] & 0xff;
|
|
*s = c;
|
|
s++;
|
|
|
|
ofs++;
|
|
len -= 2;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ata_id_c_string - Convert IDENTIFY DEVICE page into C string
|
|
* @id: IDENTIFY DEVICE results we will examine
|
|
* @s: string into which data is output
|
|
* @ofs: offset into identify device page
|
|
* @len: length of string to return. must be an odd number.
|
|
*
|
|
* This function is identical to ata_id_string except that it
|
|
* trims trailing spaces and terminates the resulting string with
|
|
* null. @len must be actual maximum length (even number) + 1.
|
|
*
|
|
* LOCKING:
|
|
* caller.
|
|
*/
|
|
void ata_id_c_string(const u16 *id, unsigned char *s,
|
|
unsigned int ofs, unsigned int len)
|
|
{
|
|
unsigned char *p;
|
|
|
|
ata_id_string(id, s, ofs, len - 1);
|
|
|
|
p = s + strnlen(s, len - 1);
|
|
while (p > s && p[-1] == ' ')
|
|
p--;
|
|
*p = '\0';
|
|
}
|
|
|
|
static u64 ata_id_n_sectors(const u16 *id)
|
|
{
|
|
if (ata_id_has_lba(id)) {
|
|
if (ata_id_has_lba48(id))
|
|
return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
|
|
else
|
|
return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
|
|
} else {
|
|
if (ata_id_current_chs_valid(id))
|
|
return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
|
|
id[ATA_ID_CUR_SECTORS];
|
|
else
|
|
return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
|
|
id[ATA_ID_SECTORS];
|
|
}
|
|
}
|
|
|
|
u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
|
|
{
|
|
u64 sectors = 0;
|
|
|
|
sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
|
|
sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
|
|
sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
|
|
sectors |= (tf->lbah & 0xff) << 16;
|
|
sectors |= (tf->lbam & 0xff) << 8;
|
|
sectors |= (tf->lbal & 0xff);
|
|
|
|
return sectors;
|
|
}
|
|
|
|
u64 ata_tf_to_lba(const struct ata_taskfile *tf)
|
|
{
|
|
u64 sectors = 0;
|
|
|
|
sectors |= (tf->device & 0x0f) << 24;
|
|
sectors |= (tf->lbah & 0xff) << 16;
|
|
sectors |= (tf->lbam & 0xff) << 8;
|
|
sectors |= (tf->lbal & 0xff);
|
|
|
|
return sectors;
|
|
}
|
|
|
|
/**
|
|
* ata_read_native_max_address - Read native max address
|
|
* @dev: target device
|
|
* @max_sectors: out parameter for the result native max address
|
|
*
|
|
* Perform an LBA48 or LBA28 native size query upon the device in
|
|
* question.
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -EACCES if command is aborted by the drive.
|
|
* -EIO on other errors.
|
|
*/
|
|
static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
|
|
{
|
|
unsigned int err_mask;
|
|
struct ata_taskfile tf;
|
|
int lba48 = ata_id_has_lba48(dev->id);
|
|
|
|
ata_tf_init(dev, &tf);
|
|
|
|
/* always clear all address registers */
|
|
tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
|
|
|
|
if (lba48) {
|
|
tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
|
|
tf.flags |= ATA_TFLAG_LBA48;
|
|
} else
|
|
tf.command = ATA_CMD_READ_NATIVE_MAX;
|
|
|
|
tf.protocol |= ATA_PROT_NODATA;
|
|
tf.device |= ATA_LBA;
|
|
|
|
err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
|
|
if (err_mask) {
|
|
ata_dev_printk(dev, KERN_WARNING, "failed to read native "
|
|
"max address (err_mask=0x%x)\n", err_mask);
|
|
if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
|
|
return -EACCES;
|
|
return -EIO;
|
|
}
|
|
|
|
if (lba48)
|
|
*max_sectors = ata_tf_to_lba48(&tf) + 1;
|
|
else
|
|
*max_sectors = ata_tf_to_lba(&tf) + 1;
|
|
if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
|
|
(*max_sectors)--;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ata_set_max_sectors - Set max sectors
|
|
* @dev: target device
|
|
* @new_sectors: new max sectors value to set for the device
|
|
*
|
|
* Set max sectors of @dev to @new_sectors.
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -EACCES if command is aborted or denied (due to
|
|
* previous non-volatile SET_MAX) by the drive. -EIO on other
|
|
* errors.
|
|
*/
|
|
static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
|
|
{
|
|
unsigned int err_mask;
|
|
struct ata_taskfile tf;
|
|
int lba48 = ata_id_has_lba48(dev->id);
|
|
|
|
new_sectors--;
|
|
|
|
ata_tf_init(dev, &tf);
|
|
|
|
tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
|
|
|
|
if (lba48) {
|
|
tf.command = ATA_CMD_SET_MAX_EXT;
|
|
tf.flags |= ATA_TFLAG_LBA48;
|
|
|
|
tf.hob_lbal = (new_sectors >> 24) & 0xff;
|
|
tf.hob_lbam = (new_sectors >> 32) & 0xff;
|
|
tf.hob_lbah = (new_sectors >> 40) & 0xff;
|
|
} else {
|
|
tf.command = ATA_CMD_SET_MAX;
|
|
|
|
tf.device |= (new_sectors >> 24) & 0xf;
|
|
}
|
|
|
|
tf.protocol |= ATA_PROT_NODATA;
|
|
tf.device |= ATA_LBA;
|
|
|
|
tf.lbal = (new_sectors >> 0) & 0xff;
|
|
tf.lbam = (new_sectors >> 8) & 0xff;
|
|
tf.lbah = (new_sectors >> 16) & 0xff;
|
|
|
|
err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
|
|
if (err_mask) {
|
|
ata_dev_printk(dev, KERN_WARNING, "failed to set "
|
|
"max address (err_mask=0x%x)\n", err_mask);
|
|
if (err_mask == AC_ERR_DEV &&
|
|
(tf.feature & (ATA_ABORTED | ATA_IDNF)))
|
|
return -EACCES;
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ata_hpa_resize - Resize a device with an HPA set
|
|
* @dev: Device to resize
|
|
*
|
|
* Read the size of an LBA28 or LBA48 disk with HPA features and resize
|
|
* it if required to the full size of the media. The caller must check
|
|
* the drive has the HPA feature set enabled.
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno on failure.
|
|
*/
|
|
static int ata_hpa_resize(struct ata_device *dev)
|
|
{
|
|
struct ata_eh_context *ehc = &dev->link->eh_context;
|
|
int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
|
|
bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
|
|
u64 sectors = ata_id_n_sectors(dev->id);
|
|
u64 native_sectors;
|
|
int rc;
|
|
|
|
/* do we need to do it? */
|
|
if (dev->class != ATA_DEV_ATA ||
|
|
!ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
|
|
(dev->horkage & ATA_HORKAGE_BROKEN_HPA))
|
|
return 0;
|
|
|
|
/* read native max address */
|
|
rc = ata_read_native_max_address(dev, &native_sectors);
|
|
if (rc) {
|
|
/* If device aborted the command or HPA isn't going to
|
|
* be unlocked, skip HPA resizing.
|
|
*/
|
|
if (rc == -EACCES || !unlock_hpa) {
|
|
ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
|
|
"broken, skipping HPA handling\n");
|
|
dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
|
|
|
|
/* we can continue if device aborted the command */
|
|
if (rc == -EACCES)
|
|
rc = 0;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
dev->n_native_sectors = native_sectors;
|
|
|
|
/* nothing to do? */
|
|
if (native_sectors <= sectors || !unlock_hpa) {
|
|
if (!print_info || native_sectors == sectors)
|
|
return 0;
|
|
|
|
if (native_sectors > sectors)
|
|
ata_dev_printk(dev, KERN_INFO,
|
|
"HPA detected: current %llu, native %llu\n",
|
|
(unsigned long long)sectors,
|
|
(unsigned long long)native_sectors);
|
|
else if (native_sectors < sectors)
|
|
ata_dev_printk(dev, KERN_WARNING,
|
|
"native sectors (%llu) is smaller than "
|
|
"sectors (%llu)\n",
|
|
(unsigned long long)native_sectors,
|
|
(unsigned long long)sectors);
|
|
return 0;
|
|
}
|
|
|
|
/* let's unlock HPA */
|
|
rc = ata_set_max_sectors(dev, native_sectors);
|
|
if (rc == -EACCES) {
|
|
/* if device aborted the command, skip HPA resizing */
|
|
ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
|
|
"(%llu -> %llu), skipping HPA handling\n",
|
|
(unsigned long long)sectors,
|
|
(unsigned long long)native_sectors);
|
|
dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
|
|
return 0;
|
|
} else if (rc)
|
|
return rc;
|
|
|
|
/* re-read IDENTIFY data */
|
|
rc = ata_dev_reread_id(dev, 0);
|
|
if (rc) {
|
|
ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
|
|
"data after HPA resizing\n");
|
|
return rc;
|
|
}
|
|
|
|
if (print_info) {
|
|
u64 new_sectors = ata_id_n_sectors(dev->id);
|
|
ata_dev_printk(dev, KERN_INFO,
|
|
"HPA unlocked: %llu -> %llu, native %llu\n",
|
|
(unsigned long long)sectors,
|
|
(unsigned long long)new_sectors,
|
|
(unsigned long long)native_sectors);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ata_dump_id - IDENTIFY DEVICE info debugging output
|
|
* @id: IDENTIFY DEVICE page to dump
|
|
*
|
|
* Dump selected 16-bit words from the given IDENTIFY DEVICE
|
|
* page.
|
|
*
|
|
* LOCKING:
|
|
* caller.
|
|
*/
|
|
|
|
static inline void ata_dump_id(const u16 *id)
|
|
{
|
|
DPRINTK("49==0x%04x "
|
|
"53==0x%04x "
|
|
"63==0x%04x "
|
|
"64==0x%04x "
|
|
"75==0x%04x \n",
|
|
id[49],
|
|
id[53],
|
|
id[63],
|
|
id[64],
|
|
id[75]);
|
|
DPRINTK("80==0x%04x "
|
|
"81==0x%04x "
|
|
"82==0x%04x "
|
|
"83==0x%04x "
|
|
"84==0x%04x \n",
|
|
id[80],
|
|
id[81],
|
|
id[82],
|
|
id[83],
|
|
id[84]);
|
|
DPRINTK("88==0x%04x "
|
|
"93==0x%04x\n",
|
|
id[88],
|
|
id[93]);
|
|
}
|
|
|
|
/**
|
|
* ata_id_xfermask - Compute xfermask from the given IDENTIFY data
|
|
* @id: IDENTIFY data to compute xfer mask from
|
|
*
|
|
* Compute the xfermask for this device. This is not as trivial
|
|
* as it seems if we must consider early devices correctly.
|
|
*
|
|
* FIXME: pre IDE drive timing (do we care ?).
|
|
*
|
|
* LOCKING:
|
|
* None.
|
|
*
|
|
* RETURNS:
|
|
* Computed xfermask
|
|
*/
|
|
unsigned long ata_id_xfermask(const u16 *id)
|
|
{
|
|
unsigned long pio_mask, mwdma_mask, udma_mask;
|
|
|
|
/* Usual case. Word 53 indicates word 64 is valid */
|
|
if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
|
|
pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
|
|
pio_mask <<= 3;
|
|
pio_mask |= 0x7;
|
|
} else {
|
|
/* If word 64 isn't valid then Word 51 high byte holds
|
|
* the PIO timing number for the maximum. Turn it into
|
|
* a mask.
|
|
*/
|
|
u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
|
|
if (mode < 5) /* Valid PIO range */
|
|
pio_mask = (2 << mode) - 1;
|
|
else
|
|
pio_mask = 1;
|
|
|
|
/* But wait.. there's more. Design your standards by
|
|
* committee and you too can get a free iordy field to
|
|
* process. However its the speeds not the modes that
|
|
* are supported... Note drivers using the timing API
|
|
* will get this right anyway
|
|
*/
|
|
}
|
|
|
|
mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
|
|
|
|
if (ata_id_is_cfa(id)) {
|
|
/*
|
|
* Process compact flash extended modes
|
|
*/
|
|
int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
|
|
int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
|
|
|
|
if (pio)
|
|
pio_mask |= (1 << 5);
|
|
if (pio > 1)
|
|
pio_mask |= (1 << 6);
|
|
if (dma)
|
|
mwdma_mask |= (1 << 3);
|
|
if (dma > 1)
|
|
mwdma_mask |= (1 << 4);
|
|
}
|
|
|
|
udma_mask = 0;
|
|
if (id[ATA_ID_FIELD_VALID] & (1 << 2))
|
|
udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
|
|
|
|
return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
|
|
}
|
|
|
|
static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
|
|
{
|
|
struct completion *waiting = qc->private_data;
|
|
|
|
complete(waiting);
|
|
}
|
|
|
|
/**
|
|
* ata_exec_internal_sg - execute libata internal command
|
|
* @dev: Device to which the command is sent
|
|
* @tf: Taskfile registers for the command and the result
|
|
* @cdb: CDB for packet command
|
|
* @dma_dir: Data tranfer direction of the command
|
|
* @sgl: sg list for the data buffer of the command
|
|
* @n_elem: Number of sg entries
|
|
* @timeout: Timeout in msecs (0 for default)
|
|
*
|
|
* Executes libata internal command with timeout. @tf contains
|
|
* command on entry and result on return. Timeout and error
|
|
* conditions are reported via return value. No recovery action
|
|
* is taken after a command times out. It's caller's duty to
|
|
* clean up after timeout.
|
|
*
|
|
* LOCKING:
|
|
* None. Should be called with kernel context, might sleep.
|
|
*
|
|
* RETURNS:
|
|
* Zero on success, AC_ERR_* mask on failure
|
|
*/
|
|
unsigned ata_exec_internal_sg(struct ata_device *dev,
|
|
struct ata_taskfile *tf, const u8 *cdb,
|
|
int dma_dir, struct scatterlist *sgl,
|
|
unsigned int n_elem, unsigned long timeout)
|
|
{
|
|
struct ata_link *link = dev->link;
|
|
struct ata_port *ap = link->ap;
|
|
u8 command = tf->command;
|
|
int auto_timeout = 0;
|
|
struct ata_queued_cmd *qc;
|
|
unsigned int tag, preempted_tag;
|
|
u32 preempted_sactive, preempted_qc_active;
|
|
int preempted_nr_active_links;
|
|
DECLARE_COMPLETION_ONSTACK(wait);
|
|
unsigned long flags;
|
|
unsigned int err_mask;
|
|
int rc;
|
|
|
|
spin_lock_irqsave(ap->lock, flags);
|
|
|
|
/* no internal command while frozen */
|
|
if (ap->pflags & ATA_PFLAG_FROZEN) {
|
|
spin_unlock_irqrestore(ap->lock, flags);
|
|
return AC_ERR_SYSTEM;
|
|
}
|
|
|
|
/* initialize internal qc */
|
|
|
|
/* XXX: Tag 0 is used for drivers with legacy EH as some
|
|
* drivers choke if any other tag is given. This breaks
|
|
* ata_tag_internal() test for those drivers. Don't use new
|
|
* EH stuff without converting to it.
|
|
*/
|
|
if (ap->ops->error_handler)
|
|
tag = ATA_TAG_INTERNAL;
|
|
else
|
|
tag = 0;
|
|
|
|
if (test_and_set_bit(tag, &ap->qc_allocated))
|
|
BUG();
|
|
qc = __ata_qc_from_tag(ap, tag);
|
|
|
|
qc->tag = tag;
|
|
qc->scsicmd = NULL;
|
|
qc->ap = ap;
|
|
qc->dev = dev;
|
|
ata_qc_reinit(qc);
|
|
|
|
preempted_tag = link->active_tag;
|
|
preempted_sactive = link->sactive;
|
|
preempted_qc_active = ap->qc_active;
|
|
preempted_nr_active_links = ap->nr_active_links;
|
|
link->active_tag = ATA_TAG_POISON;
|
|
link->sactive = 0;
|
|
ap->qc_active = 0;
|
|
ap->nr_active_links = 0;
|
|
|
|
/* prepare & issue qc */
|
|
qc->tf = *tf;
|
|
if (cdb)
|
|
memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
|
|
qc->flags |= ATA_QCFLAG_RESULT_TF;
|
|
qc->dma_dir = dma_dir;
|
|
if (dma_dir != DMA_NONE) {
|
|
unsigned int i, buflen = 0;
|
|
struct scatterlist *sg;
|
|
|
|
for_each_sg(sgl, sg, n_elem, i)
|
|
buflen += sg->length;
|
|
|
|
ata_sg_init(qc, sgl, n_elem);
|
|
qc->nbytes = buflen;
|
|
}
|
|
|
|
qc->private_data = &wait;
|
|
qc->complete_fn = ata_qc_complete_internal;
|
|
|
|
ata_qc_issue(qc);
|
|
|
|
spin_unlock_irqrestore(ap->lock, flags);
|
|
|
|
if (!timeout) {
|
|
if (ata_probe_timeout)
|
|
timeout = ata_probe_timeout * 1000;
|
|
else {
|
|
timeout = ata_internal_cmd_timeout(dev, command);
|
|
auto_timeout = 1;
|
|
}
|
|
}
|
|
|
|
if (ap->ops->error_handler)
|
|
ata_eh_release(ap);
|
|
|
|
rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
|
|
|
|
if (ap->ops->error_handler)
|
|
ata_eh_acquire(ap);
|
|
|
|
ata_sff_flush_pio_task(ap);
|
|
|
|
if (!rc) {
|
|
spin_lock_irqsave(ap->lock, flags);
|
|
|
|
/* We're racing with irq here. If we lose, the
|
|
* following test prevents us from completing the qc
|
|
* twice. If we win, the port is frozen and will be
|
|
* cleaned up by ->post_internal_cmd().
|
|
*/
|
|
if (qc->flags & ATA_QCFLAG_ACTIVE) {
|
|
qc->err_mask |= AC_ERR_TIMEOUT;
|
|
|
|
if (ap->ops->error_handler)
|
|
ata_port_freeze(ap);
|
|
else
|
|
ata_qc_complete(qc);
|
|
|
|
if (ata_msg_warn(ap))
|
|
ata_dev_printk(dev, KERN_WARNING,
|
|
"qc timeout (cmd 0x%x)\n", command);
|
|
}
|
|
|
|
spin_unlock_irqrestore(ap->lock, flags);
|
|
}
|
|
|
|
/* do post_internal_cmd */
|
|
if (ap->ops->post_internal_cmd)
|
|
ap->ops->post_internal_cmd(qc);
|
|
|
|
/* perform minimal error analysis */
|
|
if (qc->flags & ATA_QCFLAG_FAILED) {
|
|
if (qc->result_tf.command & (ATA_ERR | ATA_DF))
|
|
qc->err_mask |= AC_ERR_DEV;
|
|
|
|
if (!qc->err_mask)
|
|
qc->err_mask |= AC_ERR_OTHER;
|
|
|
|
if (qc->err_mask & ~AC_ERR_OTHER)
|
|
qc->err_mask &= ~AC_ERR_OTHER;
|
|
}
|
|
|
|
/* finish up */
|
|
spin_lock_irqsave(ap->lock, flags);
|
|
|
|
*tf = qc->result_tf;
|
|
err_mask = qc->err_mask;
|
|
|
|
ata_qc_free(qc);
|
|
link->active_tag = preempted_tag;
|
|
link->sactive = preempted_sactive;
|
|
ap->qc_active = preempted_qc_active;
|
|
ap->nr_active_links = preempted_nr_active_links;
|
|
|
|
spin_unlock_irqrestore(ap->lock, flags);
|
|
|
|
if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
|
|
ata_internal_cmd_timed_out(dev, command);
|
|
|
|
return err_mask;
|
|
}
|
|
|
|
/**
|
|
* ata_exec_internal - execute libata internal command
|
|
* @dev: Device to which the command is sent
|
|
* @tf: Taskfile registers for the command and the result
|
|
* @cdb: CDB for packet command
|
|
* @dma_dir: Data tranfer direction of the command
|
|
* @buf: Data buffer of the command
|
|
* @buflen: Length of data buffer
|
|
* @timeout: Timeout in msecs (0 for default)
|
|
*
|
|
* Wrapper around ata_exec_internal_sg() which takes simple
|
|
* buffer instead of sg list.
|
|
*
|
|
* LOCKING:
|
|
* None. Should be called with kernel context, might sleep.
|
|
*
|
|
* RETURNS:
|
|
* Zero on success, AC_ERR_* mask on failure
|
|
*/
|
|
unsigned ata_exec_internal(struct ata_device *dev,
|
|
struct ata_taskfile *tf, const u8 *cdb,
|
|
int dma_dir, void *buf, unsigned int buflen,
|
|
unsigned long timeout)
|
|
{
|
|
struct scatterlist *psg = NULL, sg;
|
|
unsigned int n_elem = 0;
|
|
|
|
if (dma_dir != DMA_NONE) {
|
|
WARN_ON(!buf);
|
|
sg_init_one(&sg, buf, buflen);
|
|
psg = &sg;
|
|
n_elem++;
|
|
}
|
|
|
|
return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
|
|
timeout);
|
|
}
|
|
|
|
/**
|
|
* ata_do_simple_cmd - execute simple internal command
|
|
* @dev: Device to which the command is sent
|
|
* @cmd: Opcode to execute
|
|
*
|
|
* Execute a 'simple' command, that only consists of the opcode
|
|
* 'cmd' itself, without filling any other registers
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep).
|
|
*
|
|
* RETURNS:
|
|
* Zero on success, AC_ERR_* mask on failure
|
|
*/
|
|
unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
|
|
{
|
|
struct ata_taskfile tf;
|
|
|
|
ata_tf_init(dev, &tf);
|
|
|
|
tf.command = cmd;
|
|
tf.flags |= ATA_TFLAG_DEVICE;
|
|
tf.protocol = ATA_PROT_NODATA;
|
|
|
|
return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* ata_pio_need_iordy - check if iordy needed
|
|
* @adev: ATA device
|
|
*
|
|
* Check if the current speed of the device requires IORDY. Used
|
|
* by various controllers for chip configuration.
|
|
*/
|
|
unsigned int ata_pio_need_iordy(const struct ata_device *adev)
|
|
{
|
|
/* Don't set IORDY if we're preparing for reset. IORDY may
|
|
* lead to controller lock up on certain controllers if the
|
|
* port is not occupied. See bko#11703 for details.
|
|
*/
|
|
if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
|
|
return 0;
|
|
/* Controller doesn't support IORDY. Probably a pointless
|
|
* check as the caller should know this.
|
|
*/
|
|
if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
|
|
return 0;
|
|
/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
|
|
if (ata_id_is_cfa(adev->id)
|
|
&& (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
|
|
return 0;
|
|
/* PIO3 and higher it is mandatory */
|
|
if (adev->pio_mode > XFER_PIO_2)
|
|
return 1;
|
|
/* We turn it on when possible */
|
|
if (ata_id_has_iordy(adev->id))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ata_pio_mask_no_iordy - Return the non IORDY mask
|
|
* @adev: ATA device
|
|
*
|
|
* Compute the highest mode possible if we are not using iordy. Return
|
|
* -1 if no iordy mode is available.
|
|
*/
|
|
static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
|
|
{
|
|
/* If we have no drive specific rule, then PIO 2 is non IORDY */
|
|
if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
|
|
u16 pio = adev->id[ATA_ID_EIDE_PIO];
|
|
/* Is the speed faster than the drive allows non IORDY ? */
|
|
if (pio) {
|
|
/* This is cycle times not frequency - watch the logic! */
|
|
if (pio > 240) /* PIO2 is 240nS per cycle */
|
|
return 3 << ATA_SHIFT_PIO;
|
|
return 7 << ATA_SHIFT_PIO;
|
|
}
|
|
}
|
|
return 3 << ATA_SHIFT_PIO;
|
|
}
|
|
|
|
/**
|
|
* ata_do_dev_read_id - default ID read method
|
|
* @dev: device
|
|
* @tf: proposed taskfile
|
|
* @id: data buffer
|
|
*
|
|
* Issue the identify taskfile and hand back the buffer containing
|
|
* identify data. For some RAID controllers and for pre ATA devices
|
|
* this function is wrapped or replaced by the driver
|
|
*/
|
|
unsigned int ata_do_dev_read_id(struct ata_device *dev,
|
|
struct ata_taskfile *tf, u16 *id)
|
|
{
|
|
return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
|
|
id, sizeof(id[0]) * ATA_ID_WORDS, 0);
|
|
}
|
|
|
|
/**
|
|
* ata_dev_read_id - Read ID data from the specified device
|
|
* @dev: target device
|
|
* @p_class: pointer to class of the target device (may be changed)
|
|
* @flags: ATA_READID_* flags
|
|
* @id: buffer to read IDENTIFY data into
|
|
*
|
|
* Read ID data from the specified device. ATA_CMD_ID_ATA is
|
|
* performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
|
|
* devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
|
|
* for pre-ATA4 drives.
|
|
*
|
|
* FIXME: ATA_CMD_ID_ATA is optional for early drives and right
|
|
* now we abort if we hit that case.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep)
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno otherwise.
|
|
*/
|
|
int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
|
|
unsigned int flags, u16 *id)
|
|
{
|
|
struct ata_port *ap = dev->link->ap;
|
|
unsigned int class = *p_class;
|
|
struct ata_taskfile tf;
|
|
unsigned int err_mask = 0;
|
|
const char *reason;
|
|
bool is_semb = class == ATA_DEV_SEMB;
|
|
int may_fallback = 1, tried_spinup = 0;
|
|
int rc;
|
|
|
|
if (ata_msg_ctl(ap))
|
|
ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
|
|
|
|
retry:
|
|
ata_tf_init(dev, &tf);
|
|
|
|
switch (class) {
|
|
case ATA_DEV_SEMB:
|
|
class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
|
|
case ATA_DEV_ATA:
|
|
tf.command = ATA_CMD_ID_ATA;
|
|
break;
|
|
case ATA_DEV_ATAPI:
|
|
tf.command = ATA_CMD_ID_ATAPI;
|
|
break;
|
|
default:
|
|
rc = -ENODEV;
|
|
reason = "unsupported class";
|
|
goto err_out;
|
|
}
|
|
|
|
tf.protocol = ATA_PROT_PIO;
|
|
|
|
/* Some devices choke if TF registers contain garbage. Make
|
|
* sure those are properly initialized.
|
|
*/
|
|
tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
|
|
|
|
/* Device presence detection is unreliable on some
|
|
* controllers. Always poll IDENTIFY if available.
|
|
*/
|
|
tf.flags |= ATA_TFLAG_POLLING;
|
|
|
|
if (ap->ops->read_id)
|
|
err_mask = ap->ops->read_id(dev, &tf, id);
|
|
else
|
|
err_mask = ata_do_dev_read_id(dev, &tf, id);
|
|
|
|
if (err_mask) {
|
|
if (err_mask & AC_ERR_NODEV_HINT) {
|
|
ata_dev_printk(dev, KERN_DEBUG,
|
|
"NODEV after polling detection\n");
|
|
return -ENOENT;
|
|
}
|
|
|
|
if (is_semb) {
|
|
ata_dev_printk(dev, KERN_INFO, "IDENTIFY failed on "
|
|
"device w/ SEMB sig, disabled\n");
|
|
/* SEMB is not supported yet */
|
|
*p_class = ATA_DEV_SEMB_UNSUP;
|
|
return 0;
|
|
}
|
|
|
|
if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
|
|
/* Device or controller might have reported
|
|
* the wrong device class. Give a shot at the
|
|
* other IDENTIFY if the current one is
|
|
* aborted by the device.
|
|
*/
|
|
if (may_fallback) {
|
|
may_fallback = 0;
|
|
|
|
if (class == ATA_DEV_ATA)
|
|
class = ATA_DEV_ATAPI;
|
|
else
|
|
class = ATA_DEV_ATA;
|
|
goto retry;
|
|
}
|
|
|
|
/* Control reaches here iff the device aborted
|
|
* both flavors of IDENTIFYs which happens
|
|
* sometimes with phantom devices.
|
|
*/
|
|
ata_dev_printk(dev, KERN_DEBUG,
|
|
"both IDENTIFYs aborted, assuming NODEV\n");
|
|
return -ENOENT;
|
|
}
|
|
|
|
rc = -EIO;
|
|
reason = "I/O error";
|
|
goto err_out;
|
|
}
|
|
|
|
if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
|
|
ata_dev_printk(dev, KERN_DEBUG, "dumping IDENTIFY data, "
|
|
"class=%d may_fallback=%d tried_spinup=%d\n",
|
|
class, may_fallback, tried_spinup);
|
|
print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
|
|
16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
|
|
}
|
|
|
|
/* Falling back doesn't make sense if ID data was read
|
|
* successfully at least once.
|
|
*/
|
|
may_fallback = 0;
|
|
|
|
swap_buf_le16(id, ATA_ID_WORDS);
|
|
|
|
/* sanity check */
|
|
rc = -EINVAL;
|
|
reason = "device reports invalid type";
|
|
|
|
if (class == ATA_DEV_ATA) {
|
|
if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
|
|
goto err_out;
|
|
} else {
|
|
if (ata_id_is_ata(id))
|
|
goto err_out;
|
|
}
|
|
|
|
if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
|
|
tried_spinup = 1;
|
|
/*
|
|
* Drive powered-up in standby mode, and requires a specific
|
|
* SET_FEATURES spin-up subcommand before it will accept
|
|
* anything other than the original IDENTIFY command.
|
|
*/
|
|
err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
|
|
if (err_mask && id[2] != 0x738c) {
|
|
rc = -EIO;
|
|
reason = "SPINUP failed";
|
|
goto err_out;
|
|
}
|
|
/*
|
|
* If the drive initially returned incomplete IDENTIFY info,
|
|
* we now must reissue the IDENTIFY command.
|
|
*/
|
|
if (id[2] == 0x37c8)
|
|
goto retry;
|
|
}
|
|
|
|
if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
|
|
/*
|
|
* The exact sequence expected by certain pre-ATA4 drives is:
|
|
* SRST RESET
|
|
* IDENTIFY (optional in early ATA)
|
|
* INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
|
|
* anything else..
|
|
* Some drives were very specific about that exact sequence.
|
|
*
|
|
* Note that ATA4 says lba is mandatory so the second check
|
|
* should never trigger.
|
|
*/
|
|
if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
|
|
err_mask = ata_dev_init_params(dev, id[3], id[6]);
|
|
if (err_mask) {
|
|
rc = -EIO;
|
|
reason = "INIT_DEV_PARAMS failed";
|
|
goto err_out;
|
|
}
|
|
|
|
/* current CHS translation info (id[53-58]) might be
|
|
* changed. reread the identify device info.
|
|
*/
|
|
flags &= ~ATA_READID_POSTRESET;
|
|
goto retry;
|
|
}
|
|
}
|
|
|
|
*p_class = class;
|
|
|
|
return 0;
|
|
|
|
err_out:
|
|
if (ata_msg_warn(ap))
|
|
ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
|
|
"(%s, err_mask=0x%x)\n", reason, err_mask);
|
|
return rc;
|
|
}
|
|
|
|
static int ata_do_link_spd_horkage(struct ata_device *dev)
|
|
{
|
|
struct ata_link *plink = ata_dev_phys_link(dev);
|
|
u32 target, target_limit;
|
|
|
|
if (!sata_scr_valid(plink))
|
|
return 0;
|
|
|
|
if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
|
|
target = 1;
|
|
else
|
|
return 0;
|
|
|
|
target_limit = (1 << target) - 1;
|
|
|
|
/* if already on stricter limit, no need to push further */
|
|
if (plink->sata_spd_limit <= target_limit)
|
|
return 0;
|
|
|
|
plink->sata_spd_limit = target_limit;
|
|
|
|
/* Request another EH round by returning -EAGAIN if link is
|
|
* going faster than the target speed. Forward progress is
|
|
* guaranteed by setting sata_spd_limit to target_limit above.
|
|
*/
|
|
if (plink->sata_spd > target) {
|
|
ata_dev_printk(dev, KERN_INFO,
|
|
"applying link speed limit horkage to %s\n",
|
|
sata_spd_string(target));
|
|
return -EAGAIN;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline u8 ata_dev_knobble(struct ata_device *dev)
|
|
{
|
|
struct ata_port *ap = dev->link->ap;
|
|
|
|
if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
|
|
return 0;
|
|
|
|
return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
|
|
}
|
|
|
|
static int ata_dev_config_ncq(struct ata_device *dev,
|
|
char *desc, size_t desc_sz)
|
|
{
|
|
struct ata_port *ap = dev->link->ap;
|
|
int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
|
|
unsigned int err_mask;
|
|
char *aa_desc = "";
|
|
|
|
if (!ata_id_has_ncq(dev->id)) {
|
|
desc[0] = '\0';
|
|
return 0;
|
|
}
|
|
if (dev->horkage & ATA_HORKAGE_NONCQ) {
|
|
snprintf(desc, desc_sz, "NCQ (not used)");
|
|
return 0;
|
|
}
|
|
if (ap->flags & ATA_FLAG_NCQ) {
|
|
hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
|
|
dev->flags |= ATA_DFLAG_NCQ;
|
|
}
|
|
|
|
if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
|
|
(ap->flags & ATA_FLAG_FPDMA_AA) &&
|
|
ata_id_has_fpdma_aa(dev->id)) {
|
|
err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
|
|
SATA_FPDMA_AA);
|
|
if (err_mask) {
|
|
ata_dev_printk(dev, KERN_ERR, "failed to enable AA"
|
|
"(error_mask=0x%x)\n", err_mask);
|
|
if (err_mask != AC_ERR_DEV) {
|
|
dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
|
|
return -EIO;
|
|
}
|
|
} else
|
|
aa_desc = ", AA";
|
|
}
|
|
|
|
if (hdepth >= ddepth)
|
|
snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
|
|
else
|
|
snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
|
|
ddepth, aa_desc);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ata_dev_configure - Configure the specified ATA/ATAPI device
|
|
* @dev: Target device to configure
|
|
*
|
|
* Configure @dev according to @dev->id. Generic and low-level
|
|
* driver specific fixups are also applied.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep)
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno otherwise
|
|
*/
|
|
int ata_dev_configure(struct ata_device *dev)
|
|
{
|
|
struct ata_port *ap = dev->link->ap;
|
|
struct ata_eh_context *ehc = &dev->link->eh_context;
|
|
int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
|
|
const u16 *id = dev->id;
|
|
unsigned long xfer_mask;
|
|
char revbuf[7]; /* XYZ-99\0 */
|
|
char fwrevbuf[ATA_ID_FW_REV_LEN+1];
|
|
char modelbuf[ATA_ID_PROD_LEN+1];
|
|
int rc;
|
|
|
|
if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
|
|
ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
|
|
__func__);
|
|
return 0;
|
|
}
|
|
|
|
if (ata_msg_probe(ap))
|
|
ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
|
|
|
|
/* set horkage */
|
|
dev->horkage |= ata_dev_blacklisted(dev);
|
|
ata_force_horkage(dev);
|
|
|
|
if (dev->horkage & ATA_HORKAGE_DISABLE) {
|
|
ata_dev_printk(dev, KERN_INFO,
|
|
"unsupported device, disabling\n");
|
|
ata_dev_disable(dev);
|
|
return 0;
|
|
}
|
|
|
|
if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
|
|
dev->class == ATA_DEV_ATAPI) {
|
|
ata_dev_printk(dev, KERN_WARNING,
|
|
"WARNING: ATAPI is %s, device ignored.\n",
|
|
atapi_enabled ? "not supported with this driver"
|
|
: "disabled");
|
|
ata_dev_disable(dev);
|
|
return 0;
|
|
}
|
|
|
|
rc = ata_do_link_spd_horkage(dev);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* let ACPI work its magic */
|
|
rc = ata_acpi_on_devcfg(dev);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* massage HPA, do it early as it might change IDENTIFY data */
|
|
rc = ata_hpa_resize(dev);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* print device capabilities */
|
|
if (ata_msg_probe(ap))
|
|
ata_dev_printk(dev, KERN_DEBUG,
|
|
"%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
|
|
"85:%04x 86:%04x 87:%04x 88:%04x\n",
|
|
__func__,
|
|
id[49], id[82], id[83], id[84],
|
|
id[85], id[86], id[87], id[88]);
|
|
|
|
/* initialize to-be-configured parameters */
|
|
dev->flags &= ~ATA_DFLAG_CFG_MASK;
|
|
dev->max_sectors = 0;
|
|
dev->cdb_len = 0;
|
|
dev->n_sectors = 0;
|
|
dev->cylinders = 0;
|
|
dev->heads = 0;
|
|
dev->sectors = 0;
|
|
dev->multi_count = 0;
|
|
|
|
/*
|
|
* common ATA, ATAPI feature tests
|
|
*/
|
|
|
|
/* find max transfer mode; for printk only */
|
|
xfer_mask = ata_id_xfermask(id);
|
|
|
|
if (ata_msg_probe(ap))
|
|
ata_dump_id(id);
|
|
|
|
/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
|
|
ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
|
|
sizeof(fwrevbuf));
|
|
|
|
ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
|
|
sizeof(modelbuf));
|
|
|
|
/* ATA-specific feature tests */
|
|
if (dev->class == ATA_DEV_ATA) {
|
|
if (ata_id_is_cfa(id)) {
|
|
/* CPRM may make this media unusable */
|
|
if (id[ATA_ID_CFA_KEY_MGMT] & 1)
|
|
ata_dev_printk(dev, KERN_WARNING,
|
|
"supports DRM functions and may "
|
|
"not be fully accessible.\n");
|
|
snprintf(revbuf, 7, "CFA");
|
|
} else {
|
|
snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
|
|
/* Warn the user if the device has TPM extensions */
|
|
if (ata_id_has_tpm(id))
|
|
ata_dev_printk(dev, KERN_WARNING,
|
|
"supports DRM functions and may "
|
|
"not be fully accessible.\n");
|
|
}
|
|
|
|
dev->n_sectors = ata_id_n_sectors(id);
|
|
|
|
/* get current R/W Multiple count setting */
|
|
if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
|
|
unsigned int max = dev->id[47] & 0xff;
|
|
unsigned int cnt = dev->id[59] & 0xff;
|
|
/* only recognize/allow powers of two here */
|
|
if (is_power_of_2(max) && is_power_of_2(cnt))
|
|
if (cnt <= max)
|
|
dev->multi_count = cnt;
|
|
}
|
|
|
|
if (ata_id_has_lba(id)) {
|
|
const char *lba_desc;
|
|
char ncq_desc[24];
|
|
|
|
lba_desc = "LBA";
|
|
dev->flags |= ATA_DFLAG_LBA;
|
|
if (ata_id_has_lba48(id)) {
|
|
dev->flags |= ATA_DFLAG_LBA48;
|
|
lba_desc = "LBA48";
|
|
|
|
if (dev->n_sectors >= (1UL << 28) &&
|
|
ata_id_has_flush_ext(id))
|
|
dev->flags |= ATA_DFLAG_FLUSH_EXT;
|
|
}
|
|
|
|
/* config NCQ */
|
|
rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* print device info to dmesg */
|
|
if (ata_msg_drv(ap) && print_info) {
|
|
ata_dev_printk(dev, KERN_INFO,
|
|
"%s: %s, %s, max %s\n",
|
|
revbuf, modelbuf, fwrevbuf,
|
|
ata_mode_string(xfer_mask));
|
|
ata_dev_printk(dev, KERN_INFO,
|
|
"%Lu sectors, multi %u: %s %s\n",
|
|
(unsigned long long)dev->n_sectors,
|
|
dev->multi_count, lba_desc, ncq_desc);
|
|
}
|
|
} else {
|
|
/* CHS */
|
|
|
|
/* Default translation */
|
|
dev->cylinders = id[1];
|
|
dev->heads = id[3];
|
|
dev->sectors = id[6];
|
|
|
|
if (ata_id_current_chs_valid(id)) {
|
|
/* Current CHS translation is valid. */
|
|
dev->cylinders = id[54];
|
|
dev->heads = id[55];
|
|
dev->sectors = id[56];
|
|
}
|
|
|
|
/* print device info to dmesg */
|
|
if (ata_msg_drv(ap) && print_info) {
|
|
ata_dev_printk(dev, KERN_INFO,
|
|
"%s: %s, %s, max %s\n",
|
|
revbuf, modelbuf, fwrevbuf,
|
|
ata_mode_string(xfer_mask));
|
|
ata_dev_printk(dev, KERN_INFO,
|
|
"%Lu sectors, multi %u, CHS %u/%u/%u\n",
|
|
(unsigned long long)dev->n_sectors,
|
|
dev->multi_count, dev->cylinders,
|
|
dev->heads, dev->sectors);
|
|
}
|
|
}
|
|
|
|
dev->cdb_len = 16;
|
|
}
|
|
|
|
/* ATAPI-specific feature tests */
|
|
else if (dev->class == ATA_DEV_ATAPI) {
|
|
const char *cdb_intr_string = "";
|
|
const char *atapi_an_string = "";
|
|
const char *dma_dir_string = "";
|
|
u32 sntf;
|
|
|
|
rc = atapi_cdb_len(id);
|
|
if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
|
|
if (ata_msg_warn(ap))
|
|
ata_dev_printk(dev, KERN_WARNING,
|
|
"unsupported CDB len\n");
|
|
rc = -EINVAL;
|
|
goto err_out_nosup;
|
|
}
|
|
dev->cdb_len = (unsigned int) rc;
|
|
|
|
/* Enable ATAPI AN if both the host and device have
|
|
* the support. If PMP is attached, SNTF is required
|
|
* to enable ATAPI AN to discern between PHY status
|
|
* changed notifications and ATAPI ANs.
|
|
*/
|
|
if (atapi_an &&
|
|
(ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
|
|
(!sata_pmp_attached(ap) ||
|
|
sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
|
|
unsigned int err_mask;
|
|
|
|
/* issue SET feature command to turn this on */
|
|
err_mask = ata_dev_set_feature(dev,
|
|
SETFEATURES_SATA_ENABLE, SATA_AN);
|
|
if (err_mask)
|
|
ata_dev_printk(dev, KERN_ERR,
|
|
"failed to enable ATAPI AN "
|
|
"(err_mask=0x%x)\n", err_mask);
|
|
else {
|
|
dev->flags |= ATA_DFLAG_AN;
|
|
atapi_an_string = ", ATAPI AN";
|
|
}
|
|
}
|
|
|
|
if (ata_id_cdb_intr(dev->id)) {
|
|
dev->flags |= ATA_DFLAG_CDB_INTR;
|
|
cdb_intr_string = ", CDB intr";
|
|
}
|
|
|
|
if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
|
|
dev->flags |= ATA_DFLAG_DMADIR;
|
|
dma_dir_string = ", DMADIR";
|
|
}
|
|
|
|
/* print device info to dmesg */
|
|
if (ata_msg_drv(ap) && print_info)
|
|
ata_dev_printk(dev, KERN_INFO,
|
|
"ATAPI: %s, %s, max %s%s%s%s\n",
|
|
modelbuf, fwrevbuf,
|
|
ata_mode_string(xfer_mask),
|
|
cdb_intr_string, atapi_an_string,
|
|
dma_dir_string);
|
|
}
|
|
|
|
/* determine max_sectors */
|
|
dev->max_sectors = ATA_MAX_SECTORS;
|
|
if (dev->flags & ATA_DFLAG_LBA48)
|
|
dev->max_sectors = ATA_MAX_SECTORS_LBA48;
|
|
|
|
/* Limit PATA drive on SATA cable bridge transfers to udma5,
|
|
200 sectors */
|
|
if (ata_dev_knobble(dev)) {
|
|
if (ata_msg_drv(ap) && print_info)
|
|
ata_dev_printk(dev, KERN_INFO,
|
|
"applying bridge limits\n");
|
|
dev->udma_mask &= ATA_UDMA5;
|
|
dev->max_sectors = ATA_MAX_SECTORS;
|
|
}
|
|
|
|
if ((dev->class == ATA_DEV_ATAPI) &&
|
|
(atapi_command_packet_set(id) == TYPE_TAPE)) {
|
|
dev->max_sectors = ATA_MAX_SECTORS_TAPE;
|
|
dev->horkage |= ATA_HORKAGE_STUCK_ERR;
|
|
}
|
|
|
|
if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
|
|
dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
|
|
dev->max_sectors);
|
|
|
|
if (ap->ops->dev_config)
|
|
ap->ops->dev_config(dev);
|
|
|
|
if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
|
|
/* Let the user know. We don't want to disallow opens for
|
|
rescue purposes, or in case the vendor is just a blithering
|
|
idiot. Do this after the dev_config call as some controllers
|
|
with buggy firmware may want to avoid reporting false device
|
|
bugs */
|
|
|
|
if (print_info) {
|
|
ata_dev_printk(dev, KERN_WARNING,
|
|
"Drive reports diagnostics failure. This may indicate a drive\n");
|
|
ata_dev_printk(dev, KERN_WARNING,
|
|
"fault or invalid emulation. Contact drive vendor for information.\n");
|
|
}
|
|
}
|
|
|
|
if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
|
|
ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires "
|
|
"firmware update to be fully functional.\n");
|
|
ata_dev_printk(dev, KERN_WARNING, " contact the vendor "
|
|
"or visit http://ata.wiki.kernel.org.\n");
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_out_nosup:
|
|
if (ata_msg_probe(ap))
|
|
ata_dev_printk(dev, KERN_DEBUG,
|
|
"%s: EXIT, err\n", __func__);
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* ata_cable_40wire - return 40 wire cable type
|
|
* @ap: port
|
|
*
|
|
* Helper method for drivers which want to hardwire 40 wire cable
|
|
* detection.
|
|
*/
|
|
|
|
int ata_cable_40wire(struct ata_port *ap)
|
|
{
|
|
return ATA_CBL_PATA40;
|
|
}
|
|
|
|
/**
|
|
* ata_cable_80wire - return 80 wire cable type
|
|
* @ap: port
|
|
*
|
|
* Helper method for drivers which want to hardwire 80 wire cable
|
|
* detection.
|
|
*/
|
|
|
|
int ata_cable_80wire(struct ata_port *ap)
|
|
{
|
|
return ATA_CBL_PATA80;
|
|
}
|
|
|
|
/**
|
|
* ata_cable_unknown - return unknown PATA cable.
|
|
* @ap: port
|
|
*
|
|
* Helper method for drivers which have no PATA cable detection.
|
|
*/
|
|
|
|
int ata_cable_unknown(struct ata_port *ap)
|
|
{
|
|
return ATA_CBL_PATA_UNK;
|
|
}
|
|
|
|
/**
|
|
* ata_cable_ignore - return ignored PATA cable.
|
|
* @ap: port
|
|
*
|
|
* Helper method for drivers which don't use cable type to limit
|
|
* transfer mode.
|
|
*/
|
|
int ata_cable_ignore(struct ata_port *ap)
|
|
{
|
|
return ATA_CBL_PATA_IGN;
|
|
}
|
|
|
|
/**
|
|
* ata_cable_sata - return SATA cable type
|
|
* @ap: port
|
|
*
|
|
* Helper method for drivers which have SATA cables
|
|
*/
|
|
|
|
int ata_cable_sata(struct ata_port *ap)
|
|
{
|
|
return ATA_CBL_SATA;
|
|
}
|
|
|
|
/**
|
|
* ata_bus_probe - Reset and probe ATA bus
|
|
* @ap: Bus to probe
|
|
*
|
|
* Master ATA bus probing function. Initiates a hardware-dependent
|
|
* bus reset, then attempts to identify any devices found on
|
|
* the bus.
|
|
*
|
|
* LOCKING:
|
|
* PCI/etc. bus probe sem.
|
|
*
|
|
* RETURNS:
|
|
* Zero on success, negative errno otherwise.
|
|
*/
|
|
|
|
int ata_bus_probe(struct ata_port *ap)
|
|
{
|
|
unsigned int classes[ATA_MAX_DEVICES];
|
|
int tries[ATA_MAX_DEVICES];
|
|
int rc;
|
|
struct ata_device *dev;
|
|
|
|
ata_for_each_dev(dev, &ap->link, ALL)
|
|
tries[dev->devno] = ATA_PROBE_MAX_TRIES;
|
|
|
|
retry:
|
|
ata_for_each_dev(dev, &ap->link, ALL) {
|
|
/* If we issue an SRST then an ATA drive (not ATAPI)
|
|
* may change configuration and be in PIO0 timing. If
|
|
* we do a hard reset (or are coming from power on)
|
|
* this is true for ATA or ATAPI. Until we've set a
|
|
* suitable controller mode we should not touch the
|
|
* bus as we may be talking too fast.
|
|
*/
|
|
dev->pio_mode = XFER_PIO_0;
|
|
|
|
/* If the controller has a pio mode setup function
|
|
* then use it to set the chipset to rights. Don't
|
|
* touch the DMA setup as that will be dealt with when
|
|
* configuring devices.
|
|
*/
|
|
if (ap->ops->set_piomode)
|
|
ap->ops->set_piomode(ap, dev);
|
|
}
|
|
|
|
/* reset and determine device classes */
|
|
ap->ops->phy_reset(ap);
|
|
|
|
ata_for_each_dev(dev, &ap->link, ALL) {
|
|
if (dev->class != ATA_DEV_UNKNOWN)
|
|
classes[dev->devno] = dev->class;
|
|
else
|
|
classes[dev->devno] = ATA_DEV_NONE;
|
|
|
|
dev->class = ATA_DEV_UNKNOWN;
|
|
}
|
|
|
|
/* read IDENTIFY page and configure devices. We have to do the identify
|
|
specific sequence bass-ackwards so that PDIAG- is released by
|
|
the slave device */
|
|
|
|
ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
|
|
if (tries[dev->devno])
|
|
dev->class = classes[dev->devno];
|
|
|
|
if (!ata_dev_enabled(dev))
|
|
continue;
|
|
|
|
rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
|
|
dev->id);
|
|
if (rc)
|
|
goto fail;
|
|
}
|
|
|
|
/* Now ask for the cable type as PDIAG- should have been released */
|
|
if (ap->ops->cable_detect)
|
|
ap->cbl = ap->ops->cable_detect(ap);
|
|
|
|
/* We may have SATA bridge glue hiding here irrespective of
|
|
* the reported cable types and sensed types. When SATA
|
|
* drives indicate we have a bridge, we don't know which end
|
|
* of the link the bridge is which is a problem.
|
|
*/
|
|
ata_for_each_dev(dev, &ap->link, ENABLED)
|
|
if (ata_id_is_sata(dev->id))
|
|
ap->cbl = ATA_CBL_SATA;
|
|
|
|
/* After the identify sequence we can now set up the devices. We do
|
|
this in the normal order so that the user doesn't get confused */
|
|
|
|
ata_for_each_dev(dev, &ap->link, ENABLED) {
|
|
ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
|
|
rc = ata_dev_configure(dev);
|
|
ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
|
|
if (rc)
|
|
goto fail;
|
|
}
|
|
|
|
/* configure transfer mode */
|
|
rc = ata_set_mode(&ap->link, &dev);
|
|
if (rc)
|
|
goto fail;
|
|
|
|
ata_for_each_dev(dev, &ap->link, ENABLED)
|
|
return 0;
|
|
|
|
return -ENODEV;
|
|
|
|
fail:
|
|
tries[dev->devno]--;
|
|
|
|
switch (rc) {
|
|
case -EINVAL:
|
|
/* eeek, something went very wrong, give up */
|
|
tries[dev->devno] = 0;
|
|
break;
|
|
|
|
case -ENODEV:
|
|
/* give it just one more chance */
|
|
tries[dev->devno] = min(tries[dev->devno], 1);
|
|
case -EIO:
|
|
if (tries[dev->devno] == 1) {
|
|
/* This is the last chance, better to slow
|
|
* down than lose it.
|
|
*/
|
|
sata_down_spd_limit(&ap->link, 0);
|
|
ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
|
|
}
|
|
}
|
|
|
|
if (!tries[dev->devno])
|
|
ata_dev_disable(dev);
|
|
|
|
goto retry;
|
|
}
|
|
|
|
/**
|
|
* sata_print_link_status - Print SATA link status
|
|
* @link: SATA link to printk link status about
|
|
*
|
|
* This function prints link speed and status of a SATA link.
|
|
*
|
|
* LOCKING:
|
|
* None.
|
|
*/
|
|
static void sata_print_link_status(struct ata_link *link)
|
|
{
|
|
u32 sstatus, scontrol, tmp;
|
|
|
|
if (sata_scr_read(link, SCR_STATUS, &sstatus))
|
|
return;
|
|
sata_scr_read(link, SCR_CONTROL, &scontrol);
|
|
|
|
if (ata_phys_link_online(link)) {
|
|
tmp = (sstatus >> 4) & 0xf;
|
|
ata_link_printk(link, KERN_INFO,
|
|
"SATA link up %s (SStatus %X SControl %X)\n",
|
|
sata_spd_string(tmp), sstatus, scontrol);
|
|
} else {
|
|
ata_link_printk(link, KERN_INFO,
|
|
"SATA link down (SStatus %X SControl %X)\n",
|
|
sstatus, scontrol);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ata_dev_pair - return other device on cable
|
|
* @adev: device
|
|
*
|
|
* Obtain the other device on the same cable, or if none is
|
|
* present NULL is returned
|
|
*/
|
|
|
|
struct ata_device *ata_dev_pair(struct ata_device *adev)
|
|
{
|
|
struct ata_link *link = adev->link;
|
|
struct ata_device *pair = &link->device[1 - adev->devno];
|
|
if (!ata_dev_enabled(pair))
|
|
return NULL;
|
|
return pair;
|
|
}
|
|
|
|
/**
|
|
* sata_down_spd_limit - adjust SATA spd limit downward
|
|
* @link: Link to adjust SATA spd limit for
|
|
* @spd_limit: Additional limit
|
|
*
|
|
* Adjust SATA spd limit of @link downward. Note that this
|
|
* function only adjusts the limit. The change must be applied
|
|
* using sata_set_spd().
|
|
*
|
|
* If @spd_limit is non-zero, the speed is limited to equal to or
|
|
* lower than @spd_limit if such speed is supported. If
|
|
* @spd_limit is slower than any supported speed, only the lowest
|
|
* supported speed is allowed.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, negative errno on failure
|
|
*/
|
|
int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
|
|
{
|
|
u32 sstatus, spd, mask;
|
|
int rc, bit;
|
|
|
|
if (!sata_scr_valid(link))
|
|
return -EOPNOTSUPP;
|
|
|
|
/* If SCR can be read, use it to determine the current SPD.
|
|
* If not, use cached value in link->sata_spd.
|
|
*/
|
|
rc = sata_scr_read(link, SCR_STATUS, &sstatus);
|
|
if (rc == 0 && ata_sstatus_online(sstatus))
|
|
spd = (sstatus >> 4) & 0xf;
|
|
else
|
|
spd = link->sata_spd;
|
|
|
|
mask = link->sata_spd_limit;
|
|
if (mask <= 1)
|
|
return -EINVAL;
|
|
|
|
/* unconditionally mask off the highest bit */
|
|
bit = fls(mask) - 1;
|
|
mask &= ~(1 << bit);
|
|
|
|
/* Mask off all speeds higher than or equal to the current
|
|
* one. Force 1.5Gbps if current SPD is not available.
|
|
*/
|
|
if (spd > 1)
|
|
mask &= (1 << (spd - 1)) - 1;
|
|
else
|
|
mask &= 1;
|
|
|
|
/* were we already at the bottom? */
|
|
if (!mask)
|
|
return -EINVAL;
|
|
|
|
if (spd_limit) {
|
|
if (mask & ((1 << spd_limit) - 1))
|
|
mask &= (1 << spd_limit) - 1;
|
|
else {
|
|
bit = ffs(mask) - 1;
|
|
mask = 1 << bit;
|
|
}
|
|
}
|
|
|
|
link->sata_spd_limit = mask;
|
|
|
|
ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
|
|
sata_spd_string(fls(mask)));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
|
|
{
|
|
struct ata_link *host_link = &link->ap->link;
|
|
u32 limit, target, spd;
|
|
|
|
limit = link->sata_spd_limit;
|
|
|
|
/* Don't configure downstream link faster than upstream link.
|
|
* It doesn't speed up anything and some PMPs choke on such
|
|
* configuration.
|
|
*/
|
|
if (!ata_is_host_link(link) && host_link->sata_spd)
|
|
limit &= (1 << host_link->sata_spd) - 1;
|
|
|
|
if (limit == UINT_MAX)
|
|
target = 0;
|
|
else
|
|
target = fls(limit);
|
|
|
|
spd = (*scontrol >> 4) & 0xf;
|
|
*scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
|
|
|
|
return spd != target;
|
|
}
|
|
|
|
/**
|
|
* sata_set_spd_needed - is SATA spd configuration needed
|
|
* @link: Link in question
|
|
*
|
|
* Test whether the spd limit in SControl matches
|
|
* @link->sata_spd_limit. This function is used to determine
|
|
* whether hardreset is necessary to apply SATA spd
|
|
* configuration.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*
|
|
* RETURNS:
|
|
* 1 if SATA spd configuration is needed, 0 otherwise.
|
|
*/
|
|
static int sata_set_spd_needed(struct ata_link *link)
|
|
{
|
|
u32 scontrol;
|
|
|
|
if (sata_scr_read(link, SCR_CONTROL, &scontrol))
|
|
return 1;
|
|
|
|
return __sata_set_spd_needed(link, &scontrol);
|
|
}
|
|
|
|
/**
|
|
* sata_set_spd - set SATA spd according to spd limit
|
|
* @link: Link to set SATA spd for
|
|
*
|
|
* Set SATA spd of @link according to sata_spd_limit.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*
|
|
* RETURNS:
|
|
* 0 if spd doesn't need to be changed, 1 if spd has been
|
|
* changed. Negative errno if SCR registers are inaccessible.
|
|
*/
|
|
int sata_set_spd(struct ata_link *link)
|
|
{
|
|
u32 scontrol;
|
|
int rc;
|
|
|
|
if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
|
|
return rc;
|
|
|
|
if (!__sata_set_spd_needed(link, &scontrol))
|
|
return 0;
|
|
|
|
if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
|
|
return rc;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* This mode timing computation functionality is ported over from
|
|
* drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
|
|
*/
|
|
/*
|
|
* PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
|
|
* These were taken from ATA/ATAPI-6 standard, rev 0a, except
|
|
* for UDMA6, which is currently supported only by Maxtor drives.
|
|
*
|
|
* For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
|
|
*/
|
|
|
|
static const struct ata_timing ata_timing[] = {
|
|
/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
|
|
{ XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
|
|
{ XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
|
|
{ XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
|
|
{ XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
|
|
{ XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
|
|
{ XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
|
|
{ XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
|
|
|
|
{ XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
|
|
{ XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
|
|
{ XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
|
|
|
|
{ XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
|
|
{ XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
|
|
{ XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
|
|
{ XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
|
|
{ XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
|
|
|
|
/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
|
|
{ XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
|
|
{ XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
|
|
{ XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
|
|
{ XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
|
|
{ XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
|
|
{ XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
|
|
{ XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
|
|
|
|
{ 0xFF }
|
|
};
|
|
|
|
#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
|
|
#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
|
|
|
|
static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
|
|
{
|
|
q->setup = EZ(t->setup * 1000, T);
|
|
q->act8b = EZ(t->act8b * 1000, T);
|
|
q->rec8b = EZ(t->rec8b * 1000, T);
|
|
q->cyc8b = EZ(t->cyc8b * 1000, T);
|
|
q->active = EZ(t->active * 1000, T);
|
|
q->recover = EZ(t->recover * 1000, T);
|
|
q->dmack_hold = EZ(t->dmack_hold * 1000, T);
|
|
q->cycle = EZ(t->cycle * 1000, T);
|
|
q->udma = EZ(t->udma * 1000, UT);
|
|
}
|
|
|
|
void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
|
|
struct ata_timing *m, unsigned int what)
|
|
{
|
|
if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
|
|
if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
|
|
if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
|
|
if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
|
|
if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
|
|
if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
|
|
if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
|
|
if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
|
|
if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
|
|
}
|
|
|
|
const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
|
|
{
|
|
const struct ata_timing *t = ata_timing;
|
|
|
|
while (xfer_mode > t->mode)
|
|
t++;
|
|
|
|
if (xfer_mode == t->mode)
|
|
return t;
|
|
return NULL;
|
|
}
|
|
|
|
int ata_timing_compute(struct ata_device *adev, unsigned short speed,
|
|
struct ata_timing *t, int T, int UT)
|
|
{
|
|
const u16 *id = adev->id;
|
|
const struct ata_timing *s;
|
|
struct ata_timing p;
|
|
|
|
/*
|
|
* Find the mode.
|
|
*/
|
|
|
|
if (!(s = ata_timing_find_mode(speed)))
|
|
return -EINVAL;
|
|
|
|
memcpy(t, s, sizeof(*s));
|
|
|
|
/*
|
|
* If the drive is an EIDE drive, it can tell us it needs extended
|
|
* PIO/MW_DMA cycle timing.
|
|
*/
|
|
|
|
if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
|
|
memset(&p, 0, sizeof(p));
|
|
|
|
if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
|
|
if (speed <= XFER_PIO_2)
|
|
p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
|
|
else if ((speed <= XFER_PIO_4) ||
|
|
(speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
|
|
p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
|
|
} else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
|
|
p.cycle = id[ATA_ID_EIDE_DMA_MIN];
|
|
|
|
ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
|
|
}
|
|
|
|
/*
|
|
* Convert the timing to bus clock counts.
|
|
*/
|
|
|
|
ata_timing_quantize(t, t, T, UT);
|
|
|
|
/*
|
|
* Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
|
|
* S.M.A.R.T * and some other commands. We have to ensure that the
|
|
* DMA cycle timing is slower/equal than the fastest PIO timing.
|
|
*/
|
|
|
|
if (speed > XFER_PIO_6) {
|
|
ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
|
|
ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
|
|
}
|
|
|
|
/*
|
|
* Lengthen active & recovery time so that cycle time is correct.
|
|
*/
|
|
|
|
if (t->act8b + t->rec8b < t->cyc8b) {
|
|
t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
|
|
t->rec8b = t->cyc8b - t->act8b;
|
|
}
|
|
|
|
if (t->active + t->recover < t->cycle) {
|
|
t->active += (t->cycle - (t->active + t->recover)) / 2;
|
|
t->recover = t->cycle - t->active;
|
|
}
|
|
|
|
/* In a few cases quantisation may produce enough errors to
|
|
leave t->cycle too low for the sum of active and recovery
|
|
if so we must correct this */
|
|
if (t->active + t->recover > t->cycle)
|
|
t->cycle = t->active + t->recover;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ata_timing_cycle2mode - find xfer mode for the specified cycle duration
|
|
* @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
|
|
* @cycle: cycle duration in ns
|
|
*
|
|
* Return matching xfer mode for @cycle. The returned mode is of
|
|
* the transfer type specified by @xfer_shift. If @cycle is too
|
|
* slow for @xfer_shift, 0xff is returned. If @cycle is faster
|
|
* than the fastest known mode, the fasted mode is returned.
|
|
*
|
|
* LOCKING:
|
|
* None.
|
|
*
|
|
* RETURNS:
|
|
* Matching xfer_mode, 0xff if no match found.
|
|
*/
|
|
u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
|
|
{
|
|
u8 base_mode = 0xff, last_mode = 0xff;
|
|
const struct ata_xfer_ent *ent;
|
|
const struct ata_timing *t;
|
|
|
|
for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
|
|
if (ent->shift == xfer_shift)
|
|
base_mode = ent->base;
|
|
|
|
for (t = ata_timing_find_mode(base_mode);
|
|
t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
|
|
unsigned short this_cycle;
|
|
|
|
switch (xfer_shift) {
|
|
case ATA_SHIFT_PIO:
|
|
case ATA_SHIFT_MWDMA:
|
|
this_cycle = t->cycle;
|
|
break;
|
|
case ATA_SHIFT_UDMA:
|
|
this_cycle = t->udma;
|
|
break;
|
|
default:
|
|
return 0xff;
|
|
}
|
|
|
|
if (cycle > this_cycle)
|
|
break;
|
|
|
|
last_mode = t->mode;
|
|
}
|
|
|
|
return last_mode;
|
|
}
|
|
|
|
/**
|
|
* ata_down_xfermask_limit - adjust dev xfer masks downward
|
|
* @dev: Device to adjust xfer masks
|
|
* @sel: ATA_DNXFER_* selector
|
|
*
|
|
* Adjust xfer masks of @dev downward. Note that this function
|
|
* does not apply the change. Invoking ata_set_mode() afterwards
|
|
* will apply the limit.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, negative errno on failure
|
|
*/
|
|
int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
|
|
{
|
|
char buf[32];
|
|
unsigned long orig_mask, xfer_mask;
|
|
unsigned long pio_mask, mwdma_mask, udma_mask;
|
|
int quiet, highbit;
|
|
|
|
quiet = !!(sel & ATA_DNXFER_QUIET);
|
|
sel &= ~ATA_DNXFER_QUIET;
|
|
|
|
xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
|
|
dev->mwdma_mask,
|
|
dev->udma_mask);
|
|
ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
|
|
|
|
switch (sel) {
|
|
case ATA_DNXFER_PIO:
|
|
highbit = fls(pio_mask) - 1;
|
|
pio_mask &= ~(1 << highbit);
|
|
break;
|
|
|
|
case ATA_DNXFER_DMA:
|
|
if (udma_mask) {
|
|
highbit = fls(udma_mask) - 1;
|
|
udma_mask &= ~(1 << highbit);
|
|
if (!udma_mask)
|
|
return -ENOENT;
|
|
} else if (mwdma_mask) {
|
|
highbit = fls(mwdma_mask) - 1;
|
|
mwdma_mask &= ~(1 << highbit);
|
|
if (!mwdma_mask)
|
|
return -ENOENT;
|
|
}
|
|
break;
|
|
|
|
case ATA_DNXFER_40C:
|
|
udma_mask &= ATA_UDMA_MASK_40C;
|
|
break;
|
|
|
|
case ATA_DNXFER_FORCE_PIO0:
|
|
pio_mask &= 1;
|
|
case ATA_DNXFER_FORCE_PIO:
|
|
mwdma_mask = 0;
|
|
udma_mask = 0;
|
|
break;
|
|
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
|
|
|
|
if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
|
|
return -ENOENT;
|
|
|
|
if (!quiet) {
|
|
if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
|
|
snprintf(buf, sizeof(buf), "%s:%s",
|
|
ata_mode_string(xfer_mask),
|
|
ata_mode_string(xfer_mask & ATA_MASK_PIO));
|
|
else
|
|
snprintf(buf, sizeof(buf), "%s",
|
|
ata_mode_string(xfer_mask));
|
|
|
|
ata_dev_printk(dev, KERN_WARNING,
|
|
"limiting speed to %s\n", buf);
|
|
}
|
|
|
|
ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
|
|
&dev->udma_mask);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ata_dev_set_mode(struct ata_device *dev)
|
|
{
|
|
struct ata_port *ap = dev->link->ap;
|
|
struct ata_eh_context *ehc = &dev->link->eh_context;
|
|
const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
|
|
const char *dev_err_whine = "";
|
|
int ign_dev_err = 0;
|
|
unsigned int err_mask = 0;
|
|
int rc;
|
|
|
|
dev->flags &= ~ATA_DFLAG_PIO;
|
|
if (dev->xfer_shift == ATA_SHIFT_PIO)
|
|
dev->flags |= ATA_DFLAG_PIO;
|
|
|
|
if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
|
|
dev_err_whine = " (SET_XFERMODE skipped)";
|
|
else {
|
|
if (nosetxfer)
|
|
ata_dev_printk(dev, KERN_WARNING,
|
|
"NOSETXFER but PATA detected - can't "
|
|
"skip SETXFER, might malfunction\n");
|
|
err_mask = ata_dev_set_xfermode(dev);
|
|
}
|
|
|
|
if (err_mask & ~AC_ERR_DEV)
|
|
goto fail;
|
|
|
|
/* revalidate */
|
|
ehc->i.flags |= ATA_EHI_POST_SETMODE;
|
|
rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
|
|
ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
|
|
if (rc)
|
|
return rc;
|
|
|
|
if (dev->xfer_shift == ATA_SHIFT_PIO) {
|
|
/* Old CFA may refuse this command, which is just fine */
|
|
if (ata_id_is_cfa(dev->id))
|
|
ign_dev_err = 1;
|
|
/* Catch several broken garbage emulations plus some pre
|
|
ATA devices */
|
|
if (ata_id_major_version(dev->id) == 0 &&
|
|
dev->pio_mode <= XFER_PIO_2)
|
|
ign_dev_err = 1;
|
|
/* Some very old devices and some bad newer ones fail
|
|
any kind of SET_XFERMODE request but support PIO0-2
|
|
timings and no IORDY */
|
|
if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
|
|
ign_dev_err = 1;
|
|
}
|
|
/* Early MWDMA devices do DMA but don't allow DMA mode setting.
|
|
Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
|
|
if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
|
|
dev->dma_mode == XFER_MW_DMA_0 &&
|
|
(dev->id[63] >> 8) & 1)
|
|
ign_dev_err = 1;
|
|
|
|
/* if the device is actually configured correctly, ignore dev err */
|
|
if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
|
|
ign_dev_err = 1;
|
|
|
|
if (err_mask & AC_ERR_DEV) {
|
|
if (!ign_dev_err)
|
|
goto fail;
|
|
else
|
|
dev_err_whine = " (device error ignored)";
|
|
}
|
|
|
|
DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
|
|
dev->xfer_shift, (int)dev->xfer_mode);
|
|
|
|
ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
|
|
ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
|
|
dev_err_whine);
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
|
|
"(err_mask=0x%x)\n", err_mask);
|
|
return -EIO;
|
|
}
|
|
|
|
/**
|
|
* ata_do_set_mode - Program timings and issue SET FEATURES - XFER
|
|
* @link: link on which timings will be programmed
|
|
* @r_failed_dev: out parameter for failed device
|
|
*
|
|
* Standard implementation of the function used to tune and set
|
|
* ATA device disk transfer mode (PIO3, UDMA6, etc.). If
|
|
* ata_dev_set_mode() fails, pointer to the failing device is
|
|
* returned in @r_failed_dev.
|
|
*
|
|
* LOCKING:
|
|
* PCI/etc. bus probe sem.
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, negative errno otherwise
|
|
*/
|
|
|
|
int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
|
|
{
|
|
struct ata_port *ap = link->ap;
|
|
struct ata_device *dev;
|
|
int rc = 0, used_dma = 0, found = 0;
|
|
|
|
/* step 1: calculate xfer_mask */
|
|
ata_for_each_dev(dev, link, ENABLED) {
|
|
unsigned long pio_mask, dma_mask;
|
|
unsigned int mode_mask;
|
|
|
|
mode_mask = ATA_DMA_MASK_ATA;
|
|
if (dev->class == ATA_DEV_ATAPI)
|
|
mode_mask = ATA_DMA_MASK_ATAPI;
|
|
else if (ata_id_is_cfa(dev->id))
|
|
mode_mask = ATA_DMA_MASK_CFA;
|
|
|
|
ata_dev_xfermask(dev);
|
|
ata_force_xfermask(dev);
|
|
|
|
pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
|
|
dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
|
|
|
|
if (libata_dma_mask & mode_mask)
|
|
dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
|
|
else
|
|
dma_mask = 0;
|
|
|
|
dev->pio_mode = ata_xfer_mask2mode(pio_mask);
|
|
dev->dma_mode = ata_xfer_mask2mode(dma_mask);
|
|
|
|
found = 1;
|
|
if (ata_dma_enabled(dev))
|
|
used_dma = 1;
|
|
}
|
|
if (!found)
|
|
goto out;
|
|
|
|
/* step 2: always set host PIO timings */
|
|
ata_for_each_dev(dev, link, ENABLED) {
|
|
if (dev->pio_mode == 0xff) {
|
|
ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
|
|
rc = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
dev->xfer_mode = dev->pio_mode;
|
|
dev->xfer_shift = ATA_SHIFT_PIO;
|
|
if (ap->ops->set_piomode)
|
|
ap->ops->set_piomode(ap, dev);
|
|
}
|
|
|
|
/* step 3: set host DMA timings */
|
|
ata_for_each_dev(dev, link, ENABLED) {
|
|
if (!ata_dma_enabled(dev))
|
|
continue;
|
|
|
|
dev->xfer_mode = dev->dma_mode;
|
|
dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
|
|
if (ap->ops->set_dmamode)
|
|
ap->ops->set_dmamode(ap, dev);
|
|
}
|
|
|
|
/* step 4: update devices' xfer mode */
|
|
ata_for_each_dev(dev, link, ENABLED) {
|
|
rc = ata_dev_set_mode(dev);
|
|
if (rc)
|
|
goto out;
|
|
}
|
|
|
|
/* Record simplex status. If we selected DMA then the other
|
|
* host channels are not permitted to do so.
|
|
*/
|
|
if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
|
|
ap->host->simplex_claimed = ap;
|
|
|
|
out:
|
|
if (rc)
|
|
*r_failed_dev = dev;
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* ata_wait_ready - wait for link to become ready
|
|
* @link: link to be waited on
|
|
* @deadline: deadline jiffies for the operation
|
|
* @check_ready: callback to check link readiness
|
|
*
|
|
* Wait for @link to become ready. @check_ready should return
|
|
* positive number if @link is ready, 0 if it isn't, -ENODEV if
|
|
* link doesn't seem to be occupied, other errno for other error
|
|
* conditions.
|
|
*
|
|
* Transient -ENODEV conditions are allowed for
|
|
* ATA_TMOUT_FF_WAIT.
|
|
*
|
|
* LOCKING:
|
|
* EH context.
|
|
*
|
|
* RETURNS:
|
|
* 0 if @linke is ready before @deadline; otherwise, -errno.
|
|
*/
|
|
int ata_wait_ready(struct ata_link *link, unsigned long deadline,
|
|
int (*check_ready)(struct ata_link *link))
|
|
{
|
|
unsigned long start = jiffies;
|
|
unsigned long nodev_deadline;
|
|
int warned = 0;
|
|
|
|
/* choose which 0xff timeout to use, read comment in libata.h */
|
|
if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
|
|
nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
|
|
else
|
|
nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
|
|
|
|
/* Slave readiness can't be tested separately from master. On
|
|
* M/S emulation configuration, this function should be called
|
|
* only on the master and it will handle both master and slave.
|
|
*/
|
|
WARN_ON(link == link->ap->slave_link);
|
|
|
|
if (time_after(nodev_deadline, deadline))
|
|
nodev_deadline = deadline;
|
|
|
|
while (1) {
|
|
unsigned long now = jiffies;
|
|
int ready, tmp;
|
|
|
|
ready = tmp = check_ready(link);
|
|
if (ready > 0)
|
|
return 0;
|
|
|
|
/*
|
|
* -ENODEV could be transient. Ignore -ENODEV if link
|
|
* is online. Also, some SATA devices take a long
|
|
* time to clear 0xff after reset. Wait for
|
|
* ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
|
|
* offline.
|
|
*
|
|
* Note that some PATA controllers (pata_ali) explode
|
|
* if status register is read more than once when
|
|
* there's no device attached.
|
|
*/
|
|
if (ready == -ENODEV) {
|
|
if (ata_link_online(link))
|
|
ready = 0;
|
|
else if ((link->ap->flags & ATA_FLAG_SATA) &&
|
|
!ata_link_offline(link) &&
|
|
time_before(now, nodev_deadline))
|
|
ready = 0;
|
|
}
|
|
|
|
if (ready)
|
|
return ready;
|
|
if (time_after(now, deadline))
|
|
return -EBUSY;
|
|
|
|
if (!warned && time_after(now, start + 5 * HZ) &&
|
|
(deadline - now > 3 * HZ)) {
|
|
ata_link_printk(link, KERN_WARNING,
|
|
"link is slow to respond, please be patient "
|
|
"(ready=%d)\n", tmp);
|
|
warned = 1;
|
|
}
|
|
|
|
ata_msleep(link->ap, 50);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ata_wait_after_reset - wait for link to become ready after reset
|
|
* @link: link to be waited on
|
|
* @deadline: deadline jiffies for the operation
|
|
* @check_ready: callback to check link readiness
|
|
*
|
|
* Wait for @link to become ready after reset.
|
|
*
|
|
* LOCKING:
|
|
* EH context.
|
|
*
|
|
* RETURNS:
|
|
* 0 if @linke is ready before @deadline; otherwise, -errno.
|
|
*/
|
|
int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
|
|
int (*check_ready)(struct ata_link *link))
|
|
{
|
|
ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
|
|
|
|
return ata_wait_ready(link, deadline, check_ready);
|
|
}
|
|
|
|
/**
|
|
* sata_link_debounce - debounce SATA phy status
|
|
* @link: ATA link to debounce SATA phy status for
|
|
* @params: timing parameters { interval, duratinon, timeout } in msec
|
|
* @deadline: deadline jiffies for the operation
|
|
*
|
|
* Make sure SStatus of @link reaches stable state, determined by
|
|
* holding the same value where DET is not 1 for @duration polled
|
|
* every @interval, before @timeout. Timeout constraints the
|
|
* beginning of the stable state. Because DET gets stuck at 1 on
|
|
* some controllers after hot unplugging, this functions waits
|
|
* until timeout then returns 0 if DET is stable at 1.
|
|
*
|
|
* @timeout is further limited by @deadline. The sooner of the
|
|
* two is used.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep)
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno on failure.
|
|
*/
|
|
int sata_link_debounce(struct ata_link *link, const unsigned long *params,
|
|
unsigned long deadline)
|
|
{
|
|
unsigned long interval = params[0];
|
|
unsigned long duration = params[1];
|
|
unsigned long last_jiffies, t;
|
|
u32 last, cur;
|
|
int rc;
|
|
|
|
t = ata_deadline(jiffies, params[2]);
|
|
if (time_before(t, deadline))
|
|
deadline = t;
|
|
|
|
if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
|
|
return rc;
|
|
cur &= 0xf;
|
|
|
|
last = cur;
|
|
last_jiffies = jiffies;
|
|
|
|
while (1) {
|
|
ata_msleep(link->ap, interval);
|
|
if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
|
|
return rc;
|
|
cur &= 0xf;
|
|
|
|
/* DET stable? */
|
|
if (cur == last) {
|
|
if (cur == 1 && time_before(jiffies, deadline))
|
|
continue;
|
|
if (time_after(jiffies,
|
|
ata_deadline(last_jiffies, duration)))
|
|
return 0;
|
|
continue;
|
|
}
|
|
|
|
/* unstable, start over */
|
|
last = cur;
|
|
last_jiffies = jiffies;
|
|
|
|
/* Check deadline. If debouncing failed, return
|
|
* -EPIPE to tell upper layer to lower link speed.
|
|
*/
|
|
if (time_after(jiffies, deadline))
|
|
return -EPIPE;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* sata_link_resume - resume SATA link
|
|
* @link: ATA link to resume SATA
|
|
* @params: timing parameters { interval, duratinon, timeout } in msec
|
|
* @deadline: deadline jiffies for the operation
|
|
*
|
|
* Resume SATA phy @link and debounce it.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep)
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno on failure.
|
|
*/
|
|
int sata_link_resume(struct ata_link *link, const unsigned long *params,
|
|
unsigned long deadline)
|
|
{
|
|
int tries = ATA_LINK_RESUME_TRIES;
|
|
u32 scontrol, serror;
|
|
int rc;
|
|
|
|
if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
|
|
return rc;
|
|
|
|
/*
|
|
* Writes to SControl sometimes get ignored under certain
|
|
* controllers (ata_piix SIDPR). Make sure DET actually is
|
|
* cleared.
|
|
*/
|
|
do {
|
|
scontrol = (scontrol & 0x0f0) | 0x300;
|
|
if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
|
|
return rc;
|
|
/*
|
|
* Some PHYs react badly if SStatus is pounded
|
|
* immediately after resuming. Delay 200ms before
|
|
* debouncing.
|
|
*/
|
|
ata_msleep(link->ap, 200);
|
|
|
|
/* is SControl restored correctly? */
|
|
if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
|
|
return rc;
|
|
} while ((scontrol & 0xf0f) != 0x300 && --tries);
|
|
|
|
if ((scontrol & 0xf0f) != 0x300) {
|
|
ata_link_printk(link, KERN_ERR,
|
|
"failed to resume link (SControl %X)\n",
|
|
scontrol);
|
|
return 0;
|
|
}
|
|
|
|
if (tries < ATA_LINK_RESUME_TRIES)
|
|
ata_link_printk(link, KERN_WARNING,
|
|
"link resume succeeded after %d retries\n",
|
|
ATA_LINK_RESUME_TRIES - tries);
|
|
|
|
if ((rc = sata_link_debounce(link, params, deadline)))
|
|
return rc;
|
|
|
|
/* clear SError, some PHYs require this even for SRST to work */
|
|
if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
|
|
rc = sata_scr_write(link, SCR_ERROR, serror);
|
|
|
|
return rc != -EINVAL ? rc : 0;
|
|
}
|
|
|
|
/**
|
|
* sata_link_scr_lpm - manipulate SControl IPM and SPM fields
|
|
* @link: ATA link to manipulate SControl for
|
|
* @policy: LPM policy to configure
|
|
* @spm_wakeup: initiate LPM transition to active state
|
|
*
|
|
* Manipulate the IPM field of the SControl register of @link
|
|
* according to @policy. If @policy is ATA_LPM_MAX_POWER and
|
|
* @spm_wakeup is %true, the SPM field is manipulated to wake up
|
|
* the link. This function also clears PHYRDY_CHG before
|
|
* returning.
|
|
*
|
|
* LOCKING:
|
|
* EH context.
|
|
*
|
|
* RETURNS:
|
|
* 0 on succes, -errno otherwise.
|
|
*/
|
|
int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
|
|
bool spm_wakeup)
|
|
{
|
|
struct ata_eh_context *ehc = &link->eh_context;
|
|
bool woken_up = false;
|
|
u32 scontrol;
|
|
int rc;
|
|
|
|
rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
|
|
if (rc)
|
|
return rc;
|
|
|
|
switch (policy) {
|
|
case ATA_LPM_MAX_POWER:
|
|
/* disable all LPM transitions */
|
|
scontrol |= (0x3 << 8);
|
|
/* initiate transition to active state */
|
|
if (spm_wakeup) {
|
|
scontrol |= (0x4 << 12);
|
|
woken_up = true;
|
|
}
|
|
break;
|
|
case ATA_LPM_MED_POWER:
|
|
/* allow LPM to PARTIAL */
|
|
scontrol &= ~(0x1 << 8);
|
|
scontrol |= (0x2 << 8);
|
|
break;
|
|
case ATA_LPM_MIN_POWER:
|
|
/* no restrictions on LPM transitions */
|
|
scontrol &= ~(0x3 << 8);
|
|
break;
|
|
default:
|
|
WARN_ON(1);
|
|
}
|
|
|
|
rc = sata_scr_write(link, SCR_CONTROL, scontrol);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* give the link time to transit out of LPM state */
|
|
if (woken_up)
|
|
msleep(10);
|
|
|
|
/* clear PHYRDY_CHG from SError */
|
|
ehc->i.serror &= ~SERR_PHYRDY_CHG;
|
|
return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
|
|
}
|
|
|
|
/**
|
|
* ata_std_prereset - prepare for reset
|
|
* @link: ATA link to be reset
|
|
* @deadline: deadline jiffies for the operation
|
|
*
|
|
* @link is about to be reset. Initialize it. Failure from
|
|
* prereset makes libata abort whole reset sequence and give up
|
|
* that port, so prereset should be best-effort. It does its
|
|
* best to prepare for reset sequence but if things go wrong, it
|
|
* should just whine, not fail.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep)
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno otherwise.
|
|
*/
|
|
int ata_std_prereset(struct ata_link *link, unsigned long deadline)
|
|
{
|
|
struct ata_port *ap = link->ap;
|
|
struct ata_eh_context *ehc = &link->eh_context;
|
|
const unsigned long *timing = sata_ehc_deb_timing(ehc);
|
|
int rc;
|
|
|
|
/* if we're about to do hardreset, nothing more to do */
|
|
if (ehc->i.action & ATA_EH_HARDRESET)
|
|
return 0;
|
|
|
|
/* if SATA, resume link */
|
|
if (ap->flags & ATA_FLAG_SATA) {
|
|
rc = sata_link_resume(link, timing, deadline);
|
|
/* whine about phy resume failure but proceed */
|
|
if (rc && rc != -EOPNOTSUPP)
|
|
ata_link_printk(link, KERN_WARNING, "failed to resume "
|
|
"link for reset (errno=%d)\n", rc);
|
|
}
|
|
|
|
/* no point in trying softreset on offline link */
|
|
if (ata_phys_link_offline(link))
|
|
ehc->i.action &= ~ATA_EH_SOFTRESET;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* sata_link_hardreset - reset link via SATA phy reset
|
|
* @link: link to reset
|
|
* @timing: timing parameters { interval, duratinon, timeout } in msec
|
|
* @deadline: deadline jiffies for the operation
|
|
* @online: optional out parameter indicating link onlineness
|
|
* @check_ready: optional callback to check link readiness
|
|
*
|
|
* SATA phy-reset @link using DET bits of SControl register.
|
|
* After hardreset, link readiness is waited upon using
|
|
* ata_wait_ready() if @check_ready is specified. LLDs are
|
|
* allowed to not specify @check_ready and wait itself after this
|
|
* function returns. Device classification is LLD's
|
|
* responsibility.
|
|
*
|
|
* *@online is set to one iff reset succeeded and @link is online
|
|
* after reset.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep)
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno otherwise.
|
|
*/
|
|
int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
|
|
unsigned long deadline,
|
|
bool *online, int (*check_ready)(struct ata_link *))
|
|
{
|
|
u32 scontrol;
|
|
int rc;
|
|
|
|
DPRINTK("ENTER\n");
|
|
|
|
if (online)
|
|
*online = false;
|
|
|
|
if (sata_set_spd_needed(link)) {
|
|
/* SATA spec says nothing about how to reconfigure
|
|
* spd. To be on the safe side, turn off phy during
|
|
* reconfiguration. This works for at least ICH7 AHCI
|
|
* and Sil3124.
|
|
*/
|
|
if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
|
|
goto out;
|
|
|
|
scontrol = (scontrol & 0x0f0) | 0x304;
|
|
|
|
if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
|
|
goto out;
|
|
|
|
sata_set_spd(link);
|
|
}
|
|
|
|
/* issue phy wake/reset */
|
|
if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
|
|
goto out;
|
|
|
|
scontrol = (scontrol & 0x0f0) | 0x301;
|
|
|
|
if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
|
|
goto out;
|
|
|
|
/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
|
|
* 10.4.2 says at least 1 ms.
|
|
*/
|
|
ata_msleep(link->ap, 1);
|
|
|
|
/* bring link back */
|
|
rc = sata_link_resume(link, timing, deadline);
|
|
if (rc)
|
|
goto out;
|
|
/* if link is offline nothing more to do */
|
|
if (ata_phys_link_offline(link))
|
|
goto out;
|
|
|
|
/* Link is online. From this point, -ENODEV too is an error. */
|
|
if (online)
|
|
*online = true;
|
|
|
|
if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
|
|
/* If PMP is supported, we have to do follow-up SRST.
|
|
* Some PMPs don't send D2H Reg FIS after hardreset if
|
|
* the first port is empty. Wait only for
|
|
* ATA_TMOUT_PMP_SRST_WAIT.
|
|
*/
|
|
if (check_ready) {
|
|
unsigned long pmp_deadline;
|
|
|
|
pmp_deadline = ata_deadline(jiffies,
|
|
ATA_TMOUT_PMP_SRST_WAIT);
|
|
if (time_after(pmp_deadline, deadline))
|
|
pmp_deadline = deadline;
|
|
ata_wait_ready(link, pmp_deadline, check_ready);
|
|
}
|
|
rc = -EAGAIN;
|
|
goto out;
|
|
}
|
|
|
|
rc = 0;
|
|
if (check_ready)
|
|
rc = ata_wait_ready(link, deadline, check_ready);
|
|
out:
|
|
if (rc && rc != -EAGAIN) {
|
|
/* online is set iff link is online && reset succeeded */
|
|
if (online)
|
|
*online = false;
|
|
ata_link_printk(link, KERN_ERR,
|
|
"COMRESET failed (errno=%d)\n", rc);
|
|
}
|
|
DPRINTK("EXIT, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* sata_std_hardreset - COMRESET w/o waiting or classification
|
|
* @link: link to reset
|
|
* @class: resulting class of attached device
|
|
* @deadline: deadline jiffies for the operation
|
|
*
|
|
* Standard SATA COMRESET w/o waiting or classification.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep)
|
|
*
|
|
* RETURNS:
|
|
* 0 if link offline, -EAGAIN if link online, -errno on errors.
|
|
*/
|
|
int sata_std_hardreset(struct ata_link *link, unsigned int *class,
|
|
unsigned long deadline)
|
|
{
|
|
const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
|
|
bool online;
|
|
int rc;
|
|
|
|
/* do hardreset */
|
|
rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
|
|
return online ? -EAGAIN : rc;
|
|
}
|
|
|
|
/**
|
|
* ata_std_postreset - standard postreset callback
|
|
* @link: the target ata_link
|
|
* @classes: classes of attached devices
|
|
*
|
|
* This function is invoked after a successful reset. Note that
|
|
* the device might have been reset more than once using
|
|
* different reset methods before postreset is invoked.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep)
|
|
*/
|
|
void ata_std_postreset(struct ata_link *link, unsigned int *classes)
|
|
{
|
|
u32 serror;
|
|
|
|
DPRINTK("ENTER\n");
|
|
|
|
/* reset complete, clear SError */
|
|
if (!sata_scr_read(link, SCR_ERROR, &serror))
|
|
sata_scr_write(link, SCR_ERROR, serror);
|
|
|
|
/* print link status */
|
|
sata_print_link_status(link);
|
|
|
|
DPRINTK("EXIT\n");
|
|
}
|
|
|
|
/**
|
|
* ata_dev_same_device - Determine whether new ID matches configured device
|
|
* @dev: device to compare against
|
|
* @new_class: class of the new device
|
|
* @new_id: IDENTIFY page of the new device
|
|
*
|
|
* Compare @new_class and @new_id against @dev and determine
|
|
* whether @dev is the device indicated by @new_class and
|
|
* @new_id.
|
|
*
|
|
* LOCKING:
|
|
* None.
|
|
*
|
|
* RETURNS:
|
|
* 1 if @dev matches @new_class and @new_id, 0 otherwise.
|
|
*/
|
|
static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
|
|
const u16 *new_id)
|
|
{
|
|
const u16 *old_id = dev->id;
|
|
unsigned char model[2][ATA_ID_PROD_LEN + 1];
|
|
unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
|
|
|
|
if (dev->class != new_class) {
|
|
ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
|
|
dev->class, new_class);
|
|
return 0;
|
|
}
|
|
|
|
ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
|
|
ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
|
|
ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
|
|
ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
|
|
|
|
if (strcmp(model[0], model[1])) {
|
|
ata_dev_printk(dev, KERN_INFO, "model number mismatch "
|
|
"'%s' != '%s'\n", model[0], model[1]);
|
|
return 0;
|
|
}
|
|
|
|
if (strcmp(serial[0], serial[1])) {
|
|
ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
|
|
"'%s' != '%s'\n", serial[0], serial[1]);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* ata_dev_reread_id - Re-read IDENTIFY data
|
|
* @dev: target ATA device
|
|
* @readid_flags: read ID flags
|
|
*
|
|
* Re-read IDENTIFY page and make sure @dev is still attached to
|
|
* the port.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep)
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, negative errno otherwise
|
|
*/
|
|
int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
|
|
{
|
|
unsigned int class = dev->class;
|
|
u16 *id = (void *)dev->link->ap->sector_buf;
|
|
int rc;
|
|
|
|
/* read ID data */
|
|
rc = ata_dev_read_id(dev, &class, readid_flags, id);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* is the device still there? */
|
|
if (!ata_dev_same_device(dev, class, id))
|
|
return -ENODEV;
|
|
|
|
memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ata_dev_revalidate - Revalidate ATA device
|
|
* @dev: device to revalidate
|
|
* @new_class: new class code
|
|
* @readid_flags: read ID flags
|
|
*
|
|
* Re-read IDENTIFY page, make sure @dev is still attached to the
|
|
* port and reconfigure it according to the new IDENTIFY page.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep)
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, negative errno otherwise
|
|
*/
|
|
int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
|
|
unsigned int readid_flags)
|
|
{
|
|
u64 n_sectors = dev->n_sectors;
|
|
u64 n_native_sectors = dev->n_native_sectors;
|
|
int rc;
|
|
|
|
if (!ata_dev_enabled(dev))
|
|
return -ENODEV;
|
|
|
|
/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
|
|
if (ata_class_enabled(new_class) &&
|
|
new_class != ATA_DEV_ATA &&
|
|
new_class != ATA_DEV_ATAPI &&
|
|
new_class != ATA_DEV_SEMB) {
|
|
ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
|
|
dev->class, new_class);
|
|
rc = -ENODEV;
|
|
goto fail;
|
|
}
|
|
|
|
/* re-read ID */
|
|
rc = ata_dev_reread_id(dev, readid_flags);
|
|
if (rc)
|
|
goto fail;
|
|
|
|
/* configure device according to the new ID */
|
|
rc = ata_dev_configure(dev);
|
|
if (rc)
|
|
goto fail;
|
|
|
|
/* verify n_sectors hasn't changed */
|
|
if (dev->class != ATA_DEV_ATA || !n_sectors ||
|
|
dev->n_sectors == n_sectors)
|
|
return 0;
|
|
|
|
/* n_sectors has changed */
|
|
ata_dev_printk(dev, KERN_WARNING, "n_sectors mismatch %llu != %llu\n",
|
|
(unsigned long long)n_sectors,
|
|
(unsigned long long)dev->n_sectors);
|
|
|
|
/*
|
|
* Something could have caused HPA to be unlocked
|
|
* involuntarily. If n_native_sectors hasn't changed and the
|
|
* new size matches it, keep the device.
|
|
*/
|
|
if (dev->n_native_sectors == n_native_sectors &&
|
|
dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
|
|
ata_dev_printk(dev, KERN_WARNING,
|
|
"new n_sectors matches native, probably "
|
|
"late HPA unlock, n_sectors updated\n");
|
|
/* use the larger n_sectors */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
|
|
* unlocking HPA in those cases.
|
|
*
|
|
* https://bugzilla.kernel.org/show_bug.cgi?id=15396
|
|
*/
|
|
if (dev->n_native_sectors == n_native_sectors &&
|
|
dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
|
|
!(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
|
|
ata_dev_printk(dev, KERN_WARNING,
|
|
"old n_sectors matches native, probably "
|
|
"late HPA lock, will try to unlock HPA\n");
|
|
/* try unlocking HPA */
|
|
dev->flags |= ATA_DFLAG_UNLOCK_HPA;
|
|
rc = -EIO;
|
|
} else
|
|
rc = -ENODEV;
|
|
|
|
/* restore original n_[native_]sectors and fail */
|
|
dev->n_native_sectors = n_native_sectors;
|
|
dev->n_sectors = n_sectors;
|
|
fail:
|
|
ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
struct ata_blacklist_entry {
|
|
const char *model_num;
|
|
const char *model_rev;
|
|
unsigned long horkage;
|
|
};
|
|
|
|
static const struct ata_blacklist_entry ata_device_blacklist [] = {
|
|
/* Devices with DMA related problems under Linux */
|
|
{ "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
|
|
{ "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
|
|
{ "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
|
|
{ "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
|
|
{ "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
|
|
{ "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
|
|
{ "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
|
|
{ "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
|
|
{ "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
|
|
{ "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
|
|
{ "CRD-84", NULL, ATA_HORKAGE_NODMA },
|
|
{ "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
|
|
{ "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
|
|
{ "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
|
|
{ "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
|
|
{ "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
|
|
{ "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
|
|
{ "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
|
|
{ "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
|
|
{ "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
|
|
{ "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
|
|
{ "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
|
|
{ "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
|
|
{ "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
|
|
{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
|
|
{ "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
|
|
{ "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
|
|
{ "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
|
|
/* Odd clown on sil3726/4726 PMPs */
|
|
{ "Config Disk", NULL, ATA_HORKAGE_DISABLE },
|
|
|
|
/* Weird ATAPI devices */
|
|
{ "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
|
|
{ "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
|
|
|
|
/* Devices we expect to fail diagnostics */
|
|
|
|
/* Devices where NCQ should be avoided */
|
|
/* NCQ is slow */
|
|
{ "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
|
|
{ "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
|
|
/* http://thread.gmane.org/gmane.linux.ide/14907 */
|
|
{ "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
|
|
/* NCQ is broken */
|
|
{ "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
|
|
{ "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
|
|
{ "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
|
|
{ "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
|
|
{ "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
|
|
|
|
/* Seagate NCQ + FLUSH CACHE firmware bug */
|
|
{ "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
|
|
ATA_HORKAGE_FIRMWARE_WARN },
|
|
|
|
{ "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
|
|
ATA_HORKAGE_FIRMWARE_WARN },
|
|
|
|
{ "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
|
|
ATA_HORKAGE_FIRMWARE_WARN },
|
|
|
|
{ "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
|
|
ATA_HORKAGE_FIRMWARE_WARN },
|
|
|
|
/* Blacklist entries taken from Silicon Image 3124/3132
|
|
Windows driver .inf file - also several Linux problem reports */
|
|
{ "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
|
|
{ "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
|
|
{ "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
|
|
|
|
/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
|
|
{ "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
|
|
|
|
/* devices which puke on READ_NATIVE_MAX */
|
|
{ "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
|
|
{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
|
|
{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
|
|
{ "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
|
|
|
|
/* this one allows HPA unlocking but fails IOs on the area */
|
|
{ "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
|
|
|
|
/* Devices which report 1 sector over size HPA */
|
|
{ "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
|
|
{ "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
|
|
{ "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
|
|
|
|
/* Devices which get the IVB wrong */
|
|
{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
|
|
/* Maybe we should just blacklist TSSTcorp... */
|
|
{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
|
|
|
|
/* Devices that do not need bridging limits applied */
|
|
{ "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
|
|
|
|
/* Devices which aren't very happy with higher link speeds */
|
|
{ "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
|
|
|
|
/*
|
|
* Devices which choke on SETXFER. Applies only if both the
|
|
* device and controller are SATA.
|
|
*/
|
|
{ "PIONEER DVD-RW DVRTD08", "1.00", ATA_HORKAGE_NOSETXFER },
|
|
{ "PIONEER DVD-RW DVR-212D", "1.28", ATA_HORKAGE_NOSETXFER },
|
|
|
|
/* End Marker */
|
|
{ }
|
|
};
|
|
|
|
/**
|
|
* glob_match - match a text string against a glob-style pattern
|
|
* @text: the string to be examined
|
|
* @pattern: the glob-style pattern to be matched against
|
|
*
|
|
* Either/both of text and pattern can be empty strings.
|
|
*
|
|
* Match text against a glob-style pattern, with wildcards and simple sets:
|
|
*
|
|
* ? matches any single character.
|
|
* * matches any run of characters.
|
|
* [xyz] matches a single character from the set: x, y, or z.
|
|
* [a-d] matches a single character from the range: a, b, c, or d.
|
|
* [a-d0-9] matches a single character from either range.
|
|
*
|
|
* The special characters ?, [, -, or *, can be matched using a set, eg. [*]
|
|
* Behaviour with malformed patterns is undefined, though generally reasonable.
|
|
*
|
|
* Sample patterns: "SD1?", "SD1[0-5]", "*R0", "SD*1?[012]*xx"
|
|
*
|
|
* This function uses one level of recursion per '*' in pattern.
|
|
* Since it calls _nothing_ else, and has _no_ explicit local variables,
|
|
* this will not cause stack problems for any reasonable use here.
|
|
*
|
|
* RETURNS:
|
|
* 0 on match, 1 otherwise.
|
|
*/
|
|
static int glob_match (const char *text, const char *pattern)
|
|
{
|
|
do {
|
|
/* Match single character or a '?' wildcard */
|
|
if (*text == *pattern || *pattern == '?') {
|
|
if (!*pattern++)
|
|
return 0; /* End of both strings: match */
|
|
} else {
|
|
/* Match single char against a '[' bracketed ']' pattern set */
|
|
if (!*text || *pattern != '[')
|
|
break; /* Not a pattern set */
|
|
while (*++pattern && *pattern != ']' && *text != *pattern) {
|
|
if (*pattern == '-' && *(pattern - 1) != '[')
|
|
if (*text > *(pattern - 1) && *text < *(pattern + 1)) {
|
|
++pattern;
|
|
break;
|
|
}
|
|
}
|
|
if (!*pattern || *pattern == ']')
|
|
return 1; /* No match */
|
|
while (*pattern && *pattern++ != ']');
|
|
}
|
|
} while (*++text && *pattern);
|
|
|
|
/* Match any run of chars against a '*' wildcard */
|
|
if (*pattern == '*') {
|
|
if (!*++pattern)
|
|
return 0; /* Match: avoid recursion at end of pattern */
|
|
/* Loop to handle additional pattern chars after the wildcard */
|
|
while (*text) {
|
|
if (glob_match(text, pattern) == 0)
|
|
return 0; /* Remainder matched */
|
|
++text; /* Absorb (match) this char and try again */
|
|
}
|
|
}
|
|
if (!*text && !*pattern)
|
|
return 0; /* End of both strings: match */
|
|
return 1; /* No match */
|
|
}
|
|
|
|
static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
|
|
{
|
|
unsigned char model_num[ATA_ID_PROD_LEN + 1];
|
|
unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
|
|
const struct ata_blacklist_entry *ad = ata_device_blacklist;
|
|
|
|
ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
|
|
ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
|
|
|
|
while (ad->model_num) {
|
|
if (!glob_match(model_num, ad->model_num)) {
|
|
if (ad->model_rev == NULL)
|
|
return ad->horkage;
|
|
if (!glob_match(model_rev, ad->model_rev))
|
|
return ad->horkage;
|
|
}
|
|
ad++;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int ata_dma_blacklisted(const struct ata_device *dev)
|
|
{
|
|
/* We don't support polling DMA.
|
|
* DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
|
|
* if the LLDD handles only interrupts in the HSM_ST_LAST state.
|
|
*/
|
|
if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
|
|
(dev->flags & ATA_DFLAG_CDB_INTR))
|
|
return 1;
|
|
return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
|
|
}
|
|
|
|
/**
|
|
* ata_is_40wire - check drive side detection
|
|
* @dev: device
|
|
*
|
|
* Perform drive side detection decoding, allowing for device vendors
|
|
* who can't follow the documentation.
|
|
*/
|
|
|
|
static int ata_is_40wire(struct ata_device *dev)
|
|
{
|
|
if (dev->horkage & ATA_HORKAGE_IVB)
|
|
return ata_drive_40wire_relaxed(dev->id);
|
|
return ata_drive_40wire(dev->id);
|
|
}
|
|
|
|
/**
|
|
* cable_is_40wire - 40/80/SATA decider
|
|
* @ap: port to consider
|
|
*
|
|
* This function encapsulates the policy for speed management
|
|
* in one place. At the moment we don't cache the result but
|
|
* there is a good case for setting ap->cbl to the result when
|
|
* we are called with unknown cables (and figuring out if it
|
|
* impacts hotplug at all).
|
|
*
|
|
* Return 1 if the cable appears to be 40 wire.
|
|
*/
|
|
|
|
static int cable_is_40wire(struct ata_port *ap)
|
|
{
|
|
struct ata_link *link;
|
|
struct ata_device *dev;
|
|
|
|
/* If the controller thinks we are 40 wire, we are. */
|
|
if (ap->cbl == ATA_CBL_PATA40)
|
|
return 1;
|
|
|
|
/* If the controller thinks we are 80 wire, we are. */
|
|
if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
|
|
return 0;
|
|
|
|
/* If the system is known to be 40 wire short cable (eg
|
|
* laptop), then we allow 80 wire modes even if the drive
|
|
* isn't sure.
|
|
*/
|
|
if (ap->cbl == ATA_CBL_PATA40_SHORT)
|
|
return 0;
|
|
|
|
/* If the controller doesn't know, we scan.
|
|
*
|
|
* Note: We look for all 40 wire detects at this point. Any
|
|
* 80 wire detect is taken to be 80 wire cable because
|
|
* - in many setups only the one drive (slave if present) will
|
|
* give a valid detect
|
|
* - if you have a non detect capable drive you don't want it
|
|
* to colour the choice
|
|
*/
|
|
ata_for_each_link(link, ap, EDGE) {
|
|
ata_for_each_dev(dev, link, ENABLED) {
|
|
if (!ata_is_40wire(dev))
|
|
return 0;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* ata_dev_xfermask - Compute supported xfermask of the given device
|
|
* @dev: Device to compute xfermask for
|
|
*
|
|
* Compute supported xfermask of @dev and store it in
|
|
* dev->*_mask. This function is responsible for applying all
|
|
* known limits including host controller limits, device
|
|
* blacklist, etc...
|
|
*
|
|
* LOCKING:
|
|
* None.
|
|
*/
|
|
static void ata_dev_xfermask(struct ata_device *dev)
|
|
{
|
|
struct ata_link *link = dev->link;
|
|
struct ata_port *ap = link->ap;
|
|
struct ata_host *host = ap->host;
|
|
unsigned long xfer_mask;
|
|
|
|
/* controller modes available */
|
|
xfer_mask = ata_pack_xfermask(ap->pio_mask,
|
|
ap->mwdma_mask, ap->udma_mask);
|
|
|
|
/* drive modes available */
|
|
xfer_mask &= ata_pack_xfermask(dev->pio_mask,
|
|
dev->mwdma_mask, dev->udma_mask);
|
|
xfer_mask &= ata_id_xfermask(dev->id);
|
|
|
|
/*
|
|
* CFA Advanced TrueIDE timings are not allowed on a shared
|
|
* cable
|
|
*/
|
|
if (ata_dev_pair(dev)) {
|
|
/* No PIO5 or PIO6 */
|
|
xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
|
|
/* No MWDMA3 or MWDMA 4 */
|
|
xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
|
|
}
|
|
|
|
if (ata_dma_blacklisted(dev)) {
|
|
xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
|
|
ata_dev_printk(dev, KERN_WARNING,
|
|
"device is on DMA blacklist, disabling DMA\n");
|
|
}
|
|
|
|
if ((host->flags & ATA_HOST_SIMPLEX) &&
|
|
host->simplex_claimed && host->simplex_claimed != ap) {
|
|
xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
|
|
ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
|
|
"other device, disabling DMA\n");
|
|
}
|
|
|
|
if (ap->flags & ATA_FLAG_NO_IORDY)
|
|
xfer_mask &= ata_pio_mask_no_iordy(dev);
|
|
|
|
if (ap->ops->mode_filter)
|
|
xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
|
|
|
|
/* Apply cable rule here. Don't apply it early because when
|
|
* we handle hot plug the cable type can itself change.
|
|
* Check this last so that we know if the transfer rate was
|
|
* solely limited by the cable.
|
|
* Unknown or 80 wire cables reported host side are checked
|
|
* drive side as well. Cases where we know a 40wire cable
|
|
* is used safely for 80 are not checked here.
|
|
*/
|
|
if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
|
|
/* UDMA/44 or higher would be available */
|
|
if (cable_is_40wire(ap)) {
|
|
ata_dev_printk(dev, KERN_WARNING,
|
|
"limited to UDMA/33 due to 40-wire cable\n");
|
|
xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
|
|
}
|
|
|
|
ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
|
|
&dev->mwdma_mask, &dev->udma_mask);
|
|
}
|
|
|
|
/**
|
|
* ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
|
|
* @dev: Device to which command will be sent
|
|
*
|
|
* Issue SET FEATURES - XFER MODE command to device @dev
|
|
* on port @ap.
|
|
*
|
|
* LOCKING:
|
|
* PCI/etc. bus probe sem.
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, AC_ERR_* mask otherwise.
|
|
*/
|
|
|
|
static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
|
|
{
|
|
struct ata_taskfile tf;
|
|
unsigned int err_mask;
|
|
|
|
/* set up set-features taskfile */
|
|
DPRINTK("set features - xfer mode\n");
|
|
|
|
/* Some controllers and ATAPI devices show flaky interrupt
|
|
* behavior after setting xfer mode. Use polling instead.
|
|
*/
|
|
ata_tf_init(dev, &tf);
|
|
tf.command = ATA_CMD_SET_FEATURES;
|
|
tf.feature = SETFEATURES_XFER;
|
|
tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
|
|
tf.protocol = ATA_PROT_NODATA;
|
|
/* If we are using IORDY we must send the mode setting command */
|
|
if (ata_pio_need_iordy(dev))
|
|
tf.nsect = dev->xfer_mode;
|
|
/* If the device has IORDY and the controller does not - turn it off */
|
|
else if (ata_id_has_iordy(dev->id))
|
|
tf.nsect = 0x01;
|
|
else /* In the ancient relic department - skip all of this */
|
|
return 0;
|
|
|
|
err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
|
|
|
|
DPRINTK("EXIT, err_mask=%x\n", err_mask);
|
|
return err_mask;
|
|
}
|
|
|
|
/**
|
|
* ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
|
|
* @dev: Device to which command will be sent
|
|
* @enable: Whether to enable or disable the feature
|
|
* @feature: The sector count represents the feature to set
|
|
*
|
|
* Issue SET FEATURES - SATA FEATURES command to device @dev
|
|
* on port @ap with sector count
|
|
*
|
|
* LOCKING:
|
|
* PCI/etc. bus probe sem.
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, AC_ERR_* mask otherwise.
|
|
*/
|
|
unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
|
|
{
|
|
struct ata_taskfile tf;
|
|
unsigned int err_mask;
|
|
|
|
/* set up set-features taskfile */
|
|
DPRINTK("set features - SATA features\n");
|
|
|
|
ata_tf_init(dev, &tf);
|
|
tf.command = ATA_CMD_SET_FEATURES;
|
|
tf.feature = enable;
|
|
tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
|
|
tf.protocol = ATA_PROT_NODATA;
|
|
tf.nsect = feature;
|
|
|
|
err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
|
|
|
|
DPRINTK("EXIT, err_mask=%x\n", err_mask);
|
|
return err_mask;
|
|
}
|
|
|
|
/**
|
|
* ata_dev_init_params - Issue INIT DEV PARAMS command
|
|
* @dev: Device to which command will be sent
|
|
* @heads: Number of heads (taskfile parameter)
|
|
* @sectors: Number of sectors (taskfile parameter)
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep)
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, AC_ERR_* mask otherwise.
|
|
*/
|
|
static unsigned int ata_dev_init_params(struct ata_device *dev,
|
|
u16 heads, u16 sectors)
|
|
{
|
|
struct ata_taskfile tf;
|
|
unsigned int err_mask;
|
|
|
|
/* Number of sectors per track 1-255. Number of heads 1-16 */
|
|
if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
|
|
return AC_ERR_INVALID;
|
|
|
|
/* set up init dev params taskfile */
|
|
DPRINTK("init dev params \n");
|
|
|
|
ata_tf_init(dev, &tf);
|
|
tf.command = ATA_CMD_INIT_DEV_PARAMS;
|
|
tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
|
|
tf.protocol = ATA_PROT_NODATA;
|
|
tf.nsect = sectors;
|
|
tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
|
|
|
|
err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
|
|
/* A clean abort indicates an original or just out of spec drive
|
|
and we should continue as we issue the setup based on the
|
|
drive reported working geometry */
|
|
if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
|
|
err_mask = 0;
|
|
|
|
DPRINTK("EXIT, err_mask=%x\n", err_mask);
|
|
return err_mask;
|
|
}
|
|
|
|
/**
|
|
* ata_sg_clean - Unmap DMA memory associated with command
|
|
* @qc: Command containing DMA memory to be released
|
|
*
|
|
* Unmap all mapped DMA memory associated with this command.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*/
|
|
void ata_sg_clean(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
struct scatterlist *sg = qc->sg;
|
|
int dir = qc->dma_dir;
|
|
|
|
WARN_ON_ONCE(sg == NULL);
|
|
|
|
VPRINTK("unmapping %u sg elements\n", qc->n_elem);
|
|
|
|
if (qc->n_elem)
|
|
dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
|
|
|
|
qc->flags &= ~ATA_QCFLAG_DMAMAP;
|
|
qc->sg = NULL;
|
|
}
|
|
|
|
/**
|
|
* atapi_check_dma - Check whether ATAPI DMA can be supported
|
|
* @qc: Metadata associated with taskfile to check
|
|
*
|
|
* Allow low-level driver to filter ATA PACKET commands, returning
|
|
* a status indicating whether or not it is OK to use DMA for the
|
|
* supplied PACKET command.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*
|
|
* RETURNS: 0 when ATAPI DMA can be used
|
|
* nonzero otherwise
|
|
*/
|
|
int atapi_check_dma(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
|
|
/* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
|
|
* few ATAPI devices choke on such DMA requests.
|
|
*/
|
|
if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
|
|
unlikely(qc->nbytes & 15))
|
|
return 1;
|
|
|
|
if (ap->ops->check_atapi_dma)
|
|
return ap->ops->check_atapi_dma(qc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ata_std_qc_defer - Check whether a qc needs to be deferred
|
|
* @qc: ATA command in question
|
|
*
|
|
* Non-NCQ commands cannot run with any other command, NCQ or
|
|
* not. As upper layer only knows the queue depth, we are
|
|
* responsible for maintaining exclusion. This function checks
|
|
* whether a new command @qc can be issued.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*
|
|
* RETURNS:
|
|
* ATA_DEFER_* if deferring is needed, 0 otherwise.
|
|
*/
|
|
int ata_std_qc_defer(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_link *link = qc->dev->link;
|
|
|
|
if (qc->tf.protocol == ATA_PROT_NCQ) {
|
|
if (!ata_tag_valid(link->active_tag))
|
|
return 0;
|
|
} else {
|
|
if (!ata_tag_valid(link->active_tag) && !link->sactive)
|
|
return 0;
|
|
}
|
|
|
|
return ATA_DEFER_LINK;
|
|
}
|
|
|
|
void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
|
|
|
|
/**
|
|
* ata_sg_init - Associate command with scatter-gather table.
|
|
* @qc: Command to be associated
|
|
* @sg: Scatter-gather table.
|
|
* @n_elem: Number of elements in s/g table.
|
|
*
|
|
* Initialize the data-related elements of queued_cmd @qc
|
|
* to point to a scatter-gather table @sg, containing @n_elem
|
|
* elements.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*/
|
|
void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
|
|
unsigned int n_elem)
|
|
{
|
|
qc->sg = sg;
|
|
qc->n_elem = n_elem;
|
|
qc->cursg = qc->sg;
|
|
}
|
|
|
|
/**
|
|
* ata_sg_setup - DMA-map the scatter-gather table associated with a command.
|
|
* @qc: Command with scatter-gather table to be mapped.
|
|
*
|
|
* DMA-map the scatter-gather table associated with queued_cmd @qc.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*
|
|
* RETURNS:
|
|
* Zero on success, negative on error.
|
|
*
|
|
*/
|
|
static int ata_sg_setup(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
unsigned int n_elem;
|
|
|
|
VPRINTK("ENTER, ata%u\n", ap->print_id);
|
|
|
|
n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
|
|
if (n_elem < 1)
|
|
return -1;
|
|
|
|
DPRINTK("%d sg elements mapped\n", n_elem);
|
|
qc->orig_n_elem = qc->n_elem;
|
|
qc->n_elem = n_elem;
|
|
qc->flags |= ATA_QCFLAG_DMAMAP;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* swap_buf_le16 - swap halves of 16-bit words in place
|
|
* @buf: Buffer to swap
|
|
* @buf_words: Number of 16-bit words in buffer.
|
|
*
|
|
* Swap halves of 16-bit words if needed to convert from
|
|
* little-endian byte order to native cpu byte order, or
|
|
* vice-versa.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
void swap_buf_le16(u16 *buf, unsigned int buf_words)
|
|
{
|
|
#ifdef __BIG_ENDIAN
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < buf_words; i++)
|
|
buf[i] = le16_to_cpu(buf[i]);
|
|
#endif /* __BIG_ENDIAN */
|
|
}
|
|
|
|
/**
|
|
* ata_qc_new - Request an available ATA command, for queueing
|
|
* @ap: target port
|
|
*
|
|
* LOCKING:
|
|
* None.
|
|
*/
|
|
|
|
static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
|
|
{
|
|
struct ata_queued_cmd *qc = NULL;
|
|
unsigned int i;
|
|
|
|
/* no command while frozen */
|
|
if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
|
|
return NULL;
|
|
|
|
/* the last tag is reserved for internal command. */
|
|
for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
|
|
if (!test_and_set_bit(i, &ap->qc_allocated)) {
|
|
qc = __ata_qc_from_tag(ap, i);
|
|
break;
|
|
}
|
|
|
|
if (qc)
|
|
qc->tag = i;
|
|
|
|
return qc;
|
|
}
|
|
|
|
/**
|
|
* ata_qc_new_init - Request an available ATA command, and initialize it
|
|
* @dev: Device from whom we request an available command structure
|
|
*
|
|
* LOCKING:
|
|
* None.
|
|
*/
|
|
|
|
struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
|
|
{
|
|
struct ata_port *ap = dev->link->ap;
|
|
struct ata_queued_cmd *qc;
|
|
|
|
qc = ata_qc_new(ap);
|
|
if (qc) {
|
|
qc->scsicmd = NULL;
|
|
qc->ap = ap;
|
|
qc->dev = dev;
|
|
|
|
ata_qc_reinit(qc);
|
|
}
|
|
|
|
return qc;
|
|
}
|
|
|
|
/**
|
|
* ata_qc_free - free unused ata_queued_cmd
|
|
* @qc: Command to complete
|
|
*
|
|
* Designed to free unused ata_queued_cmd object
|
|
* in case something prevents using it.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*/
|
|
void ata_qc_free(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap;
|
|
unsigned int tag;
|
|
|
|
WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
|
|
ap = qc->ap;
|
|
|
|
qc->flags = 0;
|
|
tag = qc->tag;
|
|
if (likely(ata_tag_valid(tag))) {
|
|
qc->tag = ATA_TAG_POISON;
|
|
clear_bit(tag, &ap->qc_allocated);
|
|
}
|
|
}
|
|
|
|
void __ata_qc_complete(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap;
|
|
struct ata_link *link;
|
|
|
|
WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
|
|
WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
|
|
ap = qc->ap;
|
|
link = qc->dev->link;
|
|
|
|
if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
|
|
ata_sg_clean(qc);
|
|
|
|
/* command should be marked inactive atomically with qc completion */
|
|
if (qc->tf.protocol == ATA_PROT_NCQ) {
|
|
link->sactive &= ~(1 << qc->tag);
|
|
if (!link->sactive)
|
|
ap->nr_active_links--;
|
|
} else {
|
|
link->active_tag = ATA_TAG_POISON;
|
|
ap->nr_active_links--;
|
|
}
|
|
|
|
/* clear exclusive status */
|
|
if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
|
|
ap->excl_link == link))
|
|
ap->excl_link = NULL;
|
|
|
|
/* atapi: mark qc as inactive to prevent the interrupt handler
|
|
* from completing the command twice later, before the error handler
|
|
* is called. (when rc != 0 and atapi request sense is needed)
|
|
*/
|
|
qc->flags &= ~ATA_QCFLAG_ACTIVE;
|
|
ap->qc_active &= ~(1 << qc->tag);
|
|
|
|
/* call completion callback */
|
|
qc->complete_fn(qc);
|
|
}
|
|
|
|
static void fill_result_tf(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
|
|
qc->result_tf.flags = qc->tf.flags;
|
|
ap->ops->qc_fill_rtf(qc);
|
|
}
|
|
|
|
static void ata_verify_xfer(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_device *dev = qc->dev;
|
|
|
|
if (ata_is_nodata(qc->tf.protocol))
|
|
return;
|
|
|
|
if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
|
|
return;
|
|
|
|
dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
|
|
}
|
|
|
|
/**
|
|
* ata_qc_complete - Complete an active ATA command
|
|
* @qc: Command to complete
|
|
*
|
|
* Indicate to the mid and upper layers that an ATA command has
|
|
* completed, with either an ok or not-ok status.
|
|
*
|
|
* Refrain from calling this function multiple times when
|
|
* successfully completing multiple NCQ commands.
|
|
* ata_qc_complete_multiple() should be used instead, which will
|
|
* properly update IRQ expect state.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*/
|
|
void ata_qc_complete(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
|
|
/* XXX: New EH and old EH use different mechanisms to
|
|
* synchronize EH with regular execution path.
|
|
*
|
|
* In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
|
|
* Normal execution path is responsible for not accessing a
|
|
* failed qc. libata core enforces the rule by returning NULL
|
|
* from ata_qc_from_tag() for failed qcs.
|
|
*
|
|
* Old EH depends on ata_qc_complete() nullifying completion
|
|
* requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
|
|
* not synchronize with interrupt handler. Only PIO task is
|
|
* taken care of.
|
|
*/
|
|
if (ap->ops->error_handler) {
|
|
struct ata_device *dev = qc->dev;
|
|
struct ata_eh_info *ehi = &dev->link->eh_info;
|
|
|
|
if (unlikely(qc->err_mask))
|
|
qc->flags |= ATA_QCFLAG_FAILED;
|
|
|
|
/*
|
|
* Finish internal commands without any further processing
|
|
* and always with the result TF filled.
|
|
*/
|
|
if (unlikely(ata_tag_internal(qc->tag))) {
|
|
fill_result_tf(qc);
|
|
__ata_qc_complete(qc);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Non-internal qc has failed. Fill the result TF and
|
|
* summon EH.
|
|
*/
|
|
if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
|
|
fill_result_tf(qc);
|
|
ata_qc_schedule_eh(qc);
|
|
return;
|
|
}
|
|
|
|
WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
|
|
|
|
/* read result TF if requested */
|
|
if (qc->flags & ATA_QCFLAG_RESULT_TF)
|
|
fill_result_tf(qc);
|
|
|
|
/* Some commands need post-processing after successful
|
|
* completion.
|
|
*/
|
|
switch (qc->tf.command) {
|
|
case ATA_CMD_SET_FEATURES:
|
|
if (qc->tf.feature != SETFEATURES_WC_ON &&
|
|
qc->tf.feature != SETFEATURES_WC_OFF)
|
|
break;
|
|
/* fall through */
|
|
case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
|
|
case ATA_CMD_SET_MULTI: /* multi_count changed */
|
|
/* revalidate device */
|
|
ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
|
|
ata_port_schedule_eh(ap);
|
|
break;
|
|
|
|
case ATA_CMD_SLEEP:
|
|
dev->flags |= ATA_DFLAG_SLEEPING;
|
|
break;
|
|
}
|
|
|
|
if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
|
|
ata_verify_xfer(qc);
|
|
|
|
__ata_qc_complete(qc);
|
|
} else {
|
|
if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
|
|
return;
|
|
|
|
/* read result TF if failed or requested */
|
|
if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
|
|
fill_result_tf(qc);
|
|
|
|
__ata_qc_complete(qc);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ata_qc_complete_multiple - Complete multiple qcs successfully
|
|
* @ap: port in question
|
|
* @qc_active: new qc_active mask
|
|
*
|
|
* Complete in-flight commands. This functions is meant to be
|
|
* called from low-level driver's interrupt routine to complete
|
|
* requests normally. ap->qc_active and @qc_active is compared
|
|
* and commands are completed accordingly.
|
|
*
|
|
* Always use this function when completing multiple NCQ commands
|
|
* from IRQ handlers instead of calling ata_qc_complete()
|
|
* multiple times to keep IRQ expect status properly in sync.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*
|
|
* RETURNS:
|
|
* Number of completed commands on success, -errno otherwise.
|
|
*/
|
|
int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
|
|
{
|
|
int nr_done = 0;
|
|
u32 done_mask;
|
|
|
|
done_mask = ap->qc_active ^ qc_active;
|
|
|
|
if (unlikely(done_mask & qc_active)) {
|
|
ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
|
|
"(%08x->%08x)\n", ap->qc_active, qc_active);
|
|
return -EINVAL;
|
|
}
|
|
|
|
while (done_mask) {
|
|
struct ata_queued_cmd *qc;
|
|
unsigned int tag = __ffs(done_mask);
|
|
|
|
qc = ata_qc_from_tag(ap, tag);
|
|
if (qc) {
|
|
ata_qc_complete(qc);
|
|
nr_done++;
|
|
}
|
|
done_mask &= ~(1 << tag);
|
|
}
|
|
|
|
return nr_done;
|
|
}
|
|
|
|
/**
|
|
* ata_qc_issue - issue taskfile to device
|
|
* @qc: command to issue to device
|
|
*
|
|
* Prepare an ATA command to submission to device.
|
|
* This includes mapping the data into a DMA-able
|
|
* area, filling in the S/G table, and finally
|
|
* writing the taskfile to hardware, starting the command.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*/
|
|
void ata_qc_issue(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
struct ata_link *link = qc->dev->link;
|
|
u8 prot = qc->tf.protocol;
|
|
|
|
/* Make sure only one non-NCQ command is outstanding. The
|
|
* check is skipped for old EH because it reuses active qc to
|
|
* request ATAPI sense.
|
|
*/
|
|
WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
|
|
|
|
if (ata_is_ncq(prot)) {
|
|
WARN_ON_ONCE(link->sactive & (1 << qc->tag));
|
|
|
|
if (!link->sactive)
|
|
ap->nr_active_links++;
|
|
link->sactive |= 1 << qc->tag;
|
|
} else {
|
|
WARN_ON_ONCE(link->sactive);
|
|
|
|
ap->nr_active_links++;
|
|
link->active_tag = qc->tag;
|
|
}
|
|
|
|
qc->flags |= ATA_QCFLAG_ACTIVE;
|
|
ap->qc_active |= 1 << qc->tag;
|
|
|
|
/*
|
|
* We guarantee to LLDs that they will have at least one
|
|
* non-zero sg if the command is a data command.
|
|
*/
|
|
if (WARN_ON_ONCE(ata_is_data(prot) &&
|
|
(!qc->sg || !qc->n_elem || !qc->nbytes)))
|
|
goto sys_err;
|
|
|
|
if (ata_is_dma(prot) || (ata_is_pio(prot) &&
|
|
(ap->flags & ATA_FLAG_PIO_DMA)))
|
|
if (ata_sg_setup(qc))
|
|
goto sys_err;
|
|
|
|
/* if device is sleeping, schedule reset and abort the link */
|
|
if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
|
|
link->eh_info.action |= ATA_EH_RESET;
|
|
ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
|
|
ata_link_abort(link);
|
|
return;
|
|
}
|
|
|
|
ap->ops->qc_prep(qc);
|
|
|
|
qc->err_mask |= ap->ops->qc_issue(qc);
|
|
if (unlikely(qc->err_mask))
|
|
goto err;
|
|
return;
|
|
|
|
sys_err:
|
|
qc->err_mask |= AC_ERR_SYSTEM;
|
|
err:
|
|
ata_qc_complete(qc);
|
|
}
|
|
|
|
/**
|
|
* sata_scr_valid - test whether SCRs are accessible
|
|
* @link: ATA link to test SCR accessibility for
|
|
*
|
|
* Test whether SCRs are accessible for @link.
|
|
*
|
|
* LOCKING:
|
|
* None.
|
|
*
|
|
* RETURNS:
|
|
* 1 if SCRs are accessible, 0 otherwise.
|
|
*/
|
|
int sata_scr_valid(struct ata_link *link)
|
|
{
|
|
struct ata_port *ap = link->ap;
|
|
|
|
return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
|
|
}
|
|
|
|
/**
|
|
* sata_scr_read - read SCR register of the specified port
|
|
* @link: ATA link to read SCR for
|
|
* @reg: SCR to read
|
|
* @val: Place to store read value
|
|
*
|
|
* Read SCR register @reg of @link into *@val. This function is
|
|
* guaranteed to succeed if @link is ap->link, the cable type of
|
|
* the port is SATA and the port implements ->scr_read.
|
|
*
|
|
* LOCKING:
|
|
* None if @link is ap->link. Kernel thread context otherwise.
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, negative errno on failure.
|
|
*/
|
|
int sata_scr_read(struct ata_link *link, int reg, u32 *val)
|
|
{
|
|
if (ata_is_host_link(link)) {
|
|
if (sata_scr_valid(link))
|
|
return link->ap->ops->scr_read(link, reg, val);
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
return sata_pmp_scr_read(link, reg, val);
|
|
}
|
|
|
|
/**
|
|
* sata_scr_write - write SCR register of the specified port
|
|
* @link: ATA link to write SCR for
|
|
* @reg: SCR to write
|
|
* @val: value to write
|
|
*
|
|
* Write @val to SCR register @reg of @link. This function is
|
|
* guaranteed to succeed if @link is ap->link, the cable type of
|
|
* the port is SATA and the port implements ->scr_read.
|
|
*
|
|
* LOCKING:
|
|
* None if @link is ap->link. Kernel thread context otherwise.
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, negative errno on failure.
|
|
*/
|
|
int sata_scr_write(struct ata_link *link, int reg, u32 val)
|
|
{
|
|
if (ata_is_host_link(link)) {
|
|
if (sata_scr_valid(link))
|
|
return link->ap->ops->scr_write(link, reg, val);
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
return sata_pmp_scr_write(link, reg, val);
|
|
}
|
|
|
|
/**
|
|
* sata_scr_write_flush - write SCR register of the specified port and flush
|
|
* @link: ATA link to write SCR for
|
|
* @reg: SCR to write
|
|
* @val: value to write
|
|
*
|
|
* This function is identical to sata_scr_write() except that this
|
|
* function performs flush after writing to the register.
|
|
*
|
|
* LOCKING:
|
|
* None if @link is ap->link. Kernel thread context otherwise.
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, negative errno on failure.
|
|
*/
|
|
int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
|
|
{
|
|
if (ata_is_host_link(link)) {
|
|
int rc;
|
|
|
|
if (sata_scr_valid(link)) {
|
|
rc = link->ap->ops->scr_write(link, reg, val);
|
|
if (rc == 0)
|
|
rc = link->ap->ops->scr_read(link, reg, &val);
|
|
return rc;
|
|
}
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
return sata_pmp_scr_write(link, reg, val);
|
|
}
|
|
|
|
/**
|
|
* ata_phys_link_online - test whether the given link is online
|
|
* @link: ATA link to test
|
|
*
|
|
* Test whether @link is online. Note that this function returns
|
|
* 0 if online status of @link cannot be obtained, so
|
|
* ata_link_online(link) != !ata_link_offline(link).
|
|
*
|
|
* LOCKING:
|
|
* None.
|
|
*
|
|
* RETURNS:
|
|
* True if the port online status is available and online.
|
|
*/
|
|
bool ata_phys_link_online(struct ata_link *link)
|
|
{
|
|
u32 sstatus;
|
|
|
|
if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
|
|
ata_sstatus_online(sstatus))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* ata_phys_link_offline - test whether the given link is offline
|
|
* @link: ATA link to test
|
|
*
|
|
* Test whether @link is offline. Note that this function
|
|
* returns 0 if offline status of @link cannot be obtained, so
|
|
* ata_link_online(link) != !ata_link_offline(link).
|
|
*
|
|
* LOCKING:
|
|
* None.
|
|
*
|
|
* RETURNS:
|
|
* True if the port offline status is available and offline.
|
|
*/
|
|
bool ata_phys_link_offline(struct ata_link *link)
|
|
{
|
|
u32 sstatus;
|
|
|
|
if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
|
|
!ata_sstatus_online(sstatus))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* ata_link_online - test whether the given link is online
|
|
* @link: ATA link to test
|
|
*
|
|
* Test whether @link is online. This is identical to
|
|
* ata_phys_link_online() when there's no slave link. When
|
|
* there's a slave link, this function should only be called on
|
|
* the master link and will return true if any of M/S links is
|
|
* online.
|
|
*
|
|
* LOCKING:
|
|
* None.
|
|
*
|
|
* RETURNS:
|
|
* True if the port online status is available and online.
|
|
*/
|
|
bool ata_link_online(struct ata_link *link)
|
|
{
|
|
struct ata_link *slave = link->ap->slave_link;
|
|
|
|
WARN_ON(link == slave); /* shouldn't be called on slave link */
|
|
|
|
return ata_phys_link_online(link) ||
|
|
(slave && ata_phys_link_online(slave));
|
|
}
|
|
|
|
/**
|
|
* ata_link_offline - test whether the given link is offline
|
|
* @link: ATA link to test
|
|
*
|
|
* Test whether @link is offline. This is identical to
|
|
* ata_phys_link_offline() when there's no slave link. When
|
|
* there's a slave link, this function should only be called on
|
|
* the master link and will return true if both M/S links are
|
|
* offline.
|
|
*
|
|
* LOCKING:
|
|
* None.
|
|
*
|
|
* RETURNS:
|
|
* True if the port offline status is available and offline.
|
|
*/
|
|
bool ata_link_offline(struct ata_link *link)
|
|
{
|
|
struct ata_link *slave = link->ap->slave_link;
|
|
|
|
WARN_ON(link == slave); /* shouldn't be called on slave link */
|
|
|
|
return ata_phys_link_offline(link) &&
|
|
(!slave || ata_phys_link_offline(slave));
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
|
|
unsigned int action, unsigned int ehi_flags,
|
|
int wait)
|
|
{
|
|
unsigned long flags;
|
|
int i, rc;
|
|
|
|
for (i = 0; i < host->n_ports; i++) {
|
|
struct ata_port *ap = host->ports[i];
|
|
struct ata_link *link;
|
|
|
|
/* Previous resume operation might still be in
|
|
* progress. Wait for PM_PENDING to clear.
|
|
*/
|
|
if (ap->pflags & ATA_PFLAG_PM_PENDING) {
|
|
ata_port_wait_eh(ap);
|
|
WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
|
|
}
|
|
|
|
/* request PM ops to EH */
|
|
spin_lock_irqsave(ap->lock, flags);
|
|
|
|
ap->pm_mesg = mesg;
|
|
if (wait) {
|
|
rc = 0;
|
|
ap->pm_result = &rc;
|
|
}
|
|
|
|
ap->pflags |= ATA_PFLAG_PM_PENDING;
|
|
ata_for_each_link(link, ap, HOST_FIRST) {
|
|
link->eh_info.action |= action;
|
|
link->eh_info.flags |= ehi_flags;
|
|
}
|
|
|
|
ata_port_schedule_eh(ap);
|
|
|
|
spin_unlock_irqrestore(ap->lock, flags);
|
|
|
|
/* wait and check result */
|
|
if (wait) {
|
|
ata_port_wait_eh(ap);
|
|
WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ata_host_suspend - suspend host
|
|
* @host: host to suspend
|
|
* @mesg: PM message
|
|
*
|
|
* Suspend @host. Actual operation is performed by EH. This
|
|
* function requests EH to perform PM operations and waits for EH
|
|
* to finish.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep).
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno on failure.
|
|
*/
|
|
int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
|
|
{
|
|
unsigned int ehi_flags = ATA_EHI_QUIET;
|
|
int rc;
|
|
|
|
/*
|
|
* On some hardware, device fails to respond after spun down
|
|
* for suspend. As the device won't be used before being
|
|
* resumed, we don't need to touch the device. Ask EH to skip
|
|
* the usual stuff and proceed directly to suspend.
|
|
*
|
|
* http://thread.gmane.org/gmane.linux.ide/46764
|
|
*/
|
|
if (mesg.event == PM_EVENT_SUSPEND)
|
|
ehi_flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_NO_RECOVERY;
|
|
|
|
rc = ata_host_request_pm(host, mesg, 0, ehi_flags, 1);
|
|
if (rc == 0)
|
|
host->dev->power.power_state = mesg;
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* ata_host_resume - resume host
|
|
* @host: host to resume
|
|
*
|
|
* Resume @host. Actual operation is performed by EH. This
|
|
* function requests EH to perform PM operations and returns.
|
|
* Note that all resume operations are performed parallelly.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep).
|
|
*/
|
|
void ata_host_resume(struct ata_host *host)
|
|
{
|
|
ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
|
|
ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
|
|
host->dev->power.power_state = PMSG_ON;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* ata_dev_init - Initialize an ata_device structure
|
|
* @dev: Device structure to initialize
|
|
*
|
|
* Initialize @dev in preparation for probing.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
void ata_dev_init(struct ata_device *dev)
|
|
{
|
|
struct ata_link *link = ata_dev_phys_link(dev);
|
|
struct ata_port *ap = link->ap;
|
|
unsigned long flags;
|
|
|
|
/* SATA spd limit is bound to the attached device, reset together */
|
|
link->sata_spd_limit = link->hw_sata_spd_limit;
|
|
link->sata_spd = 0;
|
|
|
|
/* High bits of dev->flags are used to record warm plug
|
|
* requests which occur asynchronously. Synchronize using
|
|
* host lock.
|
|
*/
|
|
spin_lock_irqsave(ap->lock, flags);
|
|
dev->flags &= ~ATA_DFLAG_INIT_MASK;
|
|
dev->horkage = 0;
|
|
spin_unlock_irqrestore(ap->lock, flags);
|
|
|
|
memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
|
|
ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
|
|
dev->pio_mask = UINT_MAX;
|
|
dev->mwdma_mask = UINT_MAX;
|
|
dev->udma_mask = UINT_MAX;
|
|
}
|
|
|
|
/**
|
|
* ata_link_init - Initialize an ata_link structure
|
|
* @ap: ATA port link is attached to
|
|
* @link: Link structure to initialize
|
|
* @pmp: Port multiplier port number
|
|
*
|
|
* Initialize @link.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep)
|
|
*/
|
|
void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
|
|
{
|
|
int i;
|
|
|
|
/* clear everything except for devices */
|
|
memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
|
|
ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
|
|
|
|
link->ap = ap;
|
|
link->pmp = pmp;
|
|
link->active_tag = ATA_TAG_POISON;
|
|
link->hw_sata_spd_limit = UINT_MAX;
|
|
|
|
/* can't use iterator, ap isn't initialized yet */
|
|
for (i = 0; i < ATA_MAX_DEVICES; i++) {
|
|
struct ata_device *dev = &link->device[i];
|
|
|
|
dev->link = link;
|
|
dev->devno = dev - link->device;
|
|
#ifdef CONFIG_ATA_ACPI
|
|
dev->gtf_filter = ata_acpi_gtf_filter;
|
|
#endif
|
|
ata_dev_init(dev);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* sata_link_init_spd - Initialize link->sata_spd_limit
|
|
* @link: Link to configure sata_spd_limit for
|
|
*
|
|
* Initialize @link->[hw_]sata_spd_limit to the currently
|
|
* configured value.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep).
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno on failure.
|
|
*/
|
|
int sata_link_init_spd(struct ata_link *link)
|
|
{
|
|
u8 spd;
|
|
int rc;
|
|
|
|
rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
|
|
if (rc)
|
|
return rc;
|
|
|
|
spd = (link->saved_scontrol >> 4) & 0xf;
|
|
if (spd)
|
|
link->hw_sata_spd_limit &= (1 << spd) - 1;
|
|
|
|
ata_force_link_limits(link);
|
|
|
|
link->sata_spd_limit = link->hw_sata_spd_limit;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ata_port_alloc - allocate and initialize basic ATA port resources
|
|
* @host: ATA host this allocated port belongs to
|
|
*
|
|
* Allocate and initialize basic ATA port resources.
|
|
*
|
|
* RETURNS:
|
|
* Allocate ATA port on success, NULL on failure.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from calling layer (may sleep).
|
|
*/
|
|
struct ata_port *ata_port_alloc(struct ata_host *host)
|
|
{
|
|
struct ata_port *ap;
|
|
|
|
DPRINTK("ENTER\n");
|
|
|
|
ap = kzalloc(sizeof(*ap), GFP_KERNEL);
|
|
if (!ap)
|
|
return NULL;
|
|
|
|
ap->pflags |= ATA_PFLAG_INITIALIZING;
|
|
ap->lock = &host->lock;
|
|
ap->print_id = -1;
|
|
ap->host = host;
|
|
ap->dev = host->dev;
|
|
|
|
#if defined(ATA_VERBOSE_DEBUG)
|
|
/* turn on all debugging levels */
|
|
ap->msg_enable = 0x00FF;
|
|
#elif defined(ATA_DEBUG)
|
|
ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
|
|
#else
|
|
ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
|
|
#endif
|
|
|
|
mutex_init(&ap->scsi_scan_mutex);
|
|
INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
|
|
INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
|
|
INIT_LIST_HEAD(&ap->eh_done_q);
|
|
init_waitqueue_head(&ap->eh_wait_q);
|
|
init_completion(&ap->park_req_pending);
|
|
init_timer_deferrable(&ap->fastdrain_timer);
|
|
ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
|
|
ap->fastdrain_timer.data = (unsigned long)ap;
|
|
|
|
ap->cbl = ATA_CBL_NONE;
|
|
|
|
ata_link_init(ap, &ap->link, 0);
|
|
|
|
#ifdef ATA_IRQ_TRAP
|
|
ap->stats.unhandled_irq = 1;
|
|
ap->stats.idle_irq = 1;
|
|
#endif
|
|
ata_sff_port_init(ap);
|
|
|
|
return ap;
|
|
}
|
|
|
|
static void ata_host_release(struct device *gendev, void *res)
|
|
{
|
|
struct ata_host *host = dev_get_drvdata(gendev);
|
|
int i;
|
|
|
|
for (i = 0; i < host->n_ports; i++) {
|
|
struct ata_port *ap = host->ports[i];
|
|
|
|
if (!ap)
|
|
continue;
|
|
|
|
if (ap->scsi_host)
|
|
scsi_host_put(ap->scsi_host);
|
|
|
|
kfree(ap->pmp_link);
|
|
kfree(ap->slave_link);
|
|
kfree(ap);
|
|
host->ports[i] = NULL;
|
|
}
|
|
|
|
dev_set_drvdata(gendev, NULL);
|
|
}
|
|
|
|
/**
|
|
* ata_host_alloc - allocate and init basic ATA host resources
|
|
* @dev: generic device this host is associated with
|
|
* @max_ports: maximum number of ATA ports associated with this host
|
|
*
|
|
* Allocate and initialize basic ATA host resources. LLD calls
|
|
* this function to allocate a host, initializes it fully and
|
|
* attaches it using ata_host_register().
|
|
*
|
|
* @max_ports ports are allocated and host->n_ports is
|
|
* initialized to @max_ports. The caller is allowed to decrease
|
|
* host->n_ports before calling ata_host_register(). The unused
|
|
* ports will be automatically freed on registration.
|
|
*
|
|
* RETURNS:
|
|
* Allocate ATA host on success, NULL on failure.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from calling layer (may sleep).
|
|
*/
|
|
struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
|
|
{
|
|
struct ata_host *host;
|
|
size_t sz;
|
|
int i;
|
|
|
|
DPRINTK("ENTER\n");
|
|
|
|
if (!devres_open_group(dev, NULL, GFP_KERNEL))
|
|
return NULL;
|
|
|
|
/* alloc a container for our list of ATA ports (buses) */
|
|
sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
|
|
/* alloc a container for our list of ATA ports (buses) */
|
|
host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
|
|
if (!host)
|
|
goto err_out;
|
|
|
|
devres_add(dev, host);
|
|
dev_set_drvdata(dev, host);
|
|
|
|
spin_lock_init(&host->lock);
|
|
mutex_init(&host->eh_mutex);
|
|
host->dev = dev;
|
|
host->n_ports = max_ports;
|
|
|
|
/* allocate ports bound to this host */
|
|
for (i = 0; i < max_ports; i++) {
|
|
struct ata_port *ap;
|
|
|
|
ap = ata_port_alloc(host);
|
|
if (!ap)
|
|
goto err_out;
|
|
|
|
ap->port_no = i;
|
|
host->ports[i] = ap;
|
|
}
|
|
|
|
devres_remove_group(dev, NULL);
|
|
return host;
|
|
|
|
err_out:
|
|
devres_release_group(dev, NULL);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* ata_host_alloc_pinfo - alloc host and init with port_info array
|
|
* @dev: generic device this host is associated with
|
|
* @ppi: array of ATA port_info to initialize host with
|
|
* @n_ports: number of ATA ports attached to this host
|
|
*
|
|
* Allocate ATA host and initialize with info from @ppi. If NULL
|
|
* terminated, @ppi may contain fewer entries than @n_ports. The
|
|
* last entry will be used for the remaining ports.
|
|
*
|
|
* RETURNS:
|
|
* Allocate ATA host on success, NULL on failure.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from calling layer (may sleep).
|
|
*/
|
|
struct ata_host *ata_host_alloc_pinfo(struct device *dev,
|
|
const struct ata_port_info * const * ppi,
|
|
int n_ports)
|
|
{
|
|
const struct ata_port_info *pi;
|
|
struct ata_host *host;
|
|
int i, j;
|
|
|
|
host = ata_host_alloc(dev, n_ports);
|
|
if (!host)
|
|
return NULL;
|
|
|
|
for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
|
|
struct ata_port *ap = host->ports[i];
|
|
|
|
if (ppi[j])
|
|
pi = ppi[j++];
|
|
|
|
ap->pio_mask = pi->pio_mask;
|
|
ap->mwdma_mask = pi->mwdma_mask;
|
|
ap->udma_mask = pi->udma_mask;
|
|
ap->flags |= pi->flags;
|
|
ap->link.flags |= pi->link_flags;
|
|
ap->ops = pi->port_ops;
|
|
|
|
if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
|
|
host->ops = pi->port_ops;
|
|
}
|
|
|
|
return host;
|
|
}
|
|
|
|
/**
|
|
* ata_slave_link_init - initialize slave link
|
|
* @ap: port to initialize slave link for
|
|
*
|
|
* Create and initialize slave link for @ap. This enables slave
|
|
* link handling on the port.
|
|
*
|
|
* In libata, a port contains links and a link contains devices.
|
|
* There is single host link but if a PMP is attached to it,
|
|
* there can be multiple fan-out links. On SATA, there's usually
|
|
* a single device connected to a link but PATA and SATA
|
|
* controllers emulating TF based interface can have two - master
|
|
* and slave.
|
|
*
|
|
* However, there are a few controllers which don't fit into this
|
|
* abstraction too well - SATA controllers which emulate TF
|
|
* interface with both master and slave devices but also have
|
|
* separate SCR register sets for each device. These controllers
|
|
* need separate links for physical link handling
|
|
* (e.g. onlineness, link speed) but should be treated like a
|
|
* traditional M/S controller for everything else (e.g. command
|
|
* issue, softreset).
|
|
*
|
|
* slave_link is libata's way of handling this class of
|
|
* controllers without impacting core layer too much. For
|
|
* anything other than physical link handling, the default host
|
|
* link is used for both master and slave. For physical link
|
|
* handling, separate @ap->slave_link is used. All dirty details
|
|
* are implemented inside libata core layer. From LLD's POV, the
|
|
* only difference is that prereset, hardreset and postreset are
|
|
* called once more for the slave link, so the reset sequence
|
|
* looks like the following.
|
|
*
|
|
* prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
|
|
* softreset(M) -> postreset(M) -> postreset(S)
|
|
*
|
|
* Note that softreset is called only for the master. Softreset
|
|
* resets both M/S by definition, so SRST on master should handle
|
|
* both (the standard method will work just fine).
|
|
*
|
|
* LOCKING:
|
|
* Should be called before host is registered.
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno on failure.
|
|
*/
|
|
int ata_slave_link_init(struct ata_port *ap)
|
|
{
|
|
struct ata_link *link;
|
|
|
|
WARN_ON(ap->slave_link);
|
|
WARN_ON(ap->flags & ATA_FLAG_PMP);
|
|
|
|
link = kzalloc(sizeof(*link), GFP_KERNEL);
|
|
if (!link)
|
|
return -ENOMEM;
|
|
|
|
ata_link_init(ap, link, 1);
|
|
ap->slave_link = link;
|
|
return 0;
|
|
}
|
|
|
|
static void ata_host_stop(struct device *gendev, void *res)
|
|
{
|
|
struct ata_host *host = dev_get_drvdata(gendev);
|
|
int i;
|
|
|
|
WARN_ON(!(host->flags & ATA_HOST_STARTED));
|
|
|
|
for (i = 0; i < host->n_ports; i++) {
|
|
struct ata_port *ap = host->ports[i];
|
|
|
|
if (ap->ops->port_stop)
|
|
ap->ops->port_stop(ap);
|
|
}
|
|
|
|
if (host->ops->host_stop)
|
|
host->ops->host_stop(host);
|
|
}
|
|
|
|
/**
|
|
* ata_finalize_port_ops - finalize ata_port_operations
|
|
* @ops: ata_port_operations to finalize
|
|
*
|
|
* An ata_port_operations can inherit from another ops and that
|
|
* ops can again inherit from another. This can go on as many
|
|
* times as necessary as long as there is no loop in the
|
|
* inheritance chain.
|
|
*
|
|
* Ops tables are finalized when the host is started. NULL or
|
|
* unspecified entries are inherited from the closet ancestor
|
|
* which has the method and the entry is populated with it.
|
|
* After finalization, the ops table directly points to all the
|
|
* methods and ->inherits is no longer necessary and cleared.
|
|
*
|
|
* Using ATA_OP_NULL, inheriting ops can force a method to NULL.
|
|
*
|
|
* LOCKING:
|
|
* None.
|
|
*/
|
|
static void ata_finalize_port_ops(struct ata_port_operations *ops)
|
|
{
|
|
static DEFINE_SPINLOCK(lock);
|
|
const struct ata_port_operations *cur;
|
|
void **begin = (void **)ops;
|
|
void **end = (void **)&ops->inherits;
|
|
void **pp;
|
|
|
|
if (!ops || !ops->inherits)
|
|
return;
|
|
|
|
spin_lock(&lock);
|
|
|
|
for (cur = ops->inherits; cur; cur = cur->inherits) {
|
|
void **inherit = (void **)cur;
|
|
|
|
for (pp = begin; pp < end; pp++, inherit++)
|
|
if (!*pp)
|
|
*pp = *inherit;
|
|
}
|
|
|
|
for (pp = begin; pp < end; pp++)
|
|
if (IS_ERR(*pp))
|
|
*pp = NULL;
|
|
|
|
ops->inherits = NULL;
|
|
|
|
spin_unlock(&lock);
|
|
}
|
|
|
|
/**
|
|
* ata_host_start - start and freeze ports of an ATA host
|
|
* @host: ATA host to start ports for
|
|
*
|
|
* Start and then freeze ports of @host. Started status is
|
|
* recorded in host->flags, so this function can be called
|
|
* multiple times. Ports are guaranteed to get started only
|
|
* once. If host->ops isn't initialized yet, its set to the
|
|
* first non-dummy port ops.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from calling layer (may sleep).
|
|
*
|
|
* RETURNS:
|
|
* 0 if all ports are started successfully, -errno otherwise.
|
|
*/
|
|
int ata_host_start(struct ata_host *host)
|
|
{
|
|
int have_stop = 0;
|
|
void *start_dr = NULL;
|
|
int i, rc;
|
|
|
|
if (host->flags & ATA_HOST_STARTED)
|
|
return 0;
|
|
|
|
ata_finalize_port_ops(host->ops);
|
|
|
|
for (i = 0; i < host->n_ports; i++) {
|
|
struct ata_port *ap = host->ports[i];
|
|
|
|
ata_finalize_port_ops(ap->ops);
|
|
|
|
if (!host->ops && !ata_port_is_dummy(ap))
|
|
host->ops = ap->ops;
|
|
|
|
if (ap->ops->port_stop)
|
|
have_stop = 1;
|
|
}
|
|
|
|
if (host->ops->host_stop)
|
|
have_stop = 1;
|
|
|
|
if (have_stop) {
|
|
start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
|
|
if (!start_dr)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
for (i = 0; i < host->n_ports; i++) {
|
|
struct ata_port *ap = host->ports[i];
|
|
|
|
if (ap->ops->port_start) {
|
|
rc = ap->ops->port_start(ap);
|
|
if (rc) {
|
|
if (rc != -ENODEV)
|
|
dev_printk(KERN_ERR, host->dev,
|
|
"failed to start port %d "
|
|
"(errno=%d)\n", i, rc);
|
|
goto err_out;
|
|
}
|
|
}
|
|
ata_eh_freeze_port(ap);
|
|
}
|
|
|
|
if (start_dr)
|
|
devres_add(host->dev, start_dr);
|
|
host->flags |= ATA_HOST_STARTED;
|
|
return 0;
|
|
|
|
err_out:
|
|
while (--i >= 0) {
|
|
struct ata_port *ap = host->ports[i];
|
|
|
|
if (ap->ops->port_stop)
|
|
ap->ops->port_stop(ap);
|
|
}
|
|
devres_free(start_dr);
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* ata_sas_host_init - Initialize a host struct
|
|
* @host: host to initialize
|
|
* @dev: device host is attached to
|
|
* @flags: host flags
|
|
* @ops: port_ops
|
|
*
|
|
* LOCKING:
|
|
* PCI/etc. bus probe sem.
|
|
*
|
|
*/
|
|
/* KILLME - the only user left is ipr */
|
|
void ata_host_init(struct ata_host *host, struct device *dev,
|
|
unsigned long flags, struct ata_port_operations *ops)
|
|
{
|
|
spin_lock_init(&host->lock);
|
|
mutex_init(&host->eh_mutex);
|
|
host->dev = dev;
|
|
host->flags = flags;
|
|
host->ops = ops;
|
|
}
|
|
|
|
int ata_port_probe(struct ata_port *ap)
|
|
{
|
|
int rc = 0;
|
|
|
|
/* probe */
|
|
if (ap->ops->error_handler) {
|
|
struct ata_eh_info *ehi = &ap->link.eh_info;
|
|
unsigned long flags;
|
|
|
|
/* kick EH for boot probing */
|
|
spin_lock_irqsave(ap->lock, flags);
|
|
|
|
ehi->probe_mask |= ATA_ALL_DEVICES;
|
|
ehi->action |= ATA_EH_RESET;
|
|
ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
|
|
|
|
ap->pflags &= ~ATA_PFLAG_INITIALIZING;
|
|
ap->pflags |= ATA_PFLAG_LOADING;
|
|
ata_port_schedule_eh(ap);
|
|
|
|
spin_unlock_irqrestore(ap->lock, flags);
|
|
|
|
/* wait for EH to finish */
|
|
ata_port_wait_eh(ap);
|
|
} else {
|
|
DPRINTK("ata%u: bus probe begin\n", ap->print_id);
|
|
rc = ata_bus_probe(ap);
|
|
DPRINTK("ata%u: bus probe end\n", ap->print_id);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
|
|
static void async_port_probe(void *data, async_cookie_t cookie)
|
|
{
|
|
struct ata_port *ap = data;
|
|
|
|
/*
|
|
* If we're not allowed to scan this host in parallel,
|
|
* we need to wait until all previous scans have completed
|
|
* before going further.
|
|
* Jeff Garzik says this is only within a controller, so we
|
|
* don't need to wait for port 0, only for later ports.
|
|
*/
|
|
if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
|
|
async_synchronize_cookie(cookie);
|
|
|
|
(void)ata_port_probe(ap);
|
|
|
|
/* in order to keep device order, we need to synchronize at this point */
|
|
async_synchronize_cookie(cookie);
|
|
|
|
ata_scsi_scan_host(ap, 1);
|
|
}
|
|
|
|
/**
|
|
* ata_host_register - register initialized ATA host
|
|
* @host: ATA host to register
|
|
* @sht: template for SCSI host
|
|
*
|
|
* Register initialized ATA host. @host is allocated using
|
|
* ata_host_alloc() and fully initialized by LLD. This function
|
|
* starts ports, registers @host with ATA and SCSI layers and
|
|
* probe registered devices.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from calling layer (may sleep).
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno otherwise.
|
|
*/
|
|
int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
|
|
{
|
|
int i, rc;
|
|
|
|
/* host must have been started */
|
|
if (!(host->flags & ATA_HOST_STARTED)) {
|
|
dev_printk(KERN_ERR, host->dev,
|
|
"BUG: trying to register unstarted host\n");
|
|
WARN_ON(1);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Blow away unused ports. This happens when LLD can't
|
|
* determine the exact number of ports to allocate at
|
|
* allocation time.
|
|
*/
|
|
for (i = host->n_ports; host->ports[i]; i++)
|
|
kfree(host->ports[i]);
|
|
|
|
/* give ports names and add SCSI hosts */
|
|
for (i = 0; i < host->n_ports; i++)
|
|
host->ports[i]->print_id = ata_print_id++;
|
|
|
|
|
|
/* Create associated sysfs transport objects */
|
|
for (i = 0; i < host->n_ports; i++) {
|
|
rc = ata_tport_add(host->dev,host->ports[i]);
|
|
if (rc) {
|
|
goto err_tadd;
|
|
}
|
|
}
|
|
|
|
rc = ata_scsi_add_hosts(host, sht);
|
|
if (rc)
|
|
goto err_tadd;
|
|
|
|
/* associate with ACPI nodes */
|
|
ata_acpi_associate(host);
|
|
|
|
/* set cable, sata_spd_limit and report */
|
|
for (i = 0; i < host->n_ports; i++) {
|
|
struct ata_port *ap = host->ports[i];
|
|
unsigned long xfer_mask;
|
|
|
|
/* set SATA cable type if still unset */
|
|
if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
|
|
ap->cbl = ATA_CBL_SATA;
|
|
|
|
/* init sata_spd_limit to the current value */
|
|
sata_link_init_spd(&ap->link);
|
|
if (ap->slave_link)
|
|
sata_link_init_spd(ap->slave_link);
|
|
|
|
/* print per-port info to dmesg */
|
|
xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
|
|
ap->udma_mask);
|
|
|
|
if (!ata_port_is_dummy(ap)) {
|
|
ata_port_printk(ap, KERN_INFO,
|
|
"%cATA max %s %s\n",
|
|
(ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
|
|
ata_mode_string(xfer_mask),
|
|
ap->link.eh_info.desc);
|
|
ata_ehi_clear_desc(&ap->link.eh_info);
|
|
} else
|
|
ata_port_printk(ap, KERN_INFO, "DUMMY\n");
|
|
}
|
|
|
|
/* perform each probe asynchronously */
|
|
for (i = 0; i < host->n_ports; i++) {
|
|
struct ata_port *ap = host->ports[i];
|
|
async_schedule(async_port_probe, ap);
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_tadd:
|
|
while (--i >= 0) {
|
|
ata_tport_delete(host->ports[i]);
|
|
}
|
|
return rc;
|
|
|
|
}
|
|
|
|
/**
|
|
* ata_host_activate - start host, request IRQ and register it
|
|
* @host: target ATA host
|
|
* @irq: IRQ to request
|
|
* @irq_handler: irq_handler used when requesting IRQ
|
|
* @irq_flags: irq_flags used when requesting IRQ
|
|
* @sht: scsi_host_template to use when registering the host
|
|
*
|
|
* After allocating an ATA host and initializing it, most libata
|
|
* LLDs perform three steps to activate the host - start host,
|
|
* request IRQ and register it. This helper takes necessasry
|
|
* arguments and performs the three steps in one go.
|
|
*
|
|
* An invalid IRQ skips the IRQ registration and expects the host to
|
|
* have set polling mode on the port. In this case, @irq_handler
|
|
* should be NULL.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from calling layer (may sleep).
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno otherwise.
|
|
*/
|
|
int ata_host_activate(struct ata_host *host, int irq,
|
|
irq_handler_t irq_handler, unsigned long irq_flags,
|
|
struct scsi_host_template *sht)
|
|
{
|
|
int i, rc;
|
|
|
|
rc = ata_host_start(host);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* Special case for polling mode */
|
|
if (!irq) {
|
|
WARN_ON(irq_handler);
|
|
return ata_host_register(host, sht);
|
|
}
|
|
|
|
rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
|
|
dev_driver_string(host->dev), host);
|
|
if (rc)
|
|
return rc;
|
|
|
|
for (i = 0; i < host->n_ports; i++)
|
|
ata_port_desc(host->ports[i], "irq %d", irq);
|
|
|
|
rc = ata_host_register(host, sht);
|
|
/* if failed, just free the IRQ and leave ports alone */
|
|
if (rc)
|
|
devm_free_irq(host->dev, irq, host);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* ata_port_detach - Detach ATA port in prepration of device removal
|
|
* @ap: ATA port to be detached
|
|
*
|
|
* Detach all ATA devices and the associated SCSI devices of @ap;
|
|
* then, remove the associated SCSI host. @ap is guaranteed to
|
|
* be quiescent on return from this function.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep).
|
|
*/
|
|
static void ata_port_detach(struct ata_port *ap)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (!ap->ops->error_handler)
|
|
goto skip_eh;
|
|
|
|
/* tell EH we're leaving & flush EH */
|
|
spin_lock_irqsave(ap->lock, flags);
|
|
ap->pflags |= ATA_PFLAG_UNLOADING;
|
|
ata_port_schedule_eh(ap);
|
|
spin_unlock_irqrestore(ap->lock, flags);
|
|
|
|
/* wait till EH commits suicide */
|
|
ata_port_wait_eh(ap);
|
|
|
|
/* it better be dead now */
|
|
WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
|
|
|
|
cancel_delayed_work_sync(&ap->hotplug_task);
|
|
|
|
skip_eh:
|
|
if (ap->pmp_link) {
|
|
int i;
|
|
for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
|
|
ata_tlink_delete(&ap->pmp_link[i]);
|
|
}
|
|
ata_tport_delete(ap);
|
|
|
|
/* remove the associated SCSI host */
|
|
scsi_remove_host(ap->scsi_host);
|
|
}
|
|
|
|
/**
|
|
* ata_host_detach - Detach all ports of an ATA host
|
|
* @host: Host to detach
|
|
*
|
|
* Detach all ports of @host.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep).
|
|
*/
|
|
void ata_host_detach(struct ata_host *host)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < host->n_ports; i++)
|
|
ata_port_detach(host->ports[i]);
|
|
|
|
/* the host is dead now, dissociate ACPI */
|
|
ata_acpi_dissociate(host);
|
|
}
|
|
|
|
#ifdef CONFIG_PCI
|
|
|
|
/**
|
|
* ata_pci_remove_one - PCI layer callback for device removal
|
|
* @pdev: PCI device that was removed
|
|
*
|
|
* PCI layer indicates to libata via this hook that hot-unplug or
|
|
* module unload event has occurred. Detach all ports. Resource
|
|
* release is handled via devres.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from PCI layer (may sleep).
|
|
*/
|
|
void ata_pci_remove_one(struct pci_dev *pdev)
|
|
{
|
|
struct device *dev = &pdev->dev;
|
|
struct ata_host *host = dev_get_drvdata(dev);
|
|
|
|
ata_host_detach(host);
|
|
}
|
|
|
|
/* move to PCI subsystem */
|
|
int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
|
|
{
|
|
unsigned long tmp = 0;
|
|
|
|
switch (bits->width) {
|
|
case 1: {
|
|
u8 tmp8 = 0;
|
|
pci_read_config_byte(pdev, bits->reg, &tmp8);
|
|
tmp = tmp8;
|
|
break;
|
|
}
|
|
case 2: {
|
|
u16 tmp16 = 0;
|
|
pci_read_config_word(pdev, bits->reg, &tmp16);
|
|
tmp = tmp16;
|
|
break;
|
|
}
|
|
case 4: {
|
|
u32 tmp32 = 0;
|
|
pci_read_config_dword(pdev, bits->reg, &tmp32);
|
|
tmp = tmp32;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
tmp &= bits->mask;
|
|
|
|
return (tmp == bits->val) ? 1 : 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
|
|
{
|
|
pci_save_state(pdev);
|
|
pci_disable_device(pdev);
|
|
|
|
if (mesg.event & PM_EVENT_SLEEP)
|
|
pci_set_power_state(pdev, PCI_D3hot);
|
|
}
|
|
|
|
int ata_pci_device_do_resume(struct pci_dev *pdev)
|
|
{
|
|
int rc;
|
|
|
|
pci_set_power_state(pdev, PCI_D0);
|
|
pci_restore_state(pdev);
|
|
|
|
rc = pcim_enable_device(pdev);
|
|
if (rc) {
|
|
dev_printk(KERN_ERR, &pdev->dev,
|
|
"failed to enable device after resume (%d)\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
pci_set_master(pdev);
|
|
return 0;
|
|
}
|
|
|
|
int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
|
|
{
|
|
struct ata_host *host = dev_get_drvdata(&pdev->dev);
|
|
int rc = 0;
|
|
|
|
rc = ata_host_suspend(host, mesg);
|
|
if (rc)
|
|
return rc;
|
|
|
|
ata_pci_device_do_suspend(pdev, mesg);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int ata_pci_device_resume(struct pci_dev *pdev)
|
|
{
|
|
struct ata_host *host = dev_get_drvdata(&pdev->dev);
|
|
int rc;
|
|
|
|
rc = ata_pci_device_do_resume(pdev);
|
|
if (rc == 0)
|
|
ata_host_resume(host);
|
|
return rc;
|
|
}
|
|
#endif /* CONFIG_PM */
|
|
|
|
#endif /* CONFIG_PCI */
|
|
|
|
static int __init ata_parse_force_one(char **cur,
|
|
struct ata_force_ent *force_ent,
|
|
const char **reason)
|
|
{
|
|
/* FIXME: Currently, there's no way to tag init const data and
|
|
* using __initdata causes build failure on some versions of
|
|
* gcc. Once __initdataconst is implemented, add const to the
|
|
* following structure.
|
|
*/
|
|
static struct ata_force_param force_tbl[] __initdata = {
|
|
{ "40c", .cbl = ATA_CBL_PATA40 },
|
|
{ "80c", .cbl = ATA_CBL_PATA80 },
|
|
{ "short40c", .cbl = ATA_CBL_PATA40_SHORT },
|
|
{ "unk", .cbl = ATA_CBL_PATA_UNK },
|
|
{ "ign", .cbl = ATA_CBL_PATA_IGN },
|
|
{ "sata", .cbl = ATA_CBL_SATA },
|
|
{ "1.5Gbps", .spd_limit = 1 },
|
|
{ "3.0Gbps", .spd_limit = 2 },
|
|
{ "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
|
|
{ "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
|
|
{ "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
|
|
{ "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
|
|
{ "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
|
|
{ "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
|
|
{ "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
|
|
{ "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
|
|
{ "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
|
|
{ "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
|
|
{ "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
|
|
{ "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
|
|
{ "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
|
|
{ "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
|
|
{ "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
|
|
{ "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
|
|
{ "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
|
|
{ "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
|
|
{ "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
|
|
{ "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
|
|
{ "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
|
|
{ "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
|
|
{ "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
|
|
{ "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
|
|
{ "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
|
|
{ "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
|
|
{ "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
|
|
{ "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
|
|
{ "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
|
|
{ "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
|
|
{ "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
|
|
{ "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
|
|
{ "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
|
|
{ "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
|
|
{ "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
|
|
{ "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
|
|
{ "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
|
|
{ "nohrst", .lflags = ATA_LFLAG_NO_HRST },
|
|
{ "nosrst", .lflags = ATA_LFLAG_NO_SRST },
|
|
{ "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
|
|
};
|
|
char *start = *cur, *p = *cur;
|
|
char *id, *val, *endp;
|
|
const struct ata_force_param *match_fp = NULL;
|
|
int nr_matches = 0, i;
|
|
|
|
/* find where this param ends and update *cur */
|
|
while (*p != '\0' && *p != ',')
|
|
p++;
|
|
|
|
if (*p == '\0')
|
|
*cur = p;
|
|
else
|
|
*cur = p + 1;
|
|
|
|
*p = '\0';
|
|
|
|
/* parse */
|
|
p = strchr(start, ':');
|
|
if (!p) {
|
|
val = strstrip(start);
|
|
goto parse_val;
|
|
}
|
|
*p = '\0';
|
|
|
|
id = strstrip(start);
|
|
val = strstrip(p + 1);
|
|
|
|
/* parse id */
|
|
p = strchr(id, '.');
|
|
if (p) {
|
|
*p++ = '\0';
|
|
force_ent->device = simple_strtoul(p, &endp, 10);
|
|
if (p == endp || *endp != '\0') {
|
|
*reason = "invalid device";
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
force_ent->port = simple_strtoul(id, &endp, 10);
|
|
if (p == endp || *endp != '\0') {
|
|
*reason = "invalid port/link";
|
|
return -EINVAL;
|
|
}
|
|
|
|
parse_val:
|
|
/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
|
|
for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
|
|
const struct ata_force_param *fp = &force_tbl[i];
|
|
|
|
if (strncasecmp(val, fp->name, strlen(val)))
|
|
continue;
|
|
|
|
nr_matches++;
|
|
match_fp = fp;
|
|
|
|
if (strcasecmp(val, fp->name) == 0) {
|
|
nr_matches = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!nr_matches) {
|
|
*reason = "unknown value";
|
|
return -EINVAL;
|
|
}
|
|
if (nr_matches > 1) {
|
|
*reason = "ambigious value";
|
|
return -EINVAL;
|
|
}
|
|
|
|
force_ent->param = *match_fp;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __init ata_parse_force_param(void)
|
|
{
|
|
int idx = 0, size = 1;
|
|
int last_port = -1, last_device = -1;
|
|
char *p, *cur, *next;
|
|
|
|
/* calculate maximum number of params and allocate force_tbl */
|
|
for (p = ata_force_param_buf; *p; p++)
|
|
if (*p == ',')
|
|
size++;
|
|
|
|
ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
|
|
if (!ata_force_tbl) {
|
|
printk(KERN_WARNING "ata: failed to extend force table, "
|
|
"libata.force ignored\n");
|
|
return;
|
|
}
|
|
|
|
/* parse and populate the table */
|
|
for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
|
|
const char *reason = "";
|
|
struct ata_force_ent te = { .port = -1, .device = -1 };
|
|
|
|
next = cur;
|
|
if (ata_parse_force_one(&next, &te, &reason)) {
|
|
printk(KERN_WARNING "ata: failed to parse force "
|
|
"parameter \"%s\" (%s)\n",
|
|
cur, reason);
|
|
continue;
|
|
}
|
|
|
|
if (te.port == -1) {
|
|
te.port = last_port;
|
|
te.device = last_device;
|
|
}
|
|
|
|
ata_force_tbl[idx++] = te;
|
|
|
|
last_port = te.port;
|
|
last_device = te.device;
|
|
}
|
|
|
|
ata_force_tbl_size = idx;
|
|
}
|
|
|
|
static int __init ata_init(void)
|
|
{
|
|
int rc;
|
|
|
|
ata_parse_force_param();
|
|
|
|
rc = ata_sff_init();
|
|
if (rc) {
|
|
kfree(ata_force_tbl);
|
|
return rc;
|
|
}
|
|
|
|
libata_transport_init();
|
|
ata_scsi_transport_template = ata_attach_transport();
|
|
if (!ata_scsi_transport_template) {
|
|
ata_sff_exit();
|
|
rc = -ENOMEM;
|
|
goto err_out;
|
|
}
|
|
|
|
printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
|
|
return 0;
|
|
|
|
err_out:
|
|
return rc;
|
|
}
|
|
|
|
static void __exit ata_exit(void)
|
|
{
|
|
ata_release_transport(ata_scsi_transport_template);
|
|
libata_transport_exit();
|
|
ata_sff_exit();
|
|
kfree(ata_force_tbl);
|
|
}
|
|
|
|
subsys_initcall(ata_init);
|
|
module_exit(ata_exit);
|
|
|
|
static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
|
|
|
|
int ata_ratelimit(void)
|
|
{
|
|
return __ratelimit(&ratelimit);
|
|
}
|
|
|
|
/**
|
|
* ata_msleep - ATA EH owner aware msleep
|
|
* @ap: ATA port to attribute the sleep to
|
|
* @msecs: duration to sleep in milliseconds
|
|
*
|
|
* Sleeps @msecs. If the current task is owner of @ap's EH, the
|
|
* ownership is released before going to sleep and reacquired
|
|
* after the sleep is complete. IOW, other ports sharing the
|
|
* @ap->host will be allowed to own the EH while this task is
|
|
* sleeping.
|
|
*
|
|
* LOCKING:
|
|
* Might sleep.
|
|
*/
|
|
void ata_msleep(struct ata_port *ap, unsigned int msecs)
|
|
{
|
|
bool owns_eh = ap && ap->host->eh_owner == current;
|
|
|
|
if (owns_eh)
|
|
ata_eh_release(ap);
|
|
|
|
msleep(msecs);
|
|
|
|
if (owns_eh)
|
|
ata_eh_acquire(ap);
|
|
}
|
|
|
|
/**
|
|
* ata_wait_register - wait until register value changes
|
|
* @ap: ATA port to wait register for, can be NULL
|
|
* @reg: IO-mapped register
|
|
* @mask: Mask to apply to read register value
|
|
* @val: Wait condition
|
|
* @interval: polling interval in milliseconds
|
|
* @timeout: timeout in milliseconds
|
|
*
|
|
* Waiting for some bits of register to change is a common
|
|
* operation for ATA controllers. This function reads 32bit LE
|
|
* IO-mapped register @reg and tests for the following condition.
|
|
*
|
|
* (*@reg & mask) != val
|
|
*
|
|
* If the condition is met, it returns; otherwise, the process is
|
|
* repeated after @interval_msec until timeout.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep)
|
|
*
|
|
* RETURNS:
|
|
* The final register value.
|
|
*/
|
|
u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
|
|
unsigned long interval, unsigned long timeout)
|
|
{
|
|
unsigned long deadline;
|
|
u32 tmp;
|
|
|
|
tmp = ioread32(reg);
|
|
|
|
/* Calculate timeout _after_ the first read to make sure
|
|
* preceding writes reach the controller before starting to
|
|
* eat away the timeout.
|
|
*/
|
|
deadline = ata_deadline(jiffies, timeout);
|
|
|
|
while ((tmp & mask) == val && time_before(jiffies, deadline)) {
|
|
ata_msleep(ap, interval);
|
|
tmp = ioread32(reg);
|
|
}
|
|
|
|
return tmp;
|
|
}
|
|
|
|
/*
|
|
* Dummy port_ops
|
|
*/
|
|
static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
|
|
{
|
|
return AC_ERR_SYSTEM;
|
|
}
|
|
|
|
static void ata_dummy_error_handler(struct ata_port *ap)
|
|
{
|
|
/* truly dummy */
|
|
}
|
|
|
|
struct ata_port_operations ata_dummy_port_ops = {
|
|
.qc_prep = ata_noop_qc_prep,
|
|
.qc_issue = ata_dummy_qc_issue,
|
|
.error_handler = ata_dummy_error_handler,
|
|
};
|
|
|
|
const struct ata_port_info ata_dummy_port_info = {
|
|
.port_ops = &ata_dummy_port_ops,
|
|
};
|
|
|
|
/*
|
|
* libata is essentially a library of internal helper functions for
|
|
* low-level ATA host controller drivers. As such, the API/ABI is
|
|
* likely to change as new drivers are added and updated.
|
|
* Do not depend on ABI/API stability.
|
|
*/
|
|
EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
|
|
EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
|
|
EXPORT_SYMBOL_GPL(sata_deb_timing_long);
|
|
EXPORT_SYMBOL_GPL(ata_base_port_ops);
|
|
EXPORT_SYMBOL_GPL(sata_port_ops);
|
|
EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
|
|
EXPORT_SYMBOL_GPL(ata_dummy_port_info);
|
|
EXPORT_SYMBOL_GPL(ata_link_next);
|
|
EXPORT_SYMBOL_GPL(ata_dev_next);
|
|
EXPORT_SYMBOL_GPL(ata_std_bios_param);
|
|
EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
|
|
EXPORT_SYMBOL_GPL(ata_host_init);
|
|
EXPORT_SYMBOL_GPL(ata_host_alloc);
|
|
EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
|
|
EXPORT_SYMBOL_GPL(ata_slave_link_init);
|
|
EXPORT_SYMBOL_GPL(ata_host_start);
|
|
EXPORT_SYMBOL_GPL(ata_host_register);
|
|
EXPORT_SYMBOL_GPL(ata_host_activate);
|
|
EXPORT_SYMBOL_GPL(ata_host_detach);
|
|
EXPORT_SYMBOL_GPL(ata_sg_init);
|
|
EXPORT_SYMBOL_GPL(ata_qc_complete);
|
|
EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
|
|
EXPORT_SYMBOL_GPL(atapi_cmd_type);
|
|
EXPORT_SYMBOL_GPL(ata_tf_to_fis);
|
|
EXPORT_SYMBOL_GPL(ata_tf_from_fis);
|
|
EXPORT_SYMBOL_GPL(ata_pack_xfermask);
|
|
EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
|
|
EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
|
|
EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
|
|
EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
|
|
EXPORT_SYMBOL_GPL(ata_mode_string);
|
|
EXPORT_SYMBOL_GPL(ata_id_xfermask);
|
|
EXPORT_SYMBOL_GPL(ata_do_set_mode);
|
|
EXPORT_SYMBOL_GPL(ata_std_qc_defer);
|
|
EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
|
|
EXPORT_SYMBOL_GPL(ata_dev_disable);
|
|
EXPORT_SYMBOL_GPL(sata_set_spd);
|
|
EXPORT_SYMBOL_GPL(ata_wait_after_reset);
|
|
EXPORT_SYMBOL_GPL(sata_link_debounce);
|
|
EXPORT_SYMBOL_GPL(sata_link_resume);
|
|
EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
|
|
EXPORT_SYMBOL_GPL(ata_std_prereset);
|
|
EXPORT_SYMBOL_GPL(sata_link_hardreset);
|
|
EXPORT_SYMBOL_GPL(sata_std_hardreset);
|
|
EXPORT_SYMBOL_GPL(ata_std_postreset);
|
|
EXPORT_SYMBOL_GPL(ata_dev_classify);
|
|
EXPORT_SYMBOL_GPL(ata_dev_pair);
|
|
EXPORT_SYMBOL_GPL(ata_ratelimit);
|
|
EXPORT_SYMBOL_GPL(ata_msleep);
|
|
EXPORT_SYMBOL_GPL(ata_wait_register);
|
|
EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
|
|
EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
|
|
EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
|
|
EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
|
|
EXPORT_SYMBOL_GPL(sata_scr_valid);
|
|
EXPORT_SYMBOL_GPL(sata_scr_read);
|
|
EXPORT_SYMBOL_GPL(sata_scr_write);
|
|
EXPORT_SYMBOL_GPL(sata_scr_write_flush);
|
|
EXPORT_SYMBOL_GPL(ata_link_online);
|
|
EXPORT_SYMBOL_GPL(ata_link_offline);
|
|
#ifdef CONFIG_PM
|
|
EXPORT_SYMBOL_GPL(ata_host_suspend);
|
|
EXPORT_SYMBOL_GPL(ata_host_resume);
|
|
#endif /* CONFIG_PM */
|
|
EXPORT_SYMBOL_GPL(ata_id_string);
|
|
EXPORT_SYMBOL_GPL(ata_id_c_string);
|
|
EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
|
|
EXPORT_SYMBOL_GPL(ata_scsi_simulate);
|
|
|
|
EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
|
|
EXPORT_SYMBOL_GPL(ata_timing_find_mode);
|
|
EXPORT_SYMBOL_GPL(ata_timing_compute);
|
|
EXPORT_SYMBOL_GPL(ata_timing_merge);
|
|
EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
|
|
|
|
#ifdef CONFIG_PCI
|
|
EXPORT_SYMBOL_GPL(pci_test_config_bits);
|
|
EXPORT_SYMBOL_GPL(ata_pci_remove_one);
|
|
#ifdef CONFIG_PM
|
|
EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
|
|
EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
|
|
EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
|
|
EXPORT_SYMBOL_GPL(ata_pci_device_resume);
|
|
#endif /* CONFIG_PM */
|
|
#endif /* CONFIG_PCI */
|
|
|
|
EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
|
|
EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
|
|
EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
|
|
EXPORT_SYMBOL_GPL(ata_port_desc);
|
|
#ifdef CONFIG_PCI
|
|
EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
|
|
#endif /* CONFIG_PCI */
|
|
EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
|
|
EXPORT_SYMBOL_GPL(ata_link_abort);
|
|
EXPORT_SYMBOL_GPL(ata_port_abort);
|
|
EXPORT_SYMBOL_GPL(ata_port_freeze);
|
|
EXPORT_SYMBOL_GPL(sata_async_notification);
|
|
EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
|
|
EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
|
|
EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
|
|
EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
|
|
EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
|
|
EXPORT_SYMBOL_GPL(ata_do_eh);
|
|
EXPORT_SYMBOL_GPL(ata_std_error_handler);
|
|
|
|
EXPORT_SYMBOL_GPL(ata_cable_40wire);
|
|
EXPORT_SYMBOL_GPL(ata_cable_80wire);
|
|
EXPORT_SYMBOL_GPL(ata_cable_unknown);
|
|
EXPORT_SYMBOL_GPL(ata_cable_ignore);
|
|
EXPORT_SYMBOL_GPL(ata_cable_sata);
|