linux/tools/perf/util/stat.c
Ian Rogers 6f33e6fa29 perf stat: Combine the -A/--no-aggr and --no-merge options
The -A or --no-aggr option disables aggregation of core events:

  $ perf stat -A -e cycles,data_total -a true

   Performance counter stats for 'system wide':

  CPU0            1,287,665      cycles
  CPU1            1,831,681      cycles
  CPU2           27,345,998      cycles
  CPU3            1,964,799      cycles
  CPU4              236,174      cycles
  CPU5            3,302,825      cycles
  CPU6            9,201,446      cycles
  CPU7            1,403,043      cycles
  CPU0               110.90 MiB  data_total

         0.008961761 seconds time elapsed

The --no-merge option disables the aggregation of uncore events:

  $ perf stat --no-merge -e cycles,data_total -a true

   Performance counter stats for 'system wide':

          38,482,778      cycles
               15.04 MiB  data_total [uncore_imc_free_running_1]
               15.00 MiB  data_total [uncore_imc_free_running_0]

         0.005915155 seconds time elapsed

Having two options confuses users who generally don't appreciate the
difference in PMUs. Keep all the options but make it so they all
disable aggregation both of core and uncore events:

  $ perf stat -A -e cycles,data_total -a true

   Performance counter stats for 'system wide':

  CPU0               85,878      cycles
  CPU1               88,179      cycles
  CPU2               60,872      cycles
  CPU3            3,265,567      cycles
  CPU4               82,357      cycles
  CPU5               83,383      cycles
  CPU6               84,156      cycles
  CPU7              220,803      cycles
  CPU0                 2.38 MiB  data_total [uncore_imc_free_running_0]
  CPU0                 2.38 MiB  data_total [uncore_imc_free_running_1]

         0.001397205 seconds time elapsed

Update the relevant 'perf stat' man page information.

Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Ian Rogers <irogers@google.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Athira Jajeev <atrajeev@linux.vnet.ibm.com>
Cc: Changbin Du <changbin.du@huawei.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Clark <james.clark@arm.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: John Garry <john.g.garry@oracle.com>
Cc: K Prateek Nayak <kprateek.nayak@amd.com>
Cc: Kaige Ye <ye@kaige.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20231214060256.2094017-1-irogers@google.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2023-12-14 18:24:38 -03:00

802 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include <errno.h>
#include <linux/err.h>
#include <inttypes.h>
#include <math.h>
#include <string.h>
#include "counts.h"
#include "cpumap.h"
#include "debug.h"
#include "header.h"
#include "stat.h"
#include "session.h"
#include "target.h"
#include "evlist.h"
#include "evsel.h"
#include "thread_map.h"
#include "util/hashmap.h"
#include <linux/zalloc.h>
void update_stats(struct stats *stats, u64 val)
{
double delta;
stats->n++;
delta = val - stats->mean;
stats->mean += delta / stats->n;
stats->M2 += delta*(val - stats->mean);
if (val > stats->max)
stats->max = val;
if (val < stats->min)
stats->min = val;
}
double avg_stats(struct stats *stats)
{
return stats->mean;
}
/*
* http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
*
* (\Sum n_i^2) - ((\Sum n_i)^2)/n
* s^2 = -------------------------------
* n - 1
*
* http://en.wikipedia.org/wiki/Stddev
*
* The std dev of the mean is related to the std dev by:
*
* s
* s_mean = -------
* sqrt(n)
*
*/
double stddev_stats(struct stats *stats)
{
double variance, variance_mean;
if (stats->n < 2)
return 0.0;
variance = stats->M2 / (stats->n - 1);
variance_mean = variance / stats->n;
return sqrt(variance_mean);
}
double rel_stddev_stats(double stddev, double avg)
{
double pct = 0.0;
if (avg)
pct = 100.0 * stddev/avg;
return pct;
}
static void evsel__reset_aggr_stats(struct evsel *evsel)
{
struct perf_stat_evsel *ps = evsel->stats;
struct perf_stat_aggr *aggr = ps->aggr;
if (aggr)
memset(aggr, 0, sizeof(*aggr) * ps->nr_aggr);
}
static void evsel__reset_stat_priv(struct evsel *evsel)
{
struct perf_stat_evsel *ps = evsel->stats;
init_stats(&ps->res_stats);
evsel__reset_aggr_stats(evsel);
}
static int evsel__alloc_aggr_stats(struct evsel *evsel, int nr_aggr)
{
struct perf_stat_evsel *ps = evsel->stats;
if (ps == NULL)
return 0;
ps->nr_aggr = nr_aggr;
ps->aggr = calloc(nr_aggr, sizeof(*ps->aggr));
if (ps->aggr == NULL)
return -ENOMEM;
return 0;
}
int evlist__alloc_aggr_stats(struct evlist *evlist, int nr_aggr)
{
struct evsel *evsel;
evlist__for_each_entry(evlist, evsel) {
if (evsel__alloc_aggr_stats(evsel, nr_aggr) < 0)
return -1;
}
return 0;
}
static int evsel__alloc_stat_priv(struct evsel *evsel, int nr_aggr)
{
struct perf_stat_evsel *ps;
ps = zalloc(sizeof(*ps));
if (ps == NULL)
return -ENOMEM;
evsel->stats = ps;
if (nr_aggr && evsel__alloc_aggr_stats(evsel, nr_aggr) < 0) {
evsel->stats = NULL;
free(ps);
return -ENOMEM;
}
evsel__reset_stat_priv(evsel);
return 0;
}
static void evsel__free_stat_priv(struct evsel *evsel)
{
struct perf_stat_evsel *ps = evsel->stats;
if (ps) {
zfree(&ps->aggr);
zfree(&ps->group_data);
}
zfree(&evsel->stats);
}
static int evsel__alloc_prev_raw_counts(struct evsel *evsel)
{
int cpu_map_nr = evsel__nr_cpus(evsel);
int nthreads = perf_thread_map__nr(evsel->core.threads);
struct perf_counts *counts;
counts = perf_counts__new(cpu_map_nr, nthreads);
if (counts)
evsel->prev_raw_counts = counts;
return counts ? 0 : -ENOMEM;
}
static void evsel__free_prev_raw_counts(struct evsel *evsel)
{
perf_counts__delete(evsel->prev_raw_counts);
evsel->prev_raw_counts = NULL;
}
static void evsel__reset_prev_raw_counts(struct evsel *evsel)
{
if (evsel->prev_raw_counts)
perf_counts__reset(evsel->prev_raw_counts);
}
static int evsel__alloc_stats(struct evsel *evsel, int nr_aggr, bool alloc_raw)
{
if (evsel__alloc_stat_priv(evsel, nr_aggr) < 0 ||
evsel__alloc_counts(evsel) < 0 ||
(alloc_raw && evsel__alloc_prev_raw_counts(evsel) < 0))
return -ENOMEM;
return 0;
}
int evlist__alloc_stats(struct perf_stat_config *config,
struct evlist *evlist, bool alloc_raw)
{
struct evsel *evsel;
int nr_aggr = 0;
if (config && config->aggr_map)
nr_aggr = config->aggr_map->nr;
evlist__for_each_entry(evlist, evsel) {
if (evsel__alloc_stats(evsel, nr_aggr, alloc_raw))
goto out_free;
}
return 0;
out_free:
evlist__free_stats(evlist);
return -1;
}
void evlist__free_stats(struct evlist *evlist)
{
struct evsel *evsel;
evlist__for_each_entry(evlist, evsel) {
evsel__free_stat_priv(evsel);
evsel__free_counts(evsel);
evsel__free_prev_raw_counts(evsel);
}
}
void evlist__reset_stats(struct evlist *evlist)
{
struct evsel *evsel;
evlist__for_each_entry(evlist, evsel) {
evsel__reset_stat_priv(evsel);
evsel__reset_counts(evsel);
}
}
void evlist__reset_aggr_stats(struct evlist *evlist)
{
struct evsel *evsel;
evlist__for_each_entry(evlist, evsel)
evsel__reset_aggr_stats(evsel);
}
void evlist__reset_prev_raw_counts(struct evlist *evlist)
{
struct evsel *evsel;
evlist__for_each_entry(evlist, evsel)
evsel__reset_prev_raw_counts(evsel);
}
static void evsel__copy_prev_raw_counts(struct evsel *evsel)
{
int idx, nthreads = perf_thread_map__nr(evsel->core.threads);
for (int thread = 0; thread < nthreads; thread++) {
perf_cpu_map__for_each_idx(idx, evsel__cpus(evsel)) {
*perf_counts(evsel->counts, idx, thread) =
*perf_counts(evsel->prev_raw_counts, idx, thread);
}
}
}
void evlist__copy_prev_raw_counts(struct evlist *evlist)
{
struct evsel *evsel;
evlist__for_each_entry(evlist, evsel)
evsel__copy_prev_raw_counts(evsel);
}
static void evsel__copy_res_stats(struct evsel *evsel)
{
struct perf_stat_evsel *ps = evsel->stats;
/*
* For GLOBAL aggregation mode, it updates the counts for each run
* in the evsel->stats.res_stats. See perf_stat_process_counter().
*/
*ps->aggr[0].counts.values = avg_stats(&ps->res_stats);
}
void evlist__copy_res_stats(struct perf_stat_config *config, struct evlist *evlist)
{
struct evsel *evsel;
if (config->aggr_mode != AGGR_GLOBAL)
return;
evlist__for_each_entry(evlist, evsel)
evsel__copy_res_stats(evsel);
}
static size_t pkg_id_hash(long __key, void *ctx __maybe_unused)
{
uint64_t *key = (uint64_t *) __key;
return *key & 0xffffffff;
}
static bool pkg_id_equal(long __key1, long __key2, void *ctx __maybe_unused)
{
uint64_t *key1 = (uint64_t *) __key1;
uint64_t *key2 = (uint64_t *) __key2;
return *key1 == *key2;
}
static int check_per_pkg(struct evsel *counter, struct perf_counts_values *vals,
int cpu_map_idx, bool *skip)
{
struct hashmap *mask = counter->per_pkg_mask;
struct perf_cpu_map *cpus = evsel__cpus(counter);
struct perf_cpu cpu = perf_cpu_map__cpu(cpus, cpu_map_idx);
int s, d, ret = 0;
uint64_t *key;
*skip = false;
if (!counter->per_pkg)
return 0;
if (perf_cpu_map__has_any_cpu_or_is_empty(cpus))
return 0;
if (!mask) {
mask = hashmap__new(pkg_id_hash, pkg_id_equal, NULL);
if (IS_ERR(mask))
return -ENOMEM;
counter->per_pkg_mask = mask;
}
/*
* we do not consider an event that has not run as a good
* instance to mark a package as used (skip=1). Otherwise
* we may run into a situation where the first CPU in a package
* is not running anything, yet the second is, and this function
* would mark the package as used after the first CPU and would
* not read the values from the second CPU.
*/
if (!(vals->run && vals->ena))
return 0;
s = cpu__get_socket_id(cpu);
if (s < 0)
return -1;
/*
* On multi-die system, die_id > 0. On no-die system, die_id = 0.
* We use hashmap(socket, die) to check the used socket+die pair.
*/
d = cpu__get_die_id(cpu);
if (d < 0)
return -1;
key = malloc(sizeof(*key));
if (!key)
return -ENOMEM;
*key = (uint64_t)d << 32 | s;
if (hashmap__find(mask, key, NULL)) {
*skip = true;
free(key);
} else
ret = hashmap__add(mask, key, 1);
return ret;
}
static bool evsel__count_has_error(struct evsel *evsel,
struct perf_counts_values *count,
struct perf_stat_config *config)
{
/* the evsel was failed already */
if (evsel->err || evsel->counts->scaled == -1)
return true;
/* this is meaningful for CPU aggregation modes only */
if (config->aggr_mode == AGGR_GLOBAL)
return false;
/* it's considered ok when it actually ran */
if (count->ena != 0 && count->run != 0)
return false;
return true;
}
static int
process_counter_values(struct perf_stat_config *config, struct evsel *evsel,
int cpu_map_idx, int thread,
struct perf_counts_values *count)
{
struct perf_stat_evsel *ps = evsel->stats;
static struct perf_counts_values zero;
bool skip = false;
if (check_per_pkg(evsel, count, cpu_map_idx, &skip)) {
pr_err("failed to read per-pkg counter\n");
return -1;
}
if (skip)
count = &zero;
if (!evsel->snapshot)
evsel__compute_deltas(evsel, cpu_map_idx, thread, count);
perf_counts_values__scale(count, config->scale, NULL);
if (config->aggr_mode == AGGR_THREAD) {
struct perf_counts_values *aggr_counts = &ps->aggr[thread].counts;
/*
* Skip value 0 when enabling --per-thread globally,
* otherwise too many 0 output.
*/
if (count->val == 0 && config->system_wide)
return 0;
ps->aggr[thread].nr++;
aggr_counts->val += count->val;
aggr_counts->ena += count->ena;
aggr_counts->run += count->run;
return 0;
}
if (ps->aggr) {
struct perf_cpu cpu = perf_cpu_map__cpu(evsel->core.cpus, cpu_map_idx);
struct aggr_cpu_id aggr_id = config->aggr_get_id(config, cpu);
struct perf_stat_aggr *ps_aggr;
int i;
for (i = 0; i < ps->nr_aggr; i++) {
if (!aggr_cpu_id__equal(&aggr_id, &config->aggr_map->map[i]))
continue;
ps_aggr = &ps->aggr[i];
ps_aggr->nr++;
/*
* When any result is bad, make them all to give consistent output
* in interval mode. But per-task counters can have 0 enabled time
* when some tasks are idle.
*/
if (evsel__count_has_error(evsel, count, config) && !ps_aggr->failed) {
ps_aggr->counts.val = 0;
ps_aggr->counts.ena = 0;
ps_aggr->counts.run = 0;
ps_aggr->failed = true;
}
if (!ps_aggr->failed) {
ps_aggr->counts.val += count->val;
ps_aggr->counts.ena += count->ena;
ps_aggr->counts.run += count->run;
}
break;
}
}
return 0;
}
static int process_counter_maps(struct perf_stat_config *config,
struct evsel *counter)
{
int nthreads = perf_thread_map__nr(counter->core.threads);
int ncpus = evsel__nr_cpus(counter);
int idx, thread;
for (thread = 0; thread < nthreads; thread++) {
for (idx = 0; idx < ncpus; idx++) {
if (process_counter_values(config, counter, idx, thread,
perf_counts(counter->counts, idx, thread)))
return -1;
}
}
return 0;
}
int perf_stat_process_counter(struct perf_stat_config *config,
struct evsel *counter)
{
struct perf_stat_evsel *ps = counter->stats;
u64 *count;
int ret;
if (counter->per_pkg)
evsel__zero_per_pkg(counter);
ret = process_counter_maps(config, counter);
if (ret)
return ret;
if (config->aggr_mode != AGGR_GLOBAL)
return 0;
/*
* GLOBAL aggregation mode only has a single aggr counts,
* so we can use ps->aggr[0] as the actual output.
*/
count = ps->aggr[0].counts.values;
update_stats(&ps->res_stats, *count);
if (verbose > 0) {
fprintf(config->output, "%s: %" PRIu64 " %" PRIu64 " %" PRIu64 "\n",
evsel__name(counter), count[0], count[1], count[2]);
}
return 0;
}
static int evsel__merge_aggr_counters(struct evsel *evsel, struct evsel *alias)
{
struct perf_stat_evsel *ps_a = evsel->stats;
struct perf_stat_evsel *ps_b = alias->stats;
int i;
if (ps_a->aggr == NULL && ps_b->aggr == NULL)
return 0;
if (ps_a->nr_aggr != ps_b->nr_aggr) {
pr_err("Unmatched aggregation mode between aliases\n");
return -1;
}
for (i = 0; i < ps_a->nr_aggr; i++) {
struct perf_counts_values *aggr_counts_a = &ps_a->aggr[i].counts;
struct perf_counts_values *aggr_counts_b = &ps_b->aggr[i].counts;
/* NB: don't increase aggr.nr for aliases */
aggr_counts_a->val += aggr_counts_b->val;
aggr_counts_a->ena += aggr_counts_b->ena;
aggr_counts_a->run += aggr_counts_b->run;
}
return 0;
}
/* events should have the same name, scale, unit, cgroup but on different PMUs */
static bool evsel__is_alias(struct evsel *evsel_a, struct evsel *evsel_b)
{
if (strcmp(evsel__name(evsel_a), evsel__name(evsel_b)))
return false;
if (evsel_a->scale != evsel_b->scale)
return false;
if (evsel_a->cgrp != evsel_b->cgrp)
return false;
if (strcmp(evsel_a->unit, evsel_b->unit))
return false;
if (evsel__is_clock(evsel_a) != evsel__is_clock(evsel_b))
return false;
return !!strcmp(evsel_a->pmu_name, evsel_b->pmu_name);
}
static void evsel__merge_aliases(struct evsel *evsel)
{
struct evlist *evlist = evsel->evlist;
struct evsel *alias;
alias = list_prepare_entry(evsel, &(evlist->core.entries), core.node);
list_for_each_entry_continue(alias, &evlist->core.entries, core.node) {
/* Merge the same events on different PMUs. */
if (evsel__is_alias(evsel, alias)) {
evsel__merge_aggr_counters(evsel, alias);
alias->merged_stat = true;
}
}
}
static bool evsel__should_merge_hybrid(const struct evsel *evsel,
const struct perf_stat_config *config)
{
return config->hybrid_merge && evsel__is_hybrid(evsel);
}
static void evsel__merge_stats(struct evsel *evsel, struct perf_stat_config *config)
{
/* this evsel is already merged */
if (evsel->merged_stat)
return;
if (evsel->auto_merge_stats || evsel__should_merge_hybrid(evsel, config))
evsel__merge_aliases(evsel);
}
/* merge the same uncore and hybrid events if requested */
void perf_stat_merge_counters(struct perf_stat_config *config, struct evlist *evlist)
{
struct evsel *evsel;
if (config->aggr_mode == AGGR_NONE)
return;
evlist__for_each_entry(evlist, evsel)
evsel__merge_stats(evsel, config);
}
static void evsel__update_percore_stats(struct evsel *evsel, struct aggr_cpu_id *core_id)
{
struct perf_stat_evsel *ps = evsel->stats;
struct perf_counts_values counts = { 0, };
struct aggr_cpu_id id;
struct perf_cpu cpu;
int idx;
/* collect per-core counts */
perf_cpu_map__for_each_cpu(cpu, idx, evsel->core.cpus) {
struct perf_stat_aggr *aggr = &ps->aggr[idx];
id = aggr_cpu_id__core(cpu, NULL);
if (!aggr_cpu_id__equal(core_id, &id))
continue;
counts.val += aggr->counts.val;
counts.ena += aggr->counts.ena;
counts.run += aggr->counts.run;
}
/* update aggregated per-core counts for each CPU */
perf_cpu_map__for_each_cpu(cpu, idx, evsel->core.cpus) {
struct perf_stat_aggr *aggr = &ps->aggr[idx];
id = aggr_cpu_id__core(cpu, NULL);
if (!aggr_cpu_id__equal(core_id, &id))
continue;
aggr->counts.val = counts.val;
aggr->counts.ena = counts.ena;
aggr->counts.run = counts.run;
aggr->used = true;
}
}
/* we have an aggr_map for cpu, but want to aggregate the counters per-core */
static void evsel__process_percore(struct evsel *evsel)
{
struct perf_stat_evsel *ps = evsel->stats;
struct aggr_cpu_id core_id;
struct perf_cpu cpu;
int idx;
if (!evsel->percore)
return;
perf_cpu_map__for_each_cpu(cpu, idx, evsel->core.cpus) {
struct perf_stat_aggr *aggr = &ps->aggr[idx];
if (aggr->used)
continue;
core_id = aggr_cpu_id__core(cpu, NULL);
evsel__update_percore_stats(evsel, &core_id);
}
}
/* process cpu stats on per-core events */
void perf_stat_process_percore(struct perf_stat_config *config, struct evlist *evlist)
{
struct evsel *evsel;
if (config->aggr_mode != AGGR_NONE)
return;
evlist__for_each_entry(evlist, evsel)
evsel__process_percore(evsel);
}
int perf_event__process_stat_event(struct perf_session *session,
union perf_event *event)
{
struct perf_counts_values count, *ptr;
struct perf_record_stat *st = &event->stat;
struct evsel *counter;
int cpu_map_idx;
count.val = st->val;
count.ena = st->ena;
count.run = st->run;
counter = evlist__id2evsel(session->evlist, st->id);
if (!counter) {
pr_err("Failed to resolve counter for stat event.\n");
return -EINVAL;
}
cpu_map_idx = perf_cpu_map__idx(evsel__cpus(counter), (struct perf_cpu){.cpu = st->cpu});
if (cpu_map_idx == -1) {
pr_err("Invalid CPU %d for event %s.\n", st->cpu, evsel__name(counter));
return -EINVAL;
}
ptr = perf_counts(counter->counts, cpu_map_idx, st->thread);
if (ptr == NULL) {
pr_err("Failed to find perf count for CPU %d thread %d on event %s.\n",
st->cpu, st->thread, evsel__name(counter));
return -EINVAL;
}
*ptr = count;
counter->supported = true;
return 0;
}
size_t perf_event__fprintf_stat(union perf_event *event, FILE *fp)
{
struct perf_record_stat *st = (struct perf_record_stat *)event;
size_t ret;
ret = fprintf(fp, "\n... id %" PRI_lu64 ", cpu %d, thread %d\n",
st->id, st->cpu, st->thread);
ret += fprintf(fp, "... value %" PRI_lu64 ", enabled %" PRI_lu64 ", running %" PRI_lu64 "\n",
st->val, st->ena, st->run);
return ret;
}
size_t perf_event__fprintf_stat_round(union perf_event *event, FILE *fp)
{
struct perf_record_stat_round *rd = (struct perf_record_stat_round *)event;
size_t ret;
ret = fprintf(fp, "\n... time %" PRI_lu64 ", type %s\n", rd->time,
rd->type == PERF_STAT_ROUND_TYPE__FINAL ? "FINAL" : "INTERVAL");
return ret;
}
size_t perf_event__fprintf_stat_config(union perf_event *event, FILE *fp)
{
struct perf_stat_config sc = {};
size_t ret;
perf_event__read_stat_config(&sc, &event->stat_config);
ret = fprintf(fp, "\n");
ret += fprintf(fp, "... aggr_mode %d\n", sc.aggr_mode);
ret += fprintf(fp, "... scale %d\n", sc.scale);
ret += fprintf(fp, "... interval %u\n", sc.interval);
return ret;
}
int create_perf_stat_counter(struct evsel *evsel,
struct perf_stat_config *config,
struct target *target,
int cpu_map_idx)
{
struct perf_event_attr *attr = &evsel->core.attr;
struct evsel *leader = evsel__leader(evsel);
attr->read_format = PERF_FORMAT_TOTAL_TIME_ENABLED |
PERF_FORMAT_TOTAL_TIME_RUNNING;
/*
* The event is part of non trivial group, let's enable
* the group read (for leader) and ID retrieval for all
* members.
*/
if (leader->core.nr_members > 1)
attr->read_format |= PERF_FORMAT_ID|PERF_FORMAT_GROUP;
attr->inherit = !config->no_inherit && list_empty(&evsel->bpf_counter_list);
/*
* Some events get initialized with sample_(period/type) set,
* like tracepoints. Clear it up for counting.
*/
attr->sample_period = 0;
if (config->identifier)
attr->sample_type = PERF_SAMPLE_IDENTIFIER;
if (config->all_user) {
attr->exclude_kernel = 1;
attr->exclude_user = 0;
}
if (config->all_kernel) {
attr->exclude_kernel = 0;
attr->exclude_user = 1;
}
/*
* Disabling all counters initially, they will be enabled
* either manually by us or by kernel via enable_on_exec
* set later.
*/
if (evsel__is_group_leader(evsel)) {
attr->disabled = 1;
if (target__enable_on_exec(target))
attr->enable_on_exec = 1;
}
if (target__has_cpu(target) && !target__has_per_thread(target))
return evsel__open_per_cpu(evsel, evsel__cpus(evsel), cpu_map_idx);
return evsel__open_per_thread(evsel, evsel->core.threads);
}