mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-04 09:34:12 +08:00
6c34e446b2
Qualcomm crypto engine allows for IV registers and status register to be concatenated to the output. This option is enabled by setting the RESULTS_DUMP field in GOPROC register. This is useful for most of the algorithms to either retrieve status of operation or in case of authentication algorithms to retrieve the mac. But for ccm algorithms, the mac is part of the output stream and not retrieved from the IV registers, thus needing a separate buffer to retrieve it. Make enabling RESULTS_DUMP field optional so that algorithms can choose whether or not to enable the option. Note that in this patch, the enabled algorithms always choose RESULTS_DUMP to be enabled. But later with the introduction of ccm algorithms, this changes. Reviewed-by: Bjorn Andersson <bjorn.andersson@linaro.org> Signed-off-by: Thara Gopinath <thara.gopinath@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
440 lines
11 KiB
C
440 lines
11 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (c) 2012-2014, The Linux Foundation. All rights reserved.
|
|
*/
|
|
|
|
#include <linux/err.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/types.h>
|
|
#include <crypto/scatterwalk.h>
|
|
#include <crypto/sha1.h>
|
|
#include <crypto/sha2.h>
|
|
|
|
#include "cipher.h"
|
|
#include "common.h"
|
|
#include "core.h"
|
|
#include "regs-v5.h"
|
|
#include "sha.h"
|
|
|
|
static inline u32 qce_read(struct qce_device *qce, u32 offset)
|
|
{
|
|
return readl(qce->base + offset);
|
|
}
|
|
|
|
static inline void qce_write(struct qce_device *qce, u32 offset, u32 val)
|
|
{
|
|
writel(val, qce->base + offset);
|
|
}
|
|
|
|
static inline void qce_write_array(struct qce_device *qce, u32 offset,
|
|
const u32 *val, unsigned int len)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < len; i++)
|
|
qce_write(qce, offset + i * sizeof(u32), val[i]);
|
|
}
|
|
|
|
static inline void
|
|
qce_clear_array(struct qce_device *qce, u32 offset, unsigned int len)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < len; i++)
|
|
qce_write(qce, offset + i * sizeof(u32), 0);
|
|
}
|
|
|
|
static u32 qce_config_reg(struct qce_device *qce, int little)
|
|
{
|
|
u32 beats = (qce->burst_size >> 3) - 1;
|
|
u32 pipe_pair = qce->pipe_pair_id;
|
|
u32 config;
|
|
|
|
config = (beats << REQ_SIZE_SHIFT) & REQ_SIZE_MASK;
|
|
config |= BIT(MASK_DOUT_INTR_SHIFT) | BIT(MASK_DIN_INTR_SHIFT) |
|
|
BIT(MASK_OP_DONE_INTR_SHIFT) | BIT(MASK_ERR_INTR_SHIFT);
|
|
config |= (pipe_pair << PIPE_SET_SELECT_SHIFT) & PIPE_SET_SELECT_MASK;
|
|
config &= ~HIGH_SPD_EN_N_SHIFT;
|
|
|
|
if (little)
|
|
config |= BIT(LITTLE_ENDIAN_MODE_SHIFT);
|
|
|
|
return config;
|
|
}
|
|
|
|
void qce_cpu_to_be32p_array(__be32 *dst, const u8 *src, unsigned int len)
|
|
{
|
|
__be32 *d = dst;
|
|
const u8 *s = src;
|
|
unsigned int n;
|
|
|
|
n = len / sizeof(u32);
|
|
for (; n > 0; n--) {
|
|
*d = cpu_to_be32p((const __u32 *) s);
|
|
s += sizeof(__u32);
|
|
d++;
|
|
}
|
|
}
|
|
|
|
static void qce_setup_config(struct qce_device *qce)
|
|
{
|
|
u32 config;
|
|
|
|
/* get big endianness */
|
|
config = qce_config_reg(qce, 0);
|
|
|
|
/* clear status */
|
|
qce_write(qce, REG_STATUS, 0);
|
|
qce_write(qce, REG_CONFIG, config);
|
|
}
|
|
|
|
static inline void qce_crypto_go(struct qce_device *qce, bool result_dump)
|
|
{
|
|
if (result_dump)
|
|
qce_write(qce, REG_GOPROC, BIT(GO_SHIFT) | BIT(RESULTS_DUMP_SHIFT));
|
|
else
|
|
qce_write(qce, REG_GOPROC, BIT(GO_SHIFT));
|
|
}
|
|
|
|
#ifdef CONFIG_CRYPTO_DEV_QCE_SHA
|
|
static u32 qce_auth_cfg(unsigned long flags, u32 key_size)
|
|
{
|
|
u32 cfg = 0;
|
|
|
|
if (IS_AES(flags) && (IS_CCM(flags) || IS_CMAC(flags)))
|
|
cfg |= AUTH_ALG_AES << AUTH_ALG_SHIFT;
|
|
else
|
|
cfg |= AUTH_ALG_SHA << AUTH_ALG_SHIFT;
|
|
|
|
if (IS_CCM(flags) || IS_CMAC(flags)) {
|
|
if (key_size == AES_KEYSIZE_128)
|
|
cfg |= AUTH_KEY_SZ_AES128 << AUTH_KEY_SIZE_SHIFT;
|
|
else if (key_size == AES_KEYSIZE_256)
|
|
cfg |= AUTH_KEY_SZ_AES256 << AUTH_KEY_SIZE_SHIFT;
|
|
}
|
|
|
|
if (IS_SHA1(flags) || IS_SHA1_HMAC(flags))
|
|
cfg |= AUTH_SIZE_SHA1 << AUTH_SIZE_SHIFT;
|
|
else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags))
|
|
cfg |= AUTH_SIZE_SHA256 << AUTH_SIZE_SHIFT;
|
|
else if (IS_CMAC(flags))
|
|
cfg |= AUTH_SIZE_ENUM_16_BYTES << AUTH_SIZE_SHIFT;
|
|
|
|
if (IS_SHA1(flags) || IS_SHA256(flags))
|
|
cfg |= AUTH_MODE_HASH << AUTH_MODE_SHIFT;
|
|
else if (IS_SHA1_HMAC(flags) || IS_SHA256_HMAC(flags) ||
|
|
IS_CBC(flags) || IS_CTR(flags))
|
|
cfg |= AUTH_MODE_HMAC << AUTH_MODE_SHIFT;
|
|
else if (IS_AES(flags) && IS_CCM(flags))
|
|
cfg |= AUTH_MODE_CCM << AUTH_MODE_SHIFT;
|
|
else if (IS_AES(flags) && IS_CMAC(flags))
|
|
cfg |= AUTH_MODE_CMAC << AUTH_MODE_SHIFT;
|
|
|
|
if (IS_SHA(flags) || IS_SHA_HMAC(flags))
|
|
cfg |= AUTH_POS_BEFORE << AUTH_POS_SHIFT;
|
|
|
|
if (IS_CCM(flags))
|
|
cfg |= QCE_MAX_NONCE_WORDS << AUTH_NONCE_NUM_WORDS_SHIFT;
|
|
|
|
if (IS_CBC(flags) || IS_CTR(flags) || IS_CCM(flags) ||
|
|
IS_CMAC(flags))
|
|
cfg |= BIT(AUTH_LAST_SHIFT) | BIT(AUTH_FIRST_SHIFT);
|
|
|
|
return cfg;
|
|
}
|
|
|
|
static int qce_setup_regs_ahash(struct crypto_async_request *async_req)
|
|
{
|
|
struct ahash_request *req = ahash_request_cast(async_req);
|
|
struct crypto_ahash *ahash = __crypto_ahash_cast(async_req->tfm);
|
|
struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
|
|
struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
|
|
struct qce_device *qce = tmpl->qce;
|
|
unsigned int digestsize = crypto_ahash_digestsize(ahash);
|
|
unsigned int blocksize = crypto_tfm_alg_blocksize(async_req->tfm);
|
|
__be32 auth[SHA256_DIGEST_SIZE / sizeof(__be32)] = {0};
|
|
__be32 mackey[QCE_SHA_HMAC_KEY_SIZE / sizeof(__be32)] = {0};
|
|
u32 auth_cfg = 0, config;
|
|
unsigned int iv_words;
|
|
|
|
/* if not the last, the size has to be on the block boundary */
|
|
if (!rctx->last_blk && req->nbytes % blocksize)
|
|
return -EINVAL;
|
|
|
|
qce_setup_config(qce);
|
|
|
|
if (IS_CMAC(rctx->flags)) {
|
|
qce_write(qce, REG_AUTH_SEG_CFG, 0);
|
|
qce_write(qce, REG_ENCR_SEG_CFG, 0);
|
|
qce_write(qce, REG_ENCR_SEG_SIZE, 0);
|
|
qce_clear_array(qce, REG_AUTH_IV0, 16);
|
|
qce_clear_array(qce, REG_AUTH_KEY0, 16);
|
|
qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);
|
|
|
|
auth_cfg = qce_auth_cfg(rctx->flags, rctx->authklen);
|
|
}
|
|
|
|
if (IS_SHA_HMAC(rctx->flags) || IS_CMAC(rctx->flags)) {
|
|
u32 authkey_words = rctx->authklen / sizeof(u32);
|
|
|
|
qce_cpu_to_be32p_array(mackey, rctx->authkey, rctx->authklen);
|
|
qce_write_array(qce, REG_AUTH_KEY0, (u32 *)mackey,
|
|
authkey_words);
|
|
}
|
|
|
|
if (IS_CMAC(rctx->flags))
|
|
goto go_proc;
|
|
|
|
if (rctx->first_blk)
|
|
memcpy(auth, rctx->digest, digestsize);
|
|
else
|
|
qce_cpu_to_be32p_array(auth, rctx->digest, digestsize);
|
|
|
|
iv_words = (IS_SHA1(rctx->flags) || IS_SHA1_HMAC(rctx->flags)) ? 5 : 8;
|
|
qce_write_array(qce, REG_AUTH_IV0, (u32 *)auth, iv_words);
|
|
|
|
if (rctx->first_blk)
|
|
qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);
|
|
else
|
|
qce_write_array(qce, REG_AUTH_BYTECNT0,
|
|
(u32 *)rctx->byte_count, 2);
|
|
|
|
auth_cfg = qce_auth_cfg(rctx->flags, 0);
|
|
|
|
if (rctx->last_blk)
|
|
auth_cfg |= BIT(AUTH_LAST_SHIFT);
|
|
else
|
|
auth_cfg &= ~BIT(AUTH_LAST_SHIFT);
|
|
|
|
if (rctx->first_blk)
|
|
auth_cfg |= BIT(AUTH_FIRST_SHIFT);
|
|
else
|
|
auth_cfg &= ~BIT(AUTH_FIRST_SHIFT);
|
|
|
|
go_proc:
|
|
qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);
|
|
qce_write(qce, REG_AUTH_SEG_SIZE, req->nbytes);
|
|
qce_write(qce, REG_AUTH_SEG_START, 0);
|
|
qce_write(qce, REG_ENCR_SEG_CFG, 0);
|
|
qce_write(qce, REG_SEG_SIZE, req->nbytes);
|
|
|
|
/* get little endianness */
|
|
config = qce_config_reg(qce, 1);
|
|
qce_write(qce, REG_CONFIG, config);
|
|
|
|
qce_crypto_go(qce, true);
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_CRYPTO_DEV_QCE_SKCIPHER
|
|
static u32 qce_encr_cfg(unsigned long flags, u32 aes_key_size)
|
|
{
|
|
u32 cfg = 0;
|
|
|
|
if (IS_AES(flags)) {
|
|
if (aes_key_size == AES_KEYSIZE_128)
|
|
cfg |= ENCR_KEY_SZ_AES128 << ENCR_KEY_SZ_SHIFT;
|
|
else if (aes_key_size == AES_KEYSIZE_256)
|
|
cfg |= ENCR_KEY_SZ_AES256 << ENCR_KEY_SZ_SHIFT;
|
|
}
|
|
|
|
if (IS_AES(flags))
|
|
cfg |= ENCR_ALG_AES << ENCR_ALG_SHIFT;
|
|
else if (IS_DES(flags) || IS_3DES(flags))
|
|
cfg |= ENCR_ALG_DES << ENCR_ALG_SHIFT;
|
|
|
|
if (IS_DES(flags))
|
|
cfg |= ENCR_KEY_SZ_DES << ENCR_KEY_SZ_SHIFT;
|
|
|
|
if (IS_3DES(flags))
|
|
cfg |= ENCR_KEY_SZ_3DES << ENCR_KEY_SZ_SHIFT;
|
|
|
|
switch (flags & QCE_MODE_MASK) {
|
|
case QCE_MODE_ECB:
|
|
cfg |= ENCR_MODE_ECB << ENCR_MODE_SHIFT;
|
|
break;
|
|
case QCE_MODE_CBC:
|
|
cfg |= ENCR_MODE_CBC << ENCR_MODE_SHIFT;
|
|
break;
|
|
case QCE_MODE_CTR:
|
|
cfg |= ENCR_MODE_CTR << ENCR_MODE_SHIFT;
|
|
break;
|
|
case QCE_MODE_XTS:
|
|
cfg |= ENCR_MODE_XTS << ENCR_MODE_SHIFT;
|
|
break;
|
|
case QCE_MODE_CCM:
|
|
cfg |= ENCR_MODE_CCM << ENCR_MODE_SHIFT;
|
|
cfg |= LAST_CCM_XFR << LAST_CCM_SHIFT;
|
|
break;
|
|
default:
|
|
return ~0;
|
|
}
|
|
|
|
return cfg;
|
|
}
|
|
|
|
static void qce_xts_swapiv(__be32 *dst, const u8 *src, unsigned int ivsize)
|
|
{
|
|
u8 swap[QCE_AES_IV_LENGTH];
|
|
u32 i, j;
|
|
|
|
if (ivsize > QCE_AES_IV_LENGTH)
|
|
return;
|
|
|
|
memset(swap, 0, QCE_AES_IV_LENGTH);
|
|
|
|
for (i = (QCE_AES_IV_LENGTH - ivsize), j = ivsize - 1;
|
|
i < QCE_AES_IV_LENGTH; i++, j--)
|
|
swap[i] = src[j];
|
|
|
|
qce_cpu_to_be32p_array(dst, swap, QCE_AES_IV_LENGTH);
|
|
}
|
|
|
|
static void qce_xtskey(struct qce_device *qce, const u8 *enckey,
|
|
unsigned int enckeylen, unsigned int cryptlen)
|
|
{
|
|
u32 xtskey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(u32)] = {0};
|
|
unsigned int xtsklen = enckeylen / (2 * sizeof(u32));
|
|
|
|
qce_cpu_to_be32p_array((__be32 *)xtskey, enckey + enckeylen / 2,
|
|
enckeylen / 2);
|
|
qce_write_array(qce, REG_ENCR_XTS_KEY0, xtskey, xtsklen);
|
|
|
|
/* Set data unit size to cryptlen. Anything else causes
|
|
* crypto engine to return back incorrect results.
|
|
*/
|
|
qce_write(qce, REG_ENCR_XTS_DU_SIZE, cryptlen);
|
|
}
|
|
|
|
static int qce_setup_regs_skcipher(struct crypto_async_request *async_req)
|
|
{
|
|
struct skcipher_request *req = skcipher_request_cast(async_req);
|
|
struct qce_cipher_reqctx *rctx = skcipher_request_ctx(req);
|
|
struct qce_cipher_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
|
|
struct qce_alg_template *tmpl = to_cipher_tmpl(crypto_skcipher_reqtfm(req));
|
|
struct qce_device *qce = tmpl->qce;
|
|
__be32 enckey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(__be32)] = {0};
|
|
__be32 enciv[QCE_MAX_IV_SIZE / sizeof(__be32)] = {0};
|
|
unsigned int enckey_words, enciv_words;
|
|
unsigned int keylen;
|
|
u32 encr_cfg = 0, auth_cfg = 0, config;
|
|
unsigned int ivsize = rctx->ivsize;
|
|
unsigned long flags = rctx->flags;
|
|
|
|
qce_setup_config(qce);
|
|
|
|
if (IS_XTS(flags))
|
|
keylen = ctx->enc_keylen / 2;
|
|
else
|
|
keylen = ctx->enc_keylen;
|
|
|
|
qce_cpu_to_be32p_array(enckey, ctx->enc_key, keylen);
|
|
enckey_words = keylen / sizeof(u32);
|
|
|
|
qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);
|
|
|
|
encr_cfg = qce_encr_cfg(flags, keylen);
|
|
|
|
if (IS_DES(flags)) {
|
|
enciv_words = 2;
|
|
enckey_words = 2;
|
|
} else if (IS_3DES(flags)) {
|
|
enciv_words = 2;
|
|
enckey_words = 6;
|
|
} else if (IS_AES(flags)) {
|
|
if (IS_XTS(flags))
|
|
qce_xtskey(qce, ctx->enc_key, ctx->enc_keylen,
|
|
rctx->cryptlen);
|
|
enciv_words = 4;
|
|
} else {
|
|
return -EINVAL;
|
|
}
|
|
|
|
qce_write_array(qce, REG_ENCR_KEY0, (u32 *)enckey, enckey_words);
|
|
|
|
if (!IS_ECB(flags)) {
|
|
if (IS_XTS(flags))
|
|
qce_xts_swapiv(enciv, rctx->iv, ivsize);
|
|
else
|
|
qce_cpu_to_be32p_array(enciv, rctx->iv, ivsize);
|
|
|
|
qce_write_array(qce, REG_CNTR0_IV0, (u32 *)enciv, enciv_words);
|
|
}
|
|
|
|
if (IS_ENCRYPT(flags))
|
|
encr_cfg |= BIT(ENCODE_SHIFT);
|
|
|
|
qce_write(qce, REG_ENCR_SEG_CFG, encr_cfg);
|
|
qce_write(qce, REG_ENCR_SEG_SIZE, rctx->cryptlen);
|
|
qce_write(qce, REG_ENCR_SEG_START, 0);
|
|
|
|
if (IS_CTR(flags)) {
|
|
qce_write(qce, REG_CNTR_MASK, ~0);
|
|
qce_write(qce, REG_CNTR_MASK0, ~0);
|
|
qce_write(qce, REG_CNTR_MASK1, ~0);
|
|
qce_write(qce, REG_CNTR_MASK2, ~0);
|
|
}
|
|
|
|
qce_write(qce, REG_SEG_SIZE, rctx->cryptlen);
|
|
|
|
/* get little endianness */
|
|
config = qce_config_reg(qce, 1);
|
|
qce_write(qce, REG_CONFIG, config);
|
|
|
|
qce_crypto_go(qce, true);
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
int qce_start(struct crypto_async_request *async_req, u32 type)
|
|
{
|
|
switch (type) {
|
|
#ifdef CONFIG_CRYPTO_DEV_QCE_SKCIPHER
|
|
case CRYPTO_ALG_TYPE_SKCIPHER:
|
|
return qce_setup_regs_skcipher(async_req);
|
|
#endif
|
|
#ifdef CONFIG_CRYPTO_DEV_QCE_SHA
|
|
case CRYPTO_ALG_TYPE_AHASH:
|
|
return qce_setup_regs_ahash(async_req);
|
|
#endif
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
#define STATUS_ERRORS \
|
|
(BIT(SW_ERR_SHIFT) | BIT(AXI_ERR_SHIFT) | BIT(HSD_ERR_SHIFT))
|
|
|
|
int qce_check_status(struct qce_device *qce, u32 *status)
|
|
{
|
|
int ret = 0;
|
|
|
|
*status = qce_read(qce, REG_STATUS);
|
|
|
|
/*
|
|
* Don't use result dump status. The operation may not be complete.
|
|
* Instead, use the status we just read from device. In case, we need to
|
|
* use result_status from result dump the result_status needs to be byte
|
|
* swapped, since we set the device to little endian.
|
|
*/
|
|
if (*status & STATUS_ERRORS || !(*status & BIT(OPERATION_DONE_SHIFT)))
|
|
ret = -ENXIO;
|
|
else if (*status & BIT(MAC_FAILED_SHIFT))
|
|
ret = -EBADMSG;
|
|
|
|
return ret;
|
|
}
|
|
|
|
void qce_get_version(struct qce_device *qce, u32 *major, u32 *minor, u32 *step)
|
|
{
|
|
u32 val;
|
|
|
|
val = qce_read(qce, REG_VERSION);
|
|
*major = (val & CORE_MAJOR_REV_MASK) >> CORE_MAJOR_REV_SHIFT;
|
|
*minor = (val & CORE_MINOR_REV_MASK) >> CORE_MINOR_REV_SHIFT;
|
|
*step = (val & CORE_STEP_REV_MASK) >> CORE_STEP_REV_SHIFT;
|
|
}
|