mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-29 22:14:41 +08:00
89861c485c
ice_rx_offset(), that is supposed to initialize the Rx buffer headroom,
relies on ICE_RX_FLAGS_RING_BUILD_SKB flag as well as XDP prog presence.
Currently, the callsite of mentioned function is placed incorrectly
within ice_setup_rx_ring() where Rx ring's build skb flag is not
set yet. This causes the XDP_REDIRECT to be partially broken due to
inability to create xdp_frame in the headroom space, as the headroom is
0.
Fix this by moving ice_rx_offset() to ice_setup_rx_ctx() after the flag
setting.
Fixes: f1b1f409bf
("ice: store the result of ice_rx_offset() onto ice_ring")
Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com>
Tested-by: Kiran Bhandare <kiranx.bhandare@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
896 lines
25 KiB
C
896 lines
25 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* Copyright (c) 2019, Intel Corporation. */
|
|
|
|
#include <net/xdp_sock_drv.h>
|
|
#include "ice_base.h"
|
|
#include "ice_lib.h"
|
|
#include "ice_dcb_lib.h"
|
|
|
|
/**
|
|
* __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
|
|
* @qs_cfg: gathered variables needed for PF->VSI queues assignment
|
|
*
|
|
* Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
|
|
*/
|
|
static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
|
|
{
|
|
unsigned int offset, i;
|
|
|
|
mutex_lock(qs_cfg->qs_mutex);
|
|
offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
|
|
0, qs_cfg->q_count, 0);
|
|
if (offset >= qs_cfg->pf_map_size) {
|
|
mutex_unlock(qs_cfg->qs_mutex);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
|
|
for (i = 0; i < qs_cfg->q_count; i++)
|
|
qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset);
|
|
mutex_unlock(qs_cfg->qs_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
|
|
* @qs_cfg: gathered variables needed for pf->vsi queues assignment
|
|
*
|
|
* Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
|
|
*/
|
|
static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
|
|
{
|
|
unsigned int i, index = 0;
|
|
|
|
mutex_lock(qs_cfg->qs_mutex);
|
|
for (i = 0; i < qs_cfg->q_count; i++) {
|
|
index = find_next_zero_bit(qs_cfg->pf_map,
|
|
qs_cfg->pf_map_size, index);
|
|
if (index >= qs_cfg->pf_map_size)
|
|
goto err_scatter;
|
|
set_bit(index, qs_cfg->pf_map);
|
|
qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index;
|
|
}
|
|
mutex_unlock(qs_cfg->qs_mutex);
|
|
|
|
return 0;
|
|
err_scatter:
|
|
for (index = 0; index < i; index++) {
|
|
clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
|
|
qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
|
|
}
|
|
mutex_unlock(qs_cfg->qs_mutex);
|
|
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/**
|
|
* ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
|
|
* @pf: the PF being configured
|
|
* @pf_q: the PF queue
|
|
* @ena: enable or disable state of the queue
|
|
*
|
|
* This routine will wait for the given Rx queue of the PF to reach the
|
|
* enabled or disabled state.
|
|
* Returns -ETIMEDOUT in case of failing to reach the requested state after
|
|
* multiple retries; else will return 0 in case of success.
|
|
*/
|
|
static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
|
|
if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
|
|
QRX_CTRL_QENA_STAT_M))
|
|
return 0;
|
|
|
|
usleep_range(20, 40);
|
|
}
|
|
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
/**
|
|
* ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
|
|
* @vsi: the VSI being configured
|
|
* @v_idx: index of the vector in the VSI struct
|
|
*
|
|
* We allocate one q_vector and set default value for ITR setting associated
|
|
* with this q_vector. If allocation fails we return -ENOMEM.
|
|
*/
|
|
static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx)
|
|
{
|
|
struct ice_pf *pf = vsi->back;
|
|
struct ice_q_vector *q_vector;
|
|
|
|
/* allocate q_vector */
|
|
q_vector = devm_kzalloc(ice_pf_to_dev(pf), sizeof(*q_vector),
|
|
GFP_KERNEL);
|
|
if (!q_vector)
|
|
return -ENOMEM;
|
|
|
|
q_vector->vsi = vsi;
|
|
q_vector->v_idx = v_idx;
|
|
q_vector->tx.itr_setting = ICE_DFLT_TX_ITR;
|
|
q_vector->rx.itr_setting = ICE_DFLT_RX_ITR;
|
|
if (vsi->type == ICE_VSI_VF)
|
|
goto out;
|
|
/* only set affinity_mask if the CPU is online */
|
|
if (cpu_online(v_idx))
|
|
cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
|
|
|
|
/* This will not be called in the driver load path because the netdev
|
|
* will not be created yet. All other cases with register the NAPI
|
|
* handler here (i.e. resume, reset/rebuild, etc.)
|
|
*/
|
|
if (vsi->netdev)
|
|
netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll,
|
|
NAPI_POLL_WEIGHT);
|
|
|
|
out:
|
|
/* tie q_vector and VSI together */
|
|
vsi->q_vectors[v_idx] = q_vector;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_free_q_vector - Free memory allocated for a specific interrupt vector
|
|
* @vsi: VSI having the memory freed
|
|
* @v_idx: index of the vector to be freed
|
|
*/
|
|
static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
|
|
{
|
|
struct ice_q_vector *q_vector;
|
|
struct ice_pf *pf = vsi->back;
|
|
struct ice_ring *ring;
|
|
struct device *dev;
|
|
|
|
dev = ice_pf_to_dev(pf);
|
|
if (!vsi->q_vectors[v_idx]) {
|
|
dev_dbg(dev, "Queue vector at index %d not found\n", v_idx);
|
|
return;
|
|
}
|
|
q_vector = vsi->q_vectors[v_idx];
|
|
|
|
ice_for_each_ring(ring, q_vector->tx)
|
|
ring->q_vector = NULL;
|
|
ice_for_each_ring(ring, q_vector->rx)
|
|
ring->q_vector = NULL;
|
|
|
|
/* only VSI with an associated netdev is set up with NAPI */
|
|
if (vsi->netdev)
|
|
netif_napi_del(&q_vector->napi);
|
|
|
|
devm_kfree(dev, q_vector);
|
|
vsi->q_vectors[v_idx] = NULL;
|
|
}
|
|
|
|
/**
|
|
* ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
|
|
* @hw: board specific structure
|
|
*/
|
|
static void ice_cfg_itr_gran(struct ice_hw *hw)
|
|
{
|
|
u32 regval = rd32(hw, GLINT_CTL);
|
|
|
|
/* no need to update global register if ITR gran is already set */
|
|
if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
|
|
(((regval & GLINT_CTL_ITR_GRAN_200_M) >>
|
|
GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) &&
|
|
(((regval & GLINT_CTL_ITR_GRAN_100_M) >>
|
|
GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) &&
|
|
(((regval & GLINT_CTL_ITR_GRAN_50_M) >>
|
|
GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) &&
|
|
(((regval & GLINT_CTL_ITR_GRAN_25_M) >>
|
|
GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US))
|
|
return;
|
|
|
|
regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) &
|
|
GLINT_CTL_ITR_GRAN_200_M) |
|
|
((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) &
|
|
GLINT_CTL_ITR_GRAN_100_M) |
|
|
((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) &
|
|
GLINT_CTL_ITR_GRAN_50_M) |
|
|
((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) &
|
|
GLINT_CTL_ITR_GRAN_25_M);
|
|
wr32(hw, GLINT_CTL, regval);
|
|
}
|
|
|
|
/**
|
|
* ice_calc_q_handle - calculate the queue handle
|
|
* @vsi: VSI that ring belongs to
|
|
* @ring: ring to get the absolute queue index
|
|
* @tc: traffic class number
|
|
*/
|
|
static u16 ice_calc_q_handle(struct ice_vsi *vsi, struct ice_ring *ring, u8 tc)
|
|
{
|
|
WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n");
|
|
|
|
/* Idea here for calculation is that we subtract the number of queue
|
|
* count from TC that ring belongs to from it's absolute queue index
|
|
* and as a result we get the queue's index within TC.
|
|
*/
|
|
return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset;
|
|
}
|
|
|
|
/**
|
|
* ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
|
|
* @ring: The Tx ring to configure
|
|
* @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
|
|
* @pf_q: queue index in the PF space
|
|
*
|
|
* Configure the Tx descriptor ring in TLAN context.
|
|
*/
|
|
static void
|
|
ice_setup_tx_ctx(struct ice_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
|
|
{
|
|
struct ice_vsi *vsi = ring->vsi;
|
|
struct ice_hw *hw = &vsi->back->hw;
|
|
|
|
tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
|
|
|
|
tlan_ctx->port_num = vsi->port_info->lport;
|
|
|
|
/* Transmit Queue Length */
|
|
tlan_ctx->qlen = ring->count;
|
|
|
|
ice_set_cgd_num(tlan_ctx, ring);
|
|
|
|
/* PF number */
|
|
tlan_ctx->pf_num = hw->pf_id;
|
|
|
|
/* queue belongs to a specific VSI type
|
|
* VF / VM index should be programmed per vmvf_type setting:
|
|
* for vmvf_type = VF, it is VF number between 0-256
|
|
* for vmvf_type = VM, it is VM number between 0-767
|
|
* for PF or EMP this field should be set to zero
|
|
*/
|
|
switch (vsi->type) {
|
|
case ICE_VSI_LB:
|
|
case ICE_VSI_CTRL:
|
|
case ICE_VSI_PF:
|
|
tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
|
|
break;
|
|
case ICE_VSI_VF:
|
|
/* Firmware expects vmvf_num to be absolute VF ID */
|
|
tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf_id;
|
|
tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
/* make sure the context is associated with the right VSI */
|
|
tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
|
|
|
|
tlan_ctx->tso_ena = ICE_TX_LEGACY;
|
|
tlan_ctx->tso_qnum = pf_q;
|
|
|
|
/* Legacy or Advanced Host Interface:
|
|
* 0: Advanced Host Interface
|
|
* 1: Legacy Host Interface
|
|
*/
|
|
tlan_ctx->legacy_int = ICE_TX_LEGACY;
|
|
}
|
|
|
|
/**
|
|
* ice_rx_offset - Return expected offset into page to access data
|
|
* @rx_ring: Ring we are requesting offset of
|
|
*
|
|
* Returns the offset value for ring into the data buffer.
|
|
*/
|
|
static unsigned int ice_rx_offset(struct ice_ring *rx_ring)
|
|
{
|
|
if (ice_ring_uses_build_skb(rx_ring))
|
|
return ICE_SKB_PAD;
|
|
else if (ice_is_xdp_ena_vsi(rx_ring->vsi))
|
|
return XDP_PACKET_HEADROOM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_setup_rx_ctx - Configure a receive ring context
|
|
* @ring: The Rx ring to configure
|
|
*
|
|
* Configure the Rx descriptor ring in RLAN context.
|
|
*/
|
|
int ice_setup_rx_ctx(struct ice_ring *ring)
|
|
{
|
|
struct device *dev = ice_pf_to_dev(ring->vsi->back);
|
|
int chain_len = ICE_MAX_CHAINED_RX_BUFS;
|
|
u16 num_bufs = ICE_DESC_UNUSED(ring);
|
|
struct ice_vsi *vsi = ring->vsi;
|
|
u32 rxdid = ICE_RXDID_FLEX_NIC;
|
|
struct ice_rlan_ctx rlan_ctx;
|
|
struct ice_hw *hw;
|
|
u16 pf_q;
|
|
int err;
|
|
|
|
hw = &vsi->back->hw;
|
|
|
|
/* what is Rx queue number in global space of 2K Rx queues */
|
|
pf_q = vsi->rxq_map[ring->q_index];
|
|
|
|
/* clear the context structure first */
|
|
memset(&rlan_ctx, 0, sizeof(rlan_ctx));
|
|
|
|
ring->rx_buf_len = vsi->rx_buf_len;
|
|
|
|
if (ring->vsi->type == ICE_VSI_PF) {
|
|
if (!xdp_rxq_info_is_reg(&ring->xdp_rxq))
|
|
/* coverity[check_return] */
|
|
xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
|
|
ring->q_index, ring->q_vector->napi.napi_id);
|
|
|
|
ring->xsk_pool = ice_xsk_pool(ring);
|
|
if (ring->xsk_pool) {
|
|
xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
|
|
|
|
ring->rx_buf_len =
|
|
xsk_pool_get_rx_frame_size(ring->xsk_pool);
|
|
/* For AF_XDP ZC, we disallow packets to span on
|
|
* multiple buffers, thus letting us skip that
|
|
* handling in the fast-path.
|
|
*/
|
|
chain_len = 1;
|
|
err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
|
|
MEM_TYPE_XSK_BUFF_POOL,
|
|
NULL);
|
|
if (err)
|
|
return err;
|
|
xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
|
|
|
|
dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n",
|
|
ring->q_index);
|
|
} else {
|
|
if (!xdp_rxq_info_is_reg(&ring->xdp_rxq))
|
|
/* coverity[check_return] */
|
|
xdp_rxq_info_reg(&ring->xdp_rxq,
|
|
ring->netdev,
|
|
ring->q_index, ring->q_vector->napi.napi_id);
|
|
|
|
err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
|
|
MEM_TYPE_PAGE_SHARED,
|
|
NULL);
|
|
if (err)
|
|
return err;
|
|
}
|
|
}
|
|
/* Receive Queue Base Address.
|
|
* Indicates the starting address of the descriptor queue defined in
|
|
* 128 Byte units.
|
|
*/
|
|
rlan_ctx.base = ring->dma >> 7;
|
|
|
|
rlan_ctx.qlen = ring->count;
|
|
|
|
/* Receive Packet Data Buffer Size.
|
|
* The Packet Data Buffer Size is defined in 128 byte units.
|
|
*/
|
|
rlan_ctx.dbuf = ring->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
|
|
|
|
/* use 32 byte descriptors */
|
|
rlan_ctx.dsize = 1;
|
|
|
|
/* Strip the Ethernet CRC bytes before the packet is posted to host
|
|
* memory.
|
|
*/
|
|
rlan_ctx.crcstrip = 1;
|
|
|
|
/* L2TSEL flag defines the reported L2 Tags in the receive descriptor */
|
|
rlan_ctx.l2tsel = 1;
|
|
|
|
rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
|
|
rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
|
|
rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
|
|
|
|
/* This controls whether VLAN is stripped from inner headers
|
|
* The VLAN in the inner L2 header is stripped to the receive
|
|
* descriptor if enabled by this flag.
|
|
*/
|
|
rlan_ctx.showiv = 0;
|
|
|
|
/* Max packet size for this queue - must not be set to a larger value
|
|
* than 5 x DBUF
|
|
*/
|
|
rlan_ctx.rxmax = min_t(u32, vsi->max_frame,
|
|
chain_len * ring->rx_buf_len);
|
|
|
|
/* Rx queue threshold in units of 64 */
|
|
rlan_ctx.lrxqthresh = 1;
|
|
|
|
/* Enable Flexible Descriptors in the queue context which
|
|
* allows this driver to select a specific receive descriptor format
|
|
* increasing context priority to pick up profile ID; default is 0x01;
|
|
* setting to 0x03 to ensure profile is programming if prev context is
|
|
* of same priority
|
|
*/
|
|
if (vsi->type != ICE_VSI_VF)
|
|
ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3);
|
|
else
|
|
ice_write_qrxflxp_cntxt(hw, pf_q, ICE_RXDID_LEGACY_1, 0x3);
|
|
|
|
/* Absolute queue number out of 2K needs to be passed */
|
|
err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
|
|
if (err) {
|
|
dev_err(dev, "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
|
|
pf_q, err);
|
|
return -EIO;
|
|
}
|
|
|
|
if (vsi->type == ICE_VSI_VF)
|
|
return 0;
|
|
|
|
/* configure Rx buffer alignment */
|
|
if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
|
|
ice_clear_ring_build_skb_ena(ring);
|
|
else
|
|
ice_set_ring_build_skb_ena(ring);
|
|
|
|
ring->rx_offset = ice_rx_offset(ring);
|
|
|
|
/* init queue specific tail register */
|
|
ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
|
|
writel(0, ring->tail);
|
|
|
|
if (ring->xsk_pool) {
|
|
bool ok;
|
|
|
|
if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) {
|
|
dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n",
|
|
num_bufs, ring->q_index);
|
|
dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
ok = ice_alloc_rx_bufs_zc(ring, num_bufs);
|
|
if (!ok)
|
|
dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n",
|
|
ring->q_index, pf_q);
|
|
return 0;
|
|
}
|
|
|
|
ice_alloc_rx_bufs(ring, num_bufs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
|
|
* @qs_cfg: gathered variables needed for pf->vsi queues assignment
|
|
*
|
|
* This function first tries to find contiguous space. If it is not successful,
|
|
* it tries with the scatter approach.
|
|
*
|
|
* Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
|
|
*/
|
|
int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
|
|
{
|
|
int ret = 0;
|
|
|
|
ret = __ice_vsi_get_qs_contig(qs_cfg);
|
|
if (ret) {
|
|
/* contig failed, so try with scatter approach */
|
|
qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
|
|
qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count,
|
|
qs_cfg->scatter_count);
|
|
ret = __ice_vsi_get_qs_sc(qs_cfg);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait
|
|
* @vsi: the VSI being configured
|
|
* @ena: start or stop the Rx ring
|
|
* @rxq_idx: 0-based Rx queue index for the VSI passed in
|
|
* @wait: wait or don't wait for configuration to finish in hardware
|
|
*
|
|
* Return 0 on success and negative on error.
|
|
*/
|
|
int
|
|
ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait)
|
|
{
|
|
int pf_q = vsi->rxq_map[rxq_idx];
|
|
struct ice_pf *pf = vsi->back;
|
|
struct ice_hw *hw = &pf->hw;
|
|
u32 rx_reg;
|
|
|
|
rx_reg = rd32(hw, QRX_CTRL(pf_q));
|
|
|
|
/* Skip if the queue is already in the requested state */
|
|
if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
|
|
return 0;
|
|
|
|
/* turn on/off the queue */
|
|
if (ena)
|
|
rx_reg |= QRX_CTRL_QENA_REQ_M;
|
|
else
|
|
rx_reg &= ~QRX_CTRL_QENA_REQ_M;
|
|
wr32(hw, QRX_CTRL(pf_q), rx_reg);
|
|
|
|
if (!wait)
|
|
return 0;
|
|
|
|
ice_flush(hw);
|
|
return ice_pf_rxq_wait(pf, pf_q, ena);
|
|
}
|
|
|
|
/**
|
|
* ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started
|
|
* @vsi: the VSI being configured
|
|
* @ena: true/false to verify Rx ring has been enabled/disabled respectively
|
|
* @rxq_idx: 0-based Rx queue index for the VSI passed in
|
|
*
|
|
* This routine will wait for the given Rx queue of the VSI to reach the
|
|
* enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach
|
|
* the requested state after multiple retries; else will return 0 in case of
|
|
* success.
|
|
*/
|
|
int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
|
|
{
|
|
int pf_q = vsi->rxq_map[rxq_idx];
|
|
struct ice_pf *pf = vsi->back;
|
|
|
|
return ice_pf_rxq_wait(pf, pf_q, ena);
|
|
}
|
|
|
|
/**
|
|
* ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
|
|
* @vsi: the VSI being configured
|
|
*
|
|
* We allocate one q_vector per queue interrupt. If allocation fails we
|
|
* return -ENOMEM.
|
|
*/
|
|
int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
|
|
{
|
|
struct device *dev = ice_pf_to_dev(vsi->back);
|
|
u16 v_idx;
|
|
int err;
|
|
|
|
if (vsi->q_vectors[0]) {
|
|
dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num);
|
|
return -EEXIST;
|
|
}
|
|
|
|
for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) {
|
|
err = ice_vsi_alloc_q_vector(vsi, v_idx);
|
|
if (err)
|
|
goto err_out;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_out:
|
|
while (v_idx--)
|
|
ice_free_q_vector(vsi, v_idx);
|
|
|
|
dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n",
|
|
vsi->num_q_vectors, vsi->vsi_num, err);
|
|
vsi->num_q_vectors = 0;
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
|
|
* @vsi: the VSI being configured
|
|
*
|
|
* This function maps descriptor rings to the queue-specific vectors allotted
|
|
* through the MSI-X enabling code. On a constrained vector budget, we map Tx
|
|
* and Rx rings to the vector as "efficiently" as possible.
|
|
*/
|
|
void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
|
|
{
|
|
int q_vectors = vsi->num_q_vectors;
|
|
u16 tx_rings_rem, rx_rings_rem;
|
|
int v_id;
|
|
|
|
/* initially assigning remaining rings count to VSIs num queue value */
|
|
tx_rings_rem = vsi->num_txq;
|
|
rx_rings_rem = vsi->num_rxq;
|
|
|
|
for (v_id = 0; v_id < q_vectors; v_id++) {
|
|
struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
|
|
u8 tx_rings_per_v, rx_rings_per_v;
|
|
u16 q_id, q_base;
|
|
|
|
/* Tx rings mapping to vector */
|
|
tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem,
|
|
q_vectors - v_id);
|
|
q_vector->num_ring_tx = tx_rings_per_v;
|
|
q_vector->tx.ring = NULL;
|
|
q_vector->tx.itr_idx = ICE_TX_ITR;
|
|
q_base = vsi->num_txq - tx_rings_rem;
|
|
|
|
for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
|
|
struct ice_ring *tx_ring = vsi->tx_rings[q_id];
|
|
|
|
tx_ring->q_vector = q_vector;
|
|
tx_ring->next = q_vector->tx.ring;
|
|
q_vector->tx.ring = tx_ring;
|
|
}
|
|
tx_rings_rem -= tx_rings_per_v;
|
|
|
|
/* Rx rings mapping to vector */
|
|
rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem,
|
|
q_vectors - v_id);
|
|
q_vector->num_ring_rx = rx_rings_per_v;
|
|
q_vector->rx.ring = NULL;
|
|
q_vector->rx.itr_idx = ICE_RX_ITR;
|
|
q_base = vsi->num_rxq - rx_rings_rem;
|
|
|
|
for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
|
|
struct ice_ring *rx_ring = vsi->rx_rings[q_id];
|
|
|
|
rx_ring->q_vector = q_vector;
|
|
rx_ring->next = q_vector->rx.ring;
|
|
q_vector->rx.ring = rx_ring;
|
|
}
|
|
rx_rings_rem -= rx_rings_per_v;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
|
|
* @vsi: the VSI having memory freed
|
|
*/
|
|
void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
|
|
{
|
|
int v_idx;
|
|
|
|
ice_for_each_q_vector(vsi, v_idx)
|
|
ice_free_q_vector(vsi, v_idx);
|
|
}
|
|
|
|
/**
|
|
* ice_vsi_cfg_txq - Configure single Tx queue
|
|
* @vsi: the VSI that queue belongs to
|
|
* @ring: Tx ring to be configured
|
|
* @qg_buf: queue group buffer
|
|
*/
|
|
int
|
|
ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_ring *ring,
|
|
struct ice_aqc_add_tx_qgrp *qg_buf)
|
|
{
|
|
u8 buf_len = struct_size(qg_buf, txqs, 1);
|
|
struct ice_tlan_ctx tlan_ctx = { 0 };
|
|
struct ice_aqc_add_txqs_perq *txq;
|
|
struct ice_pf *pf = vsi->back;
|
|
struct ice_hw *hw = &pf->hw;
|
|
enum ice_status status;
|
|
u16 pf_q;
|
|
u8 tc;
|
|
|
|
pf_q = ring->reg_idx;
|
|
ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
|
|
/* copy context contents into the qg_buf */
|
|
qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
|
|
ice_set_ctx(hw, (u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
|
|
ice_tlan_ctx_info);
|
|
|
|
/* init queue specific tail reg. It is referred as
|
|
* transmit comm scheduler queue doorbell.
|
|
*/
|
|
ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q);
|
|
|
|
if (IS_ENABLED(CONFIG_DCB))
|
|
tc = ring->dcb_tc;
|
|
else
|
|
tc = 0;
|
|
|
|
/* Add unique software queue handle of the Tx queue per
|
|
* TC into the VSI Tx ring
|
|
*/
|
|
ring->q_handle = ice_calc_q_handle(vsi, ring, tc);
|
|
|
|
status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, ring->q_handle,
|
|
1, qg_buf, buf_len, NULL);
|
|
if (status) {
|
|
dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %s\n",
|
|
ice_stat_str(status));
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Add Tx Queue TEID into the VSI Tx ring from the
|
|
* response. This will complete configuring and
|
|
* enabling the queue.
|
|
*/
|
|
txq = &qg_buf->txqs[0];
|
|
if (pf_q == le16_to_cpu(txq->txq_id))
|
|
ring->txq_teid = le32_to_cpu(txq->q_teid);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_cfg_itr - configure the initial interrupt throttle values
|
|
* @hw: pointer to the HW structure
|
|
* @q_vector: interrupt vector that's being configured
|
|
*
|
|
* Configure interrupt throttling values for the ring containers that are
|
|
* associated with the interrupt vector passed in.
|
|
*/
|
|
void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
|
|
{
|
|
ice_cfg_itr_gran(hw);
|
|
|
|
if (q_vector->num_ring_rx) {
|
|
struct ice_ring_container *rc = &q_vector->rx;
|
|
|
|
rc->target_itr = ITR_TO_REG(rc->itr_setting);
|
|
rc->next_update = jiffies + 1;
|
|
rc->current_itr = rc->target_itr;
|
|
wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
|
|
ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
|
|
}
|
|
|
|
if (q_vector->num_ring_tx) {
|
|
struct ice_ring_container *rc = &q_vector->tx;
|
|
|
|
rc->target_itr = ITR_TO_REG(rc->itr_setting);
|
|
rc->next_update = jiffies + 1;
|
|
rc->current_itr = rc->target_itr;
|
|
wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
|
|
ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_cfg_txq_interrupt - configure interrupt on Tx queue
|
|
* @vsi: the VSI being configured
|
|
* @txq: Tx queue being mapped to MSI-X vector
|
|
* @msix_idx: MSI-X vector index within the function
|
|
* @itr_idx: ITR index of the interrupt cause
|
|
*
|
|
* Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
|
|
* within the function space.
|
|
*/
|
|
void
|
|
ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
|
|
{
|
|
struct ice_pf *pf = vsi->back;
|
|
struct ice_hw *hw = &pf->hw;
|
|
u32 val;
|
|
|
|
itr_idx = (itr_idx << QINT_TQCTL_ITR_INDX_S) & QINT_TQCTL_ITR_INDX_M;
|
|
|
|
val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
|
|
((msix_idx << QINT_TQCTL_MSIX_INDX_S) & QINT_TQCTL_MSIX_INDX_M);
|
|
|
|
wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
|
|
if (ice_is_xdp_ena_vsi(vsi)) {
|
|
u32 xdp_txq = txq + vsi->num_xdp_txq;
|
|
|
|
wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]),
|
|
val);
|
|
}
|
|
ice_flush(hw);
|
|
}
|
|
|
|
/**
|
|
* ice_cfg_rxq_interrupt - configure interrupt on Rx queue
|
|
* @vsi: the VSI being configured
|
|
* @rxq: Rx queue being mapped to MSI-X vector
|
|
* @msix_idx: MSI-X vector index within the function
|
|
* @itr_idx: ITR index of the interrupt cause
|
|
*
|
|
* Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
|
|
* within the function space.
|
|
*/
|
|
void
|
|
ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
|
|
{
|
|
struct ice_pf *pf = vsi->back;
|
|
struct ice_hw *hw = &pf->hw;
|
|
u32 val;
|
|
|
|
itr_idx = (itr_idx << QINT_RQCTL_ITR_INDX_S) & QINT_RQCTL_ITR_INDX_M;
|
|
|
|
val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
|
|
((msix_idx << QINT_RQCTL_MSIX_INDX_S) & QINT_RQCTL_MSIX_INDX_M);
|
|
|
|
wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
|
|
|
|
ice_flush(hw);
|
|
}
|
|
|
|
/**
|
|
* ice_trigger_sw_intr - trigger a software interrupt
|
|
* @hw: pointer to the HW structure
|
|
* @q_vector: interrupt vector to trigger the software interrupt for
|
|
*/
|
|
void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector)
|
|
{
|
|
wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
|
|
(ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
|
|
GLINT_DYN_CTL_SWINT_TRIG_M |
|
|
GLINT_DYN_CTL_INTENA_M);
|
|
}
|
|
|
|
/**
|
|
* ice_vsi_stop_tx_ring - Disable single Tx ring
|
|
* @vsi: the VSI being configured
|
|
* @rst_src: reset source
|
|
* @rel_vmvf_num: Relative ID of VF/VM
|
|
* @ring: Tx ring to be stopped
|
|
* @txq_meta: Meta data of Tx ring to be stopped
|
|
*/
|
|
int
|
|
ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
|
|
u16 rel_vmvf_num, struct ice_ring *ring,
|
|
struct ice_txq_meta *txq_meta)
|
|
{
|
|
struct ice_pf *pf = vsi->back;
|
|
struct ice_q_vector *q_vector;
|
|
struct ice_hw *hw = &pf->hw;
|
|
enum ice_status status;
|
|
u32 val;
|
|
|
|
/* clear cause_ena bit for disabled queues */
|
|
val = rd32(hw, QINT_TQCTL(ring->reg_idx));
|
|
val &= ~QINT_TQCTL_CAUSE_ENA_M;
|
|
wr32(hw, QINT_TQCTL(ring->reg_idx), val);
|
|
|
|
/* software is expected to wait for 100 ns */
|
|
ndelay(100);
|
|
|
|
/* trigger a software interrupt for the vector
|
|
* associated to the queue to schedule NAPI handler
|
|
*/
|
|
q_vector = ring->q_vector;
|
|
if (q_vector)
|
|
ice_trigger_sw_intr(hw, q_vector);
|
|
|
|
status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
|
|
txq_meta->tc, 1, &txq_meta->q_handle,
|
|
&txq_meta->q_id, &txq_meta->q_teid, rst_src,
|
|
rel_vmvf_num, NULL);
|
|
|
|
/* if the disable queue command was exercised during an
|
|
* active reset flow, ICE_ERR_RESET_ONGOING is returned.
|
|
* This is not an error as the reset operation disables
|
|
* queues at the hardware level anyway.
|
|
*/
|
|
if (status == ICE_ERR_RESET_ONGOING) {
|
|
dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n");
|
|
} else if (status == ICE_ERR_DOES_NOT_EXIST) {
|
|
dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n");
|
|
} else if (status) {
|
|
dev_err(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %s\n",
|
|
ice_stat_str(status));
|
|
return -ENODEV;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_fill_txq_meta - Prepare the Tx queue's meta data
|
|
* @vsi: VSI that ring belongs to
|
|
* @ring: ring that txq_meta will be based on
|
|
* @txq_meta: a helper struct that wraps Tx queue's information
|
|
*
|
|
* Set up a helper struct that will contain all the necessary fields that
|
|
* are needed for stopping Tx queue
|
|
*/
|
|
void
|
|
ice_fill_txq_meta(struct ice_vsi *vsi, struct ice_ring *ring,
|
|
struct ice_txq_meta *txq_meta)
|
|
{
|
|
u8 tc;
|
|
|
|
if (IS_ENABLED(CONFIG_DCB))
|
|
tc = ring->dcb_tc;
|
|
else
|
|
tc = 0;
|
|
|
|
txq_meta->q_id = ring->reg_idx;
|
|
txq_meta->q_teid = ring->txq_teid;
|
|
txq_meta->q_handle = ring->q_handle;
|
|
txq_meta->vsi_idx = vsi->idx;
|
|
txq_meta->tc = tc;
|
|
}
|