linux/fs/bcachefs/buckets.c
Kent Overstreet 9620c3ec2f bcachefs: Add a mempool for the replicas delta list
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2023-10-22 17:08:54 -04:00

2425 lines
60 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Code for manipulating bucket marks for garbage collection.
*
* Copyright 2014 Datera, Inc.
*
* Bucket states:
* - free bucket: mark == 0
* The bucket contains no data and will not be read
*
* - allocator bucket: owned_by_allocator == 1
* The bucket is on a free list, or it is an open bucket
*
* - cached bucket: owned_by_allocator == 0 &&
* dirty_sectors == 0 &&
* cached_sectors > 0
* The bucket contains data but may be safely discarded as there are
* enough replicas of the data on other cache devices, or it has been
* written back to the backing device
*
* - dirty bucket: owned_by_allocator == 0 &&
* dirty_sectors > 0
* The bucket contains data that we must not discard (either only copy,
* or one of the 'main copies' for data requiring multiple replicas)
*
* - metadata bucket: owned_by_allocator == 0 && is_metadata == 1
* This is a btree node, journal or gen/prio bucket
*
* Lifecycle:
*
* bucket invalidated => bucket on freelist => open bucket =>
* [dirty bucket =>] cached bucket => bucket invalidated => ...
*
* Note that cache promotion can skip the dirty bucket step, as data
* is copied from a deeper tier to a shallower tier, onto a cached
* bucket.
* Note also that a cached bucket can spontaneously become dirty --
* see below.
*
* Only a traversal of the key space can determine whether a bucket is
* truly dirty or cached.
*
* Transitions:
*
* - free => allocator: bucket was invalidated
* - cached => allocator: bucket was invalidated
*
* - allocator => dirty: open bucket was filled up
* - allocator => cached: open bucket was filled up
* - allocator => metadata: metadata was allocated
*
* - dirty => cached: dirty sectors were copied to a deeper tier
* - dirty => free: dirty sectors were overwritten or moved (copy gc)
* - cached => free: cached sectors were overwritten
*
* - metadata => free: metadata was freed
*
* Oddities:
* - cached => dirty: a device was removed so formerly replicated data
* is no longer sufficiently replicated
* - free => cached: cannot happen
* - free => dirty: cannot happen
* - free => metadata: cannot happen
*/
#include "bcachefs.h"
#include "alloc_background.h"
#include "bset.h"
#include "btree_gc.h"
#include "btree_update.h"
#include "buckets.h"
#include "ec.h"
#include "error.h"
#include "movinggc.h"
#include "replicas.h"
#include "trace.h"
#include <linux/preempt.h>
static inline void fs_usage_data_type_to_base(struct bch_fs_usage *fs_usage,
enum bch_data_type data_type,
s64 sectors)
{
switch (data_type) {
case BCH_DATA_btree:
fs_usage->btree += sectors;
break;
case BCH_DATA_user:
case BCH_DATA_parity:
fs_usage->data += sectors;
break;
case BCH_DATA_cached:
fs_usage->cached += sectors;
break;
default:
break;
}
}
/*
* Clear journal_seq_valid for buckets for which it's not needed, to prevent
* wraparound:
*/
void bch2_bucket_seq_cleanup(struct bch_fs *c)
{
u64 journal_seq = atomic64_read(&c->journal.seq);
u16 last_seq_ondisk = c->journal.last_seq_ondisk;
struct bch_dev *ca;
struct bucket_array *buckets;
struct bucket *g;
struct bucket_mark m;
unsigned i;
if (journal_seq - c->last_bucket_seq_cleanup <
(1U << (BUCKET_JOURNAL_SEQ_BITS - 2)))
return;
c->last_bucket_seq_cleanup = journal_seq;
for_each_member_device(ca, c, i) {
down_read(&ca->bucket_lock);
buckets = bucket_array(ca);
for_each_bucket(g, buckets) {
bucket_cmpxchg(g, m, ({
if (!m.journal_seq_valid ||
bucket_needs_journal_commit(m, last_seq_ondisk))
break;
m.journal_seq_valid = 0;
}));
}
up_read(&ca->bucket_lock);
}
}
void bch2_fs_usage_initialize(struct bch_fs *c)
{
struct bch_fs_usage *usage;
struct bch_dev *ca;
unsigned i;
percpu_down_write(&c->mark_lock);
usage = c->usage_base;
for (i = 0; i < ARRAY_SIZE(c->usage); i++)
bch2_fs_usage_acc_to_base(c, i);
for (i = 0; i < BCH_REPLICAS_MAX; i++)
usage->reserved += usage->persistent_reserved[i];
for (i = 0; i < c->replicas.nr; i++) {
struct bch_replicas_entry *e =
cpu_replicas_entry(&c->replicas, i);
fs_usage_data_type_to_base(usage, e->data_type, usage->replicas[i]);
}
for_each_member_device(ca, c, i) {
struct bch_dev_usage dev = bch2_dev_usage_read(ca);
usage->hidden += (dev.d[BCH_DATA_sb].buckets +
dev.d[BCH_DATA_journal].buckets) *
ca->mi.bucket_size;
}
percpu_up_write(&c->mark_lock);
}
void bch2_fs_usage_scratch_put(struct bch_fs *c, struct bch_fs_usage_online *fs_usage)
{
if (fs_usage == c->usage_scratch)
mutex_unlock(&c->usage_scratch_lock);
else
kfree(fs_usage);
}
struct bch_fs_usage_online *bch2_fs_usage_scratch_get(struct bch_fs *c)
{
struct bch_fs_usage_online *ret;
unsigned bytes = sizeof(struct bch_fs_usage_online) + sizeof(u64) *
READ_ONCE(c->replicas.nr);
ret = kzalloc(bytes, GFP_NOWAIT|__GFP_NOWARN);
if (ret)
return ret;
if (mutex_trylock(&c->usage_scratch_lock))
goto out_pool;
ret = kzalloc(bytes, GFP_NOFS);
if (ret)
return ret;
mutex_lock(&c->usage_scratch_lock);
out_pool:
ret = c->usage_scratch;
memset(ret, 0, bytes);
return ret;
}
static inline struct bch_dev_usage *dev_usage_ptr(struct bch_dev *ca,
unsigned journal_seq,
bool gc)
{
return this_cpu_ptr(gc
? ca->usage_gc
: ca->usage[journal_seq & JOURNAL_BUF_MASK]);
}
struct bch_dev_usage bch2_dev_usage_read(struct bch_dev *ca)
{
struct bch_fs *c = ca->fs;
struct bch_dev_usage ret;
unsigned seq, i, u64s = dev_usage_u64s();
do {
seq = read_seqcount_begin(&c->usage_lock);
memcpy(&ret, ca->usage_base, u64s * sizeof(u64));
for (i = 0; i < ARRAY_SIZE(ca->usage); i++)
acc_u64s_percpu((u64 *) &ret, (u64 __percpu *) ca->usage[i], u64s);
} while (read_seqcount_retry(&c->usage_lock, seq));
return ret;
}
static inline struct bch_fs_usage *fs_usage_ptr(struct bch_fs *c,
unsigned journal_seq,
bool gc)
{
return this_cpu_ptr(gc
? c->usage_gc
: c->usage[journal_seq & JOURNAL_BUF_MASK]);
}
u64 bch2_fs_usage_read_one(struct bch_fs *c, u64 *v)
{
ssize_t offset = v - (u64 *) c->usage_base;
unsigned i, seq;
u64 ret;
BUG_ON(offset < 0 || offset >= fs_usage_u64s(c));
percpu_rwsem_assert_held(&c->mark_lock);
do {
seq = read_seqcount_begin(&c->usage_lock);
ret = *v;
for (i = 0; i < ARRAY_SIZE(c->usage); i++)
ret += percpu_u64_get((u64 __percpu *) c->usage[i] + offset);
} while (read_seqcount_retry(&c->usage_lock, seq));
return ret;
}
struct bch_fs_usage_online *bch2_fs_usage_read(struct bch_fs *c)
{
struct bch_fs_usage_online *ret;
unsigned seq, i, v, u64s = fs_usage_u64s(c);
retry:
ret = kmalloc(u64s * sizeof(u64), GFP_NOFS);
if (unlikely(!ret))
return NULL;
percpu_down_read(&c->mark_lock);
v = fs_usage_u64s(c);
if (unlikely(u64s != v)) {
u64s = v;
percpu_up_read(&c->mark_lock);
kfree(ret);
goto retry;
}
ret->online_reserved = percpu_u64_get(c->online_reserved);
u64s = fs_usage_u64s(c);
do {
seq = read_seqcount_begin(&c->usage_lock);
memcpy(ret, c->usage_base, u64s * sizeof(u64));
for (i = 0; i < ARRAY_SIZE(c->usage); i++)
acc_u64s_percpu((u64 *) &ret->u, (u64 __percpu *) c->usage[i], u64s);
} while (read_seqcount_retry(&c->usage_lock, seq));
return ret;
}
void bch2_fs_usage_acc_to_base(struct bch_fs *c, unsigned idx)
{
struct bch_dev *ca;
unsigned i, u64s = fs_usage_u64s(c);
BUG_ON(idx >= ARRAY_SIZE(c->usage));
preempt_disable();
write_seqcount_begin(&c->usage_lock);
acc_u64s_percpu((u64 *) c->usage_base,
(u64 __percpu *) c->usage[idx], u64s);
percpu_memset(c->usage[idx], 0, u64s * sizeof(u64));
rcu_read_lock();
for_each_member_device_rcu(ca, c, i, NULL) {
u64s = dev_usage_u64s();
acc_u64s_percpu((u64 *) ca->usage_base,
(u64 __percpu *) ca->usage[idx], u64s);
percpu_memset(ca->usage[idx], 0, u64s * sizeof(u64));
}
rcu_read_unlock();
write_seqcount_end(&c->usage_lock);
preempt_enable();
}
void bch2_fs_usage_to_text(struct printbuf *out,
struct bch_fs *c,
struct bch_fs_usage_online *fs_usage)
{
unsigned i;
pr_buf(out, "capacity:\t\t\t%llu\n", c->capacity);
pr_buf(out, "hidden:\t\t\t\t%llu\n",
fs_usage->u.hidden);
pr_buf(out, "data:\t\t\t\t%llu\n",
fs_usage->u.data);
pr_buf(out, "cached:\t\t\t\t%llu\n",
fs_usage->u.cached);
pr_buf(out, "reserved:\t\t\t%llu\n",
fs_usage->u.reserved);
pr_buf(out, "nr_inodes:\t\t\t%llu\n",
fs_usage->u.nr_inodes);
pr_buf(out, "online reserved:\t\t%llu\n",
fs_usage->online_reserved);
for (i = 0;
i < ARRAY_SIZE(fs_usage->u.persistent_reserved);
i++) {
pr_buf(out, "%u replicas:\n", i + 1);
pr_buf(out, "\treserved:\t\t%llu\n",
fs_usage->u.persistent_reserved[i]);
}
for (i = 0; i < c->replicas.nr; i++) {
struct bch_replicas_entry *e =
cpu_replicas_entry(&c->replicas, i);
pr_buf(out, "\t");
bch2_replicas_entry_to_text(out, e);
pr_buf(out, ":\t%llu\n", fs_usage->u.replicas[i]);
}
}
#define RESERVE_FACTOR 6
static u64 reserve_factor(u64 r)
{
return r + (round_up(r, (1 << RESERVE_FACTOR)) >> RESERVE_FACTOR);
}
static u64 avail_factor(u64 r)
{
return div_u64(r << RESERVE_FACTOR, (1 << RESERVE_FACTOR) + 1);
}
u64 bch2_fs_sectors_used(struct bch_fs *c, struct bch_fs_usage_online *fs_usage)
{
return min(fs_usage->u.hidden +
fs_usage->u.btree +
fs_usage->u.data +
reserve_factor(fs_usage->u.reserved +
fs_usage->online_reserved),
c->capacity);
}
static struct bch_fs_usage_short
__bch2_fs_usage_read_short(struct bch_fs *c)
{
struct bch_fs_usage_short ret;
u64 data, reserved;
ret.capacity = c->capacity -
bch2_fs_usage_read_one(c, &c->usage_base->hidden);
data = bch2_fs_usage_read_one(c, &c->usage_base->data) +
bch2_fs_usage_read_one(c, &c->usage_base->btree);
reserved = bch2_fs_usage_read_one(c, &c->usage_base->reserved) +
percpu_u64_get(c->online_reserved);
ret.used = min(ret.capacity, data + reserve_factor(reserved));
ret.free = ret.capacity - ret.used;
ret.nr_inodes = bch2_fs_usage_read_one(c, &c->usage_base->nr_inodes);
return ret;
}
struct bch_fs_usage_short
bch2_fs_usage_read_short(struct bch_fs *c)
{
struct bch_fs_usage_short ret;
percpu_down_read(&c->mark_lock);
ret = __bch2_fs_usage_read_short(c);
percpu_up_read(&c->mark_lock);
return ret;
}
static inline int is_unavailable_bucket(struct bucket_mark m)
{
return !is_available_bucket(m);
}
static inline int bucket_sectors_fragmented(struct bch_dev *ca,
struct bucket_mark m)
{
return bucket_sectors_used(m)
? max(0, (int) ca->mi.bucket_size - (int) bucket_sectors_used(m))
: 0;
}
static inline int is_stripe_data_bucket(struct bucket_mark m)
{
return m.stripe && m.data_type != BCH_DATA_parity;
}
static inline enum bch_data_type bucket_type(struct bucket_mark m)
{
return m.cached_sectors && !m.dirty_sectors
? BCH_DATA_cached
: m.data_type;
}
static bool bucket_became_unavailable(struct bucket_mark old,
struct bucket_mark new)
{
return is_available_bucket(old) &&
!is_available_bucket(new);
}
int bch2_fs_usage_apply(struct bch_fs *c,
struct bch_fs_usage_online *src,
struct disk_reservation *disk_res,
unsigned journal_seq)
{
struct bch_fs_usage *dst = fs_usage_ptr(c, journal_seq, false);
s64 added = src->u.data + src->u.reserved;
s64 should_not_have_added;
int ret = 0;
percpu_rwsem_assert_held(&c->mark_lock);
/*
* Not allowed to reduce sectors_available except by getting a
* reservation:
*/
should_not_have_added = added - (s64) (disk_res ? disk_res->sectors : 0);
if (WARN_ONCE(should_not_have_added > 0,
"disk usage increased by %lli more than reservation of %llu",
added, disk_res ? disk_res->sectors : 0)) {
atomic64_sub(should_not_have_added, &c->sectors_available);
added -= should_not_have_added;
ret = -1;
}
if (added > 0) {
disk_res->sectors -= added;
src->online_reserved -= added;
}
this_cpu_add(*c->online_reserved, src->online_reserved);
preempt_disable();
acc_u64s((u64 *) dst, (u64 *) &src->u, fs_usage_u64s(c));
preempt_enable();
return ret;
}
static inline void account_bucket(struct bch_fs_usage *fs_usage,
struct bch_dev_usage *dev_usage,
enum bch_data_type type,
int nr, s64 size)
{
if (type == BCH_DATA_sb || type == BCH_DATA_journal)
fs_usage->hidden += size;
dev_usage->d[type].buckets += nr;
}
static void bch2_dev_usage_update(struct bch_fs *c, struct bch_dev *ca,
struct bch_fs_usage *fs_usage,
struct bucket_mark old, struct bucket_mark new,
u64 journal_seq, bool gc)
{
struct bch_dev_usage *u;
percpu_rwsem_assert_held(&c->mark_lock);
preempt_disable();
u = dev_usage_ptr(ca, journal_seq, gc);
if (bucket_type(old))
account_bucket(fs_usage, u, bucket_type(old),
-1, -ca->mi.bucket_size);
if (bucket_type(new))
account_bucket(fs_usage, u, bucket_type(new),
1, ca->mi.bucket_size);
u->buckets_unavailable +=
is_unavailable_bucket(new) - is_unavailable_bucket(old);
u->d[old.data_type].sectors -= old.dirty_sectors;
u->d[new.data_type].sectors += new.dirty_sectors;
u->d[BCH_DATA_cached].sectors +=
(int) new.cached_sectors - (int) old.cached_sectors;
u->d[old.data_type].fragmented -= bucket_sectors_fragmented(ca, old);
u->d[new.data_type].fragmented += bucket_sectors_fragmented(ca, new);
preempt_enable();
if (!is_available_bucket(old) && is_available_bucket(new))
bch2_wake_allocator(ca);
}
static inline int update_replicas(struct bch_fs *c,
struct bch_fs_usage *fs_usage,
struct bch_replicas_entry *r,
s64 sectors)
{
int idx = bch2_replicas_entry_idx(c, r);
if (idx < 0)
return -1;
if (!fs_usage)
return 0;
fs_usage_data_type_to_base(fs_usage, r->data_type, sectors);
fs_usage->replicas[idx] += sectors;
return 0;
}
static inline void update_cached_sectors(struct bch_fs *c,
struct bch_fs_usage *fs_usage,
unsigned dev, s64 sectors)
{
struct bch_replicas_padded r;
bch2_replicas_entry_cached(&r.e, dev);
update_replicas(c, fs_usage, &r.e, sectors);
}
static struct replicas_delta_list *
replicas_deltas_realloc(struct btree_trans *trans, unsigned more)
{
struct replicas_delta_list *d = trans->fs_usage_deltas;
unsigned new_size = d ? (d->size + more) * 2 : 128;
unsigned alloc_size = sizeof(*d) + new_size;
WARN_ON_ONCE(alloc_size > REPLICAS_DELTA_LIST_MAX);
if (!d || d->used + more > d->size) {
d = krealloc(d, alloc_size, GFP_NOIO|__GFP_ZERO);
BUG_ON(!d && alloc_size > REPLICAS_DELTA_LIST_MAX);
if (!d) {
d = mempool_alloc(&trans->c->replicas_delta_pool, GFP_NOIO);
memset(d, 0, REPLICAS_DELTA_LIST_MAX);
if (trans->fs_usage_deltas)
memcpy(d, trans->fs_usage_deltas,
trans->fs_usage_deltas->size + sizeof(*d));
new_size = REPLICAS_DELTA_LIST_MAX - sizeof(*d);
kfree(trans->fs_usage_deltas);
}
d->size = new_size;
trans->fs_usage_deltas = d;
}
return d;
}
static inline void update_replicas_list(struct btree_trans *trans,
struct bch_replicas_entry *r,
s64 sectors)
{
struct replicas_delta_list *d;
struct replicas_delta *n;
unsigned b;
if (!sectors)
return;
b = replicas_entry_bytes(r) + 8;
d = replicas_deltas_realloc(trans, b);
n = (void *) d->d + d->used;
n->delta = sectors;
memcpy((void *) n + offsetof(struct replicas_delta, r),
r, replicas_entry_bytes(r));
d->used += b;
}
static inline void update_cached_sectors_list(struct btree_trans *trans,
unsigned dev, s64 sectors)
{
struct bch_replicas_padded r;
bch2_replicas_entry_cached(&r.e, dev);
update_replicas_list(trans, &r.e, sectors);
}
static inline struct replicas_delta *
replicas_delta_next(struct replicas_delta *d)
{
return (void *) d + replicas_entry_bytes(&d->r) + 8;
}
int bch2_replicas_delta_list_apply(struct bch_fs *c,
struct bch_fs_usage *fs_usage,
struct replicas_delta_list *r)
{
struct replicas_delta *d = r->d;
struct replicas_delta *top = (void *) r->d + r->used;
unsigned i;
for (d = r->d; d != top; d = replicas_delta_next(d))
if (update_replicas(c, fs_usage, &d->r, d->delta)) {
top = d;
goto unwind;
}
if (!fs_usage)
return 0;
fs_usage->nr_inodes += r->nr_inodes;
for (i = 0; i < BCH_REPLICAS_MAX; i++) {
fs_usage->reserved += r->persistent_reserved[i];
fs_usage->persistent_reserved[i] += r->persistent_reserved[i];
}
return 0;
unwind:
for (d = r->d; d != top; d = replicas_delta_next(d))
update_replicas(c, fs_usage, &d->r, -d->delta);
return -1;
}
#define do_mark_fn(fn, c, pos, flags, ...) \
({ \
int gc, ret = 0; \
\
percpu_rwsem_assert_held(&c->mark_lock); \
\
for (gc = 0; gc < 2 && !ret; gc++) \
if (!gc == !(flags & BTREE_TRIGGER_GC) || \
(gc && gc_visited(c, pos))) \
ret = fn(c, __VA_ARGS__, gc); \
ret; \
})
static int __bch2_mark_alloc_bucket(struct bch_fs *c, struct bch_dev *ca,
size_t b, bool owned_by_allocator,
bool gc)
{
struct bch_fs_usage *fs_usage = fs_usage_ptr(c, 0, gc);
struct bucket *g = __bucket(ca, b, gc);
struct bucket_mark old, new;
old = bucket_cmpxchg(g, new, ({
new.owned_by_allocator = owned_by_allocator;
}));
/*
* XXX: this is wrong, this means we'll be doing updates to the percpu
* buckets_alloc counter that don't have an open journal buffer and
* we'll race with the machinery that accumulates that to ca->usage_base
*/
bch2_dev_usage_update(c, ca, fs_usage, old, new, 0, gc);
BUG_ON(!gc &&
!owned_by_allocator && !old.owned_by_allocator);
return 0;
}
void bch2_mark_alloc_bucket(struct bch_fs *c, struct bch_dev *ca,
size_t b, bool owned_by_allocator,
struct gc_pos pos, unsigned flags)
{
preempt_disable();
do_mark_fn(__bch2_mark_alloc_bucket, c, pos, flags,
ca, b, owned_by_allocator);
preempt_enable();
}
static int bch2_mark_alloc(struct bch_fs *c,
struct bkey_s_c old, struct bkey_s_c new,
struct bch_fs_usage *fs_usage,
u64 journal_seq, unsigned flags)
{
bool gc = flags & BTREE_TRIGGER_GC;
struct bkey_alloc_unpacked u;
struct bch_dev *ca;
struct bucket *g;
struct bucket_mark old_m, m;
/* We don't do anything for deletions - do we?: */
if (new.k->type != KEY_TYPE_alloc &&
new.k->type != KEY_TYPE_alloc_v2)
return 0;
/*
* alloc btree is read in by bch2_alloc_read, not gc:
*/
if ((flags & BTREE_TRIGGER_GC) &&
!(flags & BTREE_TRIGGER_BUCKET_INVALIDATE))
return 0;
ca = bch_dev_bkey_exists(c, new.k->p.inode);
if (new.k->p.offset >= ca->mi.nbuckets)
return 0;
g = __bucket(ca, new.k->p.offset, gc);
u = bch2_alloc_unpack(new);
old_m = bucket_cmpxchg(g, m, ({
m.gen = u.gen;
m.data_type = u.data_type;
m.dirty_sectors = u.dirty_sectors;
m.cached_sectors = u.cached_sectors;
m.stripe = u.stripe != 0;
if (journal_seq) {
m.journal_seq_valid = 1;
m.journal_seq = journal_seq;
}
}));
bch2_dev_usage_update(c, ca, fs_usage, old_m, m, journal_seq, gc);
g->io_time[READ] = u.read_time;
g->io_time[WRITE] = u.write_time;
g->oldest_gen = u.oldest_gen;
g->gen_valid = 1;
g->stripe = u.stripe;
g->stripe_redundancy = u.stripe_redundancy;
/*
* need to know if we're getting called from the invalidate path or
* not:
*/
if ((flags & BTREE_TRIGGER_BUCKET_INVALIDATE) &&
old_m.cached_sectors) {
update_cached_sectors(c, fs_usage, ca->dev_idx,
-old_m.cached_sectors);
trace_invalidate(ca, bucket_to_sector(ca, new.k->p.offset),
old_m.cached_sectors);
}
return 0;
}
#define checked_add(a, b) \
({ \
unsigned _res = (unsigned) (a) + (b); \
bool overflow = _res > U16_MAX; \
if (overflow) \
_res = U16_MAX; \
(a) = _res; \
overflow; \
})
static int __bch2_mark_metadata_bucket(struct bch_fs *c, struct bch_dev *ca,
size_t b, enum bch_data_type data_type,
unsigned sectors, bool gc)
{
struct bucket *g = __bucket(ca, b, gc);
struct bucket_mark old, new;
bool overflow;
BUG_ON(data_type != BCH_DATA_sb &&
data_type != BCH_DATA_journal);
old = bucket_cmpxchg(g, new, ({
new.data_type = data_type;
overflow = checked_add(new.dirty_sectors, sectors);
}));
bch2_fs_inconsistent_on(old.data_type &&
old.data_type != data_type, c,
"different types of data in same bucket: %s, %s",
bch2_data_types[old.data_type],
bch2_data_types[data_type]);
bch2_fs_inconsistent_on(overflow, c,
"bucket %u:%zu gen %u data type %s sector count overflow: %u + %u > U16_MAX",
ca->dev_idx, b, new.gen,
bch2_data_types[old.data_type ?: data_type],
old.dirty_sectors, sectors);
if (c)
bch2_dev_usage_update(c, ca, fs_usage_ptr(c, 0, gc),
old, new, 0, gc);
return 0;
}
void bch2_mark_metadata_bucket(struct bch_fs *c, struct bch_dev *ca,
size_t b, enum bch_data_type type,
unsigned sectors, struct gc_pos pos,
unsigned flags)
{
BUG_ON(type != BCH_DATA_sb &&
type != BCH_DATA_journal);
preempt_disable();
if (likely(c)) {
do_mark_fn(__bch2_mark_metadata_bucket, c, pos, flags,
ca, b, type, sectors);
} else {
__bch2_mark_metadata_bucket(c, ca, b, type, sectors, 0);
}
preempt_enable();
}
static s64 disk_sectors_scaled(unsigned n, unsigned d, unsigned sectors)
{
return DIV_ROUND_UP(sectors * n, d);
}
static s64 __ptr_disk_sectors_delta(unsigned old_size,
unsigned offset, s64 delta,
unsigned flags,
unsigned n, unsigned d)
{
BUG_ON(!n || !d);
if (flags & BTREE_TRIGGER_OVERWRITE_SPLIT) {
BUG_ON(offset + -delta > old_size);
return -disk_sectors_scaled(n, d, old_size) +
disk_sectors_scaled(n, d, offset) +
disk_sectors_scaled(n, d, old_size - offset + delta);
} else if (flags & BTREE_TRIGGER_OVERWRITE) {
BUG_ON(offset + -delta > old_size);
return -disk_sectors_scaled(n, d, old_size) +
disk_sectors_scaled(n, d, old_size + delta);
} else {
return disk_sectors_scaled(n, d, delta);
}
}
static s64 ptr_disk_sectors_delta(struct extent_ptr_decoded p,
unsigned offset, s64 delta,
unsigned flags)
{
return __ptr_disk_sectors_delta(p.crc.live_size,
offset, delta, flags,
p.crc.compressed_size,
p.crc.uncompressed_size);
}
static int check_bucket_ref(struct bch_fs *c, struct bkey_s_c k,
const struct bch_extent_ptr *ptr,
s64 sectors, enum bch_data_type ptr_data_type,
u8 bucket_gen, u8 bucket_data_type,
u16 dirty_sectors, u16 cached_sectors)
{
size_t bucket_nr = PTR_BUCKET_NR(bch_dev_bkey_exists(c, ptr->dev), ptr);
u16 bucket_sectors = !ptr->cached
? dirty_sectors
: cached_sectors;
char buf[200];
if (gen_after(ptr->gen, bucket_gen)) {
bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK,
"bucket %u:%zu gen %u data type %s: ptr gen %u newer than bucket gen\n"
"while marking %s",
ptr->dev, bucket_nr, bucket_gen,
bch2_data_types[bucket_data_type ?: ptr_data_type],
ptr->gen,
(bch2_bkey_val_to_text(&PBUF(buf), c, k), buf));
return -EIO;
}
if (gen_cmp(bucket_gen, ptr->gen) > BUCKET_GC_GEN_MAX) {
bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK,
"bucket %u:%zu gen %u data type %s: ptr gen %u too stale\n"
"while marking %s",
ptr->dev, bucket_nr, bucket_gen,
bch2_data_types[bucket_data_type ?: ptr_data_type],
ptr->gen,
(bch2_bkey_val_to_text(&PBUF(buf), c, k), buf));
return -EIO;
}
if (bucket_gen != ptr->gen && !ptr->cached) {
bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK,
"bucket %u:%zu gen %u data type %s: stale dirty ptr (gen %u)\n"
"while marking %s",
ptr->dev, bucket_nr, bucket_gen,
bch2_data_types[bucket_data_type ?: ptr_data_type],
ptr->gen,
(bch2_bkey_val_to_text(&PBUF(buf), c, k), buf));
return -EIO;
}
if (bucket_gen != ptr->gen)
return 1;
if (bucket_data_type && ptr_data_type &&
bucket_data_type != ptr_data_type) {
bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK,
"bucket %u:%zu gen %u different types of data in same bucket: %s, %s\n"
"while marking %s",
ptr->dev, bucket_nr, bucket_gen,
bch2_data_types[bucket_data_type],
bch2_data_types[ptr_data_type],
(bch2_bkey_val_to_text(&PBUF(buf), c, k), buf));
return -EIO;
}
if ((unsigned) (bucket_sectors + sectors) > U16_MAX) {
bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK,
"bucket %u:%zu gen %u data type %s sector count overflow: %u + %lli > U16_MAX\n"
"while marking %s",
ptr->dev, bucket_nr, bucket_gen,
bch2_data_types[bucket_data_type ?: ptr_data_type],
bucket_sectors, sectors,
(bch2_bkey_val_to_text(&PBUF(buf), c, k), buf));
return -EIO;
}
return 0;
}
static int mark_stripe_bucket(struct bch_fs *c, struct bkey_s_c k,
unsigned ptr_idx,
struct bch_fs_usage *fs_usage,
u64 journal_seq, unsigned flags)
{
const struct bch_stripe *s = bkey_s_c_to_stripe(k).v;
unsigned nr_data = s->nr_blocks - s->nr_redundant;
bool parity = ptr_idx >= nr_data;
const struct bch_extent_ptr *ptr = s->ptrs + ptr_idx;
bool gc = flags & BTREE_TRIGGER_GC;
struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
struct bucket *g = PTR_BUCKET(ca, ptr, gc);
struct bucket_mark new, old;
char buf[200];
int ret;
if (g->stripe && g->stripe != k.k->p.offset) {
bch2_fs_inconsistent(c,
"bucket %u:%zu gen %u: multiple stripes using same bucket\n%s",
ptr->dev, PTR_BUCKET_NR(ca, ptr), new.gen,
(bch2_bkey_val_to_text(&PBUF(buf), c, k), buf));
return -EINVAL;
}
old = bucket_cmpxchg(g, new, ({
ret = check_bucket_ref(c, k, ptr, 0, 0, new.gen, new.data_type,
new.dirty_sectors, new.cached_sectors);
if (ret)
return ret;
if (parity) {
new.data_type = BCH_DATA_parity;
new.dirty_sectors = le16_to_cpu(s->sectors);
}
if (journal_seq) {
new.journal_seq_valid = 1;
new.journal_seq = journal_seq;
}
}));
g->stripe = k.k->p.offset;
g->stripe_redundancy = s->nr_redundant;
bch2_dev_usage_update(c, ca, fs_usage, old, new, journal_seq, gc);
return 0;
}
static int __mark_pointer(struct bch_fs *c, struct bkey_s_c k,
const struct bch_extent_ptr *ptr,
s64 sectors, enum bch_data_type ptr_data_type,
u8 bucket_gen, u8 *bucket_data_type,
u16 *dirty_sectors, u16 *cached_sectors)
{
u16 *dst_sectors = !ptr->cached
? dirty_sectors
: cached_sectors;
int ret = check_bucket_ref(c, k, ptr, sectors, ptr_data_type,
bucket_gen, *bucket_data_type,
*dirty_sectors, *cached_sectors);
if (ret)
return ret;
*dst_sectors += sectors;
*bucket_data_type = *dirty_sectors || *cached_sectors
? ptr_data_type : 0;
return 0;
}
static int bch2_mark_pointer(struct bch_fs *c, struct bkey_s_c k,
struct extent_ptr_decoded p,
s64 sectors, enum bch_data_type data_type,
struct bch_fs_usage *fs_usage,
u64 journal_seq, unsigned flags)
{
bool gc = flags & BTREE_TRIGGER_GC;
struct bucket_mark old, new;
struct bch_dev *ca = bch_dev_bkey_exists(c, p.ptr.dev);
struct bucket *g = PTR_BUCKET(ca, &p.ptr, gc);
u8 bucket_data_type;
u64 v;
int ret;
v = atomic64_read(&g->_mark.v);
do {
new.v.counter = old.v.counter = v;
bucket_data_type = new.data_type;
ret = __mark_pointer(c, k, &p.ptr, sectors, data_type, new.gen,
&bucket_data_type,
&new.dirty_sectors,
&new.cached_sectors);
if (ret)
return ret;
new.data_type = bucket_data_type;
if (journal_seq) {
new.journal_seq_valid = 1;
new.journal_seq = journal_seq;
}
if (flags & BTREE_TRIGGER_NOATOMIC) {
g->_mark = new;
break;
}
} while ((v = atomic64_cmpxchg(&g->_mark.v,
old.v.counter,
new.v.counter)) != old.v.counter);
bch2_dev_usage_update(c, ca, fs_usage, old, new, journal_seq, gc);
BUG_ON(!gc && bucket_became_unavailable(old, new));
return 0;
}
static int bch2_mark_stripe_ptr(struct bch_fs *c,
struct bch_extent_stripe_ptr p,
enum bch_data_type data_type,
struct bch_fs_usage *fs_usage,
s64 sectors, unsigned flags)
{
bool gc = flags & BTREE_TRIGGER_GC;
struct bch_replicas_padded r;
struct stripe *m;
unsigned i, blocks_nonempty = 0;
m = genradix_ptr(&c->stripes[gc], p.idx);
spin_lock(&c->ec_stripes_heap_lock);
if (!m || !m->alive) {
spin_unlock(&c->ec_stripes_heap_lock);
bch_err_ratelimited(c, "pointer to nonexistent stripe %llu",
(u64) p.idx);
return -EIO;
}
m->block_sectors[p.block] += sectors;
r = m->r;
for (i = 0; i < m->nr_blocks; i++)
blocks_nonempty += m->block_sectors[i] != 0;
if (m->blocks_nonempty != blocks_nonempty) {
m->blocks_nonempty = blocks_nonempty;
if (!gc)
bch2_stripes_heap_update(c, m, p.idx);
}
spin_unlock(&c->ec_stripes_heap_lock);
r.e.data_type = data_type;
update_replicas(c, fs_usage, &r.e, sectors);
return 0;
}
static int bch2_mark_extent(struct bch_fs *c,
struct bkey_s_c old, struct bkey_s_c new,
unsigned offset, s64 sectors,
enum bch_data_type data_type,
struct bch_fs_usage *fs_usage,
unsigned journal_seq, unsigned flags)
{
struct bkey_s_c k = flags & BTREE_TRIGGER_INSERT ? new : old;
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
const union bch_extent_entry *entry;
struct extent_ptr_decoded p;
struct bch_replicas_padded r;
s64 dirty_sectors = 0;
bool stale;
int ret;
r.e.data_type = data_type;
r.e.nr_devs = 0;
r.e.nr_required = 1;
BUG_ON(!sectors);
bkey_for_each_ptr_decode(k.k, ptrs, p, entry) {
s64 disk_sectors = data_type == BCH_DATA_btree
? sectors
: ptr_disk_sectors_delta(p, offset, sectors, flags);
ret = bch2_mark_pointer(c, k, p, disk_sectors, data_type,
fs_usage, journal_seq, flags);
if (ret < 0)
return ret;
stale = ret > 0;
if (p.ptr.cached) {
if (!stale)
update_cached_sectors(c, fs_usage, p.ptr.dev,
disk_sectors);
} else if (!p.has_ec) {
dirty_sectors += disk_sectors;
r.e.devs[r.e.nr_devs++] = p.ptr.dev;
} else {
ret = bch2_mark_stripe_ptr(c, p.ec, data_type,
fs_usage, disk_sectors, flags);
if (ret)
return ret;
/*
* There may be other dirty pointers in this extent, but
* if so they're not required for mounting if we have an
* erasure coded pointer in this extent:
*/
r.e.nr_required = 0;
}
}
if (r.e.nr_devs)
update_replicas(c, fs_usage, &r.e, dirty_sectors);
return 0;
}
static int bch2_mark_stripe(struct bch_fs *c,
struct bkey_s_c old, struct bkey_s_c new,
struct bch_fs_usage *fs_usage,
u64 journal_seq, unsigned flags)
{
bool gc = flags & BTREE_TRIGGER_GC;
size_t idx = new.k->p.offset;
const struct bch_stripe *old_s = old.k->type == KEY_TYPE_stripe
? bkey_s_c_to_stripe(old).v : NULL;
const struct bch_stripe *new_s = new.k->type == KEY_TYPE_stripe
? bkey_s_c_to_stripe(new).v : NULL;
struct stripe *m = genradix_ptr(&c->stripes[gc], idx);
unsigned i;
int ret;
BUG_ON(gc && old_s);
if (!m || (old_s && !m->alive)) {
bch_err_ratelimited(c, "error marking nonexistent stripe %zu",
idx);
return -1;
}
if (!new_s) {
spin_lock(&c->ec_stripes_heap_lock);
bch2_stripes_heap_del(c, m, idx);
spin_unlock(&c->ec_stripes_heap_lock);
memset(m, 0, sizeof(*m));
} else {
m->alive = true;
m->sectors = le16_to_cpu(new_s->sectors);
m->algorithm = new_s->algorithm;
m->nr_blocks = new_s->nr_blocks;
m->nr_redundant = new_s->nr_redundant;
m->blocks_nonempty = 0;
for (i = 0; i < new_s->nr_blocks; i++) {
m->block_sectors[i] =
stripe_blockcount_get(new_s, i);
m->blocks_nonempty += !!m->block_sectors[i];
}
bch2_bkey_to_replicas(&m->r.e, new);
if (!gc) {
spin_lock(&c->ec_stripes_heap_lock);
bch2_stripes_heap_update(c, m, idx);
spin_unlock(&c->ec_stripes_heap_lock);
}
}
if (gc) {
/*
* gc recalculates this field from stripe ptr
* references:
*/
memset(m->block_sectors, 0, sizeof(m->block_sectors));
m->blocks_nonempty = 0;
for (i = 0; i < new_s->nr_blocks; i++) {
ret = mark_stripe_bucket(c, new, i, fs_usage,
journal_seq, flags);
if (ret)
return ret;
}
update_replicas(c, fs_usage, &m->r.e,
((s64) m->sectors * m->nr_redundant));
}
return 0;
}
static int bch2_mark_key_locked(struct bch_fs *c,
struct bkey_s_c old,
struct bkey_s_c new,
unsigned offset, s64 sectors,
struct bch_fs_usage *fs_usage,
u64 journal_seq, unsigned flags)
{
struct bkey_s_c k = flags & BTREE_TRIGGER_INSERT ? new : old;
int ret = 0;
BUG_ON(!(flags & (BTREE_TRIGGER_INSERT|BTREE_TRIGGER_OVERWRITE)));
preempt_disable();
if (!fs_usage || (flags & BTREE_TRIGGER_GC))
fs_usage = fs_usage_ptr(c, journal_seq,
flags & BTREE_TRIGGER_GC);
switch (k.k->type) {
case KEY_TYPE_alloc:
case KEY_TYPE_alloc_v2:
ret = bch2_mark_alloc(c, old, new, fs_usage, journal_seq, flags);
break;
case KEY_TYPE_btree_ptr:
case KEY_TYPE_btree_ptr_v2:
sectors = !(flags & BTREE_TRIGGER_OVERWRITE)
? c->opts.btree_node_size
: -c->opts.btree_node_size;
ret = bch2_mark_extent(c, old, new, offset, sectors,
BCH_DATA_btree, fs_usage, journal_seq, flags);
break;
case KEY_TYPE_extent:
case KEY_TYPE_reflink_v:
ret = bch2_mark_extent(c, old, new, offset, sectors,
BCH_DATA_user, fs_usage, journal_seq, flags);
break;
case KEY_TYPE_stripe:
ret = bch2_mark_stripe(c, old, new, fs_usage, journal_seq, flags);
break;
case KEY_TYPE_inode:
fs_usage->nr_inodes += new.k->type == KEY_TYPE_inode;
fs_usage->nr_inodes -= old.k->type == KEY_TYPE_inode;
break;
case KEY_TYPE_reservation: {
unsigned replicas = bkey_s_c_to_reservation(k).v->nr_replicas;
sectors *= replicas;
replicas = clamp_t(unsigned, replicas, 1,
ARRAY_SIZE(fs_usage->persistent_reserved));
fs_usage->reserved += sectors;
fs_usage->persistent_reserved[replicas - 1] += sectors;
break;
}
}
preempt_enable();
return ret;
}
int bch2_mark_key(struct bch_fs *c, struct bkey_s_c new,
unsigned offset, s64 sectors,
struct bch_fs_usage *fs_usage,
u64 journal_seq, unsigned flags)
{
struct bkey deleted;
struct bkey_s_c old = (struct bkey_s_c) { &deleted, NULL };
int ret;
bkey_init(&deleted);
percpu_down_read(&c->mark_lock);
ret = bch2_mark_key_locked(c, old, new, offset, sectors,
fs_usage, journal_seq,
BTREE_TRIGGER_INSERT|flags);
percpu_up_read(&c->mark_lock);
return ret;
}
int bch2_mark_update(struct btree_trans *trans,
struct btree_iter *iter,
struct bkey_i *new,
struct bch_fs_usage *fs_usage,
unsigned flags)
{
struct bch_fs *c = trans->c;
struct bkey_s_c old;
struct bkey unpacked;
int ret = 0;
if (unlikely(flags & BTREE_TRIGGER_NORUN))
return 0;
if (!btree_node_type_needs_gc(iter->btree_id))
return 0;
bkey_init(&unpacked);
old = (struct bkey_s_c) { &unpacked, NULL };
if (!btree_node_type_is_extents(iter->btree_id)) {
/* iterators should be uptodate, shouldn't get errors here: */
if (btree_iter_type(iter) != BTREE_ITER_CACHED) {
old = bch2_btree_iter_peek_slot(iter);
BUG_ON(bkey_err(old));
} else {
struct bkey_cached *ck = (void *) iter->l[0].b;
if (ck->valid)
old = bkey_i_to_s_c(ck->k);
}
if (old.k->type == new->k.type) {
bch2_mark_key_locked(c, old, bkey_i_to_s_c(new), 0, 0,
fs_usage, trans->journal_res.seq,
BTREE_TRIGGER_INSERT|BTREE_TRIGGER_OVERWRITE|flags);
} else {
bch2_mark_key_locked(c, old, bkey_i_to_s_c(new), 0, 0,
fs_usage, trans->journal_res.seq,
BTREE_TRIGGER_INSERT|flags);
bch2_mark_key_locked(c, old, bkey_i_to_s_c(new), 0, 0,
fs_usage, trans->journal_res.seq,
BTREE_TRIGGER_OVERWRITE|flags);
}
} else {
struct btree_iter *copy;
BUG_ON(btree_iter_type(iter) == BTREE_ITER_CACHED);
bch2_mark_key_locked(c, old, bkey_i_to_s_c(new),
0, new->k.size,
fs_usage, trans->journal_res.seq,
BTREE_TRIGGER_INSERT|flags);
copy = bch2_trans_copy_iter(trans, iter);
for_each_btree_key_continue(copy, 0, old, ret) {
unsigned offset = 0;
s64 sectors = -((s64) old.k->size);
flags |= BTREE_TRIGGER_OVERWRITE;
if (bkey_cmp(new->k.p, bkey_start_pos(old.k)) <= 0)
break;
switch (bch2_extent_overlap(&new->k, old.k)) {
case BCH_EXTENT_OVERLAP_ALL:
offset = 0;
sectors = -((s64) old.k->size);
break;
case BCH_EXTENT_OVERLAP_BACK:
offset = bkey_start_offset(&new->k) -
bkey_start_offset(old.k);
sectors = bkey_start_offset(&new->k) -
old.k->p.offset;
break;
case BCH_EXTENT_OVERLAP_FRONT:
offset = 0;
sectors = bkey_start_offset(old.k) -
new->k.p.offset;
break;
case BCH_EXTENT_OVERLAP_MIDDLE:
offset = bkey_start_offset(&new->k) -
bkey_start_offset(old.k);
sectors = -((s64) new->k.size);
flags |= BTREE_TRIGGER_OVERWRITE_SPLIT;
break;
}
BUG_ON(sectors >= 0);
ret = bch2_mark_key_locked(c, old, bkey_i_to_s_c(new),
offset, sectors, fs_usage,
trans->journal_res.seq, flags) ?: 1;
if (ret <= 0)
break;
}
bch2_trans_iter_put(trans, copy);
}
return ret;
}
void bch2_trans_fs_usage_apply(struct btree_trans *trans,
struct bch_fs_usage_online *fs_usage)
{
struct bch_fs *c = trans->c;
struct btree_insert_entry *i;
static int warned_disk_usage = 0;
u64 disk_res_sectors = trans->disk_res ? trans->disk_res->sectors : 0;
char buf[200];
if (!bch2_fs_usage_apply(c, fs_usage, trans->disk_res,
trans->journal_res.seq) ||
warned_disk_usage ||
xchg(&warned_disk_usage, 1))
return;
bch_err(c, "disk usage increased more than %llu sectors reserved",
disk_res_sectors);
trans_for_each_update(trans, i) {
pr_err("while inserting");
bch2_bkey_val_to_text(&PBUF(buf), c, bkey_i_to_s_c(i->k));
pr_err("%s", buf);
pr_err("overlapping with");
if (btree_iter_type(i->iter) != BTREE_ITER_CACHED) {
struct btree_iter *copy = bch2_trans_copy_iter(trans, i->iter);
struct bkey_s_c k;
int ret;
for_each_btree_key_continue(copy, 0, k, ret) {
if (btree_node_type_is_extents(i->iter->btree_id)
? bkey_cmp(i->k->k.p, bkey_start_pos(k.k)) <= 0
: bkey_cmp(i->k->k.p, k.k->p))
break;
bch2_bkey_val_to_text(&PBUF(buf), c, k);
pr_err("%s", buf);
}
bch2_trans_iter_put(trans, copy);
} else {
struct bkey_cached *ck = (void *) i->iter->l[0].b;
if (ck->valid) {
bch2_bkey_val_to_text(&PBUF(buf), c, bkey_i_to_s_c(ck->k));
pr_err("%s", buf);
}
}
}
}
/* trans_mark: */
static struct btree_iter *trans_get_update(struct btree_trans *trans,
enum btree_id btree_id, struct bpos pos,
struct bkey_s_c *k)
{
struct btree_insert_entry *i;
trans_for_each_update(trans, i)
if (i->iter->btree_id == btree_id &&
(btree_node_type_is_extents(btree_id)
? bkey_cmp(pos, bkey_start_pos(&i->k->k)) >= 0 &&
bkey_cmp(pos, i->k->k.p) < 0
: !bkey_cmp(pos, i->iter->pos))) {
*k = bkey_i_to_s_c(i->k);
return i->iter;
}
return NULL;
}
static int trans_get_key(struct btree_trans *trans,
enum btree_id btree_id, struct bpos pos,
struct btree_iter **iter,
struct bkey_s_c *k)
{
unsigned flags = btree_id != BTREE_ID_ALLOC
? BTREE_ITER_SLOTS
: BTREE_ITER_CACHED;
int ret;
*iter = trans_get_update(trans, btree_id, pos, k);
if (*iter)
return 1;
*iter = bch2_trans_get_iter(trans, btree_id, pos,
flags|BTREE_ITER_INTENT);
*k = __bch2_btree_iter_peek(*iter, flags);
ret = bkey_err(*k);
if (ret)
bch2_trans_iter_put(trans, *iter);
return ret;
}
static struct bkey_alloc_buf *
bch2_trans_start_alloc_update(struct btree_trans *trans, struct btree_iter **_iter,
const struct bch_extent_ptr *ptr,
struct bkey_alloc_unpacked *u)
{
struct bch_fs *c = trans->c;
struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
struct bpos pos = POS(ptr->dev, PTR_BUCKET_NR(ca, ptr));
struct bucket *g;
struct btree_iter *iter;
struct bkey_s_c k;
struct bkey_alloc_buf *a;
int ret;
a = bch2_trans_kmalloc(trans, sizeof(struct bkey_alloc_buf));
if (IS_ERR(a))
return a;
iter = trans_get_update(trans, BTREE_ID_ALLOC, pos, &k);
if (iter) {
*u = bch2_alloc_unpack(k);
} else {
iter = bch2_trans_get_iter(trans, BTREE_ID_ALLOC, pos,
BTREE_ITER_CACHED|
BTREE_ITER_CACHED_NOFILL|
BTREE_ITER_INTENT);
ret = bch2_btree_iter_traverse(iter);
if (ret) {
bch2_trans_iter_put(trans, iter);
return ERR_PTR(ret);
}
percpu_down_read(&c->mark_lock);
g = bucket(ca, pos.offset);
*u = alloc_mem_to_key(iter, g, READ_ONCE(g->mark));
percpu_up_read(&c->mark_lock);
}
*_iter = iter;
return a;
}
static int bch2_trans_mark_pointer(struct btree_trans *trans,
struct bkey_s_c k, struct extent_ptr_decoded p,
s64 sectors, enum bch_data_type data_type)
{
struct bch_fs *c = trans->c;
struct btree_iter *iter;
struct bkey_alloc_unpacked u;
struct bkey_alloc_buf *a;
int ret;
a = bch2_trans_start_alloc_update(trans, &iter, &p.ptr, &u);
if (IS_ERR(a))
return PTR_ERR(a);
ret = __mark_pointer(c, k, &p.ptr, sectors, data_type, u.gen, &u.data_type,
&u.dirty_sectors, &u.cached_sectors);
if (ret)
goto out;
bch2_alloc_pack(c, a, u);
bch2_trans_update(trans, iter, &a->k, 0);
out:
bch2_trans_iter_put(trans, iter);
return ret;
}
static int bch2_trans_mark_stripe_ptr(struct btree_trans *trans,
struct extent_ptr_decoded p,
s64 sectors, enum bch_data_type data_type)
{
struct bch_fs *c = trans->c;
struct btree_iter *iter;
struct bkey_s_c k;
struct bkey_i_stripe *s;
struct bch_replicas_padded r;
int ret = 0;
ret = trans_get_key(trans, BTREE_ID_EC, POS(0, p.ec.idx), &iter, &k);
if (ret < 0)
return ret;
if (k.k->type != KEY_TYPE_stripe) {
bch2_fs_inconsistent(c,
"pointer to nonexistent stripe %llu",
(u64) p.ec.idx);
ret = -EIO;
goto out;
}
if (!bch2_ptr_matches_stripe(bkey_s_c_to_stripe(k).v, p)) {
bch2_fs_inconsistent(c,
"stripe pointer doesn't match stripe %llu",
(u64) p.ec.idx);
ret = -EIO;
goto out;
}
s = bch2_trans_kmalloc(trans, bkey_bytes(k.k));
ret = PTR_ERR_OR_ZERO(s);
if (ret)
goto out;
bkey_reassemble(&s->k_i, k);
stripe_blockcount_set(&s->v, p.ec.block,
stripe_blockcount_get(&s->v, p.ec.block) +
sectors);
bch2_trans_update(trans, iter, &s->k_i, 0);
bch2_bkey_to_replicas(&r.e, bkey_i_to_s_c(&s->k_i));
r.e.data_type = data_type;
update_replicas_list(trans, &r.e, sectors);
out:
bch2_trans_iter_put(trans, iter);
return ret;
}
static int bch2_trans_mark_extent(struct btree_trans *trans,
struct bkey_s_c k, unsigned offset,
s64 sectors, unsigned flags,
enum bch_data_type data_type)
{
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
const union bch_extent_entry *entry;
struct extent_ptr_decoded p;
struct bch_replicas_padded r;
s64 dirty_sectors = 0;
bool stale;
int ret;
r.e.data_type = data_type;
r.e.nr_devs = 0;
r.e.nr_required = 1;
BUG_ON(!sectors);
bkey_for_each_ptr_decode(k.k, ptrs, p, entry) {
s64 disk_sectors = data_type == BCH_DATA_btree
? sectors
: ptr_disk_sectors_delta(p, offset, sectors, flags);
ret = bch2_trans_mark_pointer(trans, k, p, disk_sectors,
data_type);
if (ret < 0)
return ret;
stale = ret > 0;
if (p.ptr.cached) {
if (!stale)
update_cached_sectors_list(trans, p.ptr.dev,
disk_sectors);
} else if (!p.has_ec) {
dirty_sectors += disk_sectors;
r.e.devs[r.e.nr_devs++] = p.ptr.dev;
} else {
ret = bch2_trans_mark_stripe_ptr(trans, p,
disk_sectors, data_type);
if (ret)
return ret;
r.e.nr_required = 0;
}
}
if (r.e.nr_devs)
update_replicas_list(trans, &r.e, dirty_sectors);
return 0;
}
static int bch2_trans_mark_stripe_alloc_ref(struct btree_trans *trans,
struct bkey_s_c_stripe s,
unsigned idx, bool deleting)
{
struct bch_fs *c = trans->c;
const struct bch_extent_ptr *ptr = &s.v->ptrs[idx];
struct bkey_alloc_buf *a;
struct btree_iter *iter;
struct bkey_alloc_unpacked u;
bool parity = idx >= s.v->nr_blocks - s.v->nr_redundant;
int ret = 0;
a = bch2_trans_start_alloc_update(trans, &iter, ptr, &u);
if (IS_ERR(a))
return PTR_ERR(a);
if (parity) {
s64 sectors = le16_to_cpu(s.v->sectors);
if (deleting)
sectors = -sectors;
u.dirty_sectors += sectors;
u.data_type = u.dirty_sectors
? BCH_DATA_parity
: 0;
}
if (!deleting) {
if (bch2_fs_inconsistent_on(u.stripe && u.stripe != s.k->p.offset, c,
"bucket %llu:%llu gen %u: multiple stripes using same bucket (%u, %llu)",
iter->pos.inode, iter->pos.offset, u.gen,
u.stripe, s.k->p.offset)) {
ret = -EIO;
goto err;
}
u.stripe = s.k->p.offset;
u.stripe_redundancy = s.v->nr_redundant;
} else {
u.stripe = 0;
u.stripe_redundancy = 0;
}
bch2_alloc_pack(c, a, u);
bch2_trans_update(trans, iter, &a->k, 0);
err:
bch2_trans_iter_put(trans, iter);
return ret;
}
static int bch2_trans_mark_stripe(struct btree_trans *trans,
struct bkey_s_c old, struct bkey_s_c new,
unsigned flags)
{
struct bkey_s_c_stripe old_s = { NULL };
struct bkey_s_c_stripe new_s = { NULL };
struct bch_replicas_padded r;
unsigned i;
int ret = 0;
if (old.k->type == KEY_TYPE_stripe)
old_s = bkey_s_c_to_stripe(old);
if (new.k->type == KEY_TYPE_stripe)
new_s = bkey_s_c_to_stripe(new);
/*
* If the pointers aren't changing, we don't need to do anything:
*/
if (new_s.k && old_s.k &&
new_s.v->nr_blocks == old_s.v->nr_blocks &&
new_s.v->nr_redundant == old_s.v->nr_redundant &&
!memcmp(old_s.v->ptrs, new_s.v->ptrs,
new_s.v->nr_blocks * sizeof(struct bch_extent_ptr)))
return 0;
if (new_s.k) {
s64 sectors = le16_to_cpu(new_s.v->sectors);
bch2_bkey_to_replicas(&r.e, new);
update_replicas_list(trans, &r.e, sectors * new_s.v->nr_redundant);
for (i = 0; i < new_s.v->nr_blocks; i++) {
ret = bch2_trans_mark_stripe_alloc_ref(trans, new_s,
i, false);
if (ret)
return ret;
}
}
if (old_s.k) {
s64 sectors = -((s64) le16_to_cpu(old_s.v->sectors));
bch2_bkey_to_replicas(&r.e, old);
update_replicas_list(trans, &r.e, sectors * old_s.v->nr_redundant);
for (i = 0; i < old_s.v->nr_blocks; i++) {
ret = bch2_trans_mark_stripe_alloc_ref(trans, old_s,
i, true);
if (ret)
return ret;
}
}
return ret;
}
static __le64 *bkey_refcount(struct bkey_i *k)
{
switch (k->k.type) {
case KEY_TYPE_reflink_v:
return &bkey_i_to_reflink_v(k)->v.refcount;
case KEY_TYPE_indirect_inline_data:
return &bkey_i_to_indirect_inline_data(k)->v.refcount;
default:
return NULL;
}
}
static int __bch2_trans_mark_reflink_p(struct btree_trans *trans,
struct bkey_s_c_reflink_p p,
u64 idx, unsigned sectors,
unsigned flags)
{
struct bch_fs *c = trans->c;
struct btree_iter *iter;
struct bkey_s_c k;
struct bkey_i *n;
__le64 *refcount;
s64 ret;
ret = trans_get_key(trans, BTREE_ID_REFLINK,
POS(0, idx), &iter, &k);
if (ret < 0)
return ret;
if ((flags & BTREE_TRIGGER_OVERWRITE) &&
(bkey_start_offset(k.k) < idx ||
k.k->p.offset > idx + sectors))
goto out;
sectors = k.k->p.offset - idx;
n = bch2_trans_kmalloc(trans, bkey_bytes(k.k));
ret = PTR_ERR_OR_ZERO(n);
if (ret)
goto err;
bkey_reassemble(n, k);
refcount = bkey_refcount(n);
if (!refcount) {
bch2_fs_inconsistent(c,
"%llu:%llu len %u points to nonexistent indirect extent %llu",
p.k->p.inode, p.k->p.offset, p.k->size, idx);
ret = -EIO;
goto err;
}
le64_add_cpu(refcount, !(flags & BTREE_TRIGGER_OVERWRITE) ? 1 : -1);
if (!*refcount) {
n->k.type = KEY_TYPE_deleted;
set_bkey_val_u64s(&n->k, 0);
}
bch2_btree_iter_set_pos(iter, bkey_start_pos(k.k));
bch2_trans_update(trans, iter, n, 0);
out:
ret = sectors;
err:
bch2_trans_iter_put(trans, iter);
return ret;
}
static int bch2_trans_mark_reflink_p(struct btree_trans *trans,
struct bkey_s_c_reflink_p p, unsigned offset,
s64 sectors, unsigned flags)
{
u64 idx = le64_to_cpu(p.v->idx) + offset;
s64 ret = 0;
sectors = abs(sectors);
BUG_ON(offset + sectors > p.k->size);
while (sectors) {
ret = __bch2_trans_mark_reflink_p(trans, p, idx, sectors, flags);
if (ret < 0)
break;
idx += ret;
sectors = max_t(s64, 0LL, sectors - ret);
ret = 0;
}
return ret;
}
int bch2_trans_mark_key(struct btree_trans *trans,
struct bkey_s_c old,
struct bkey_s_c new,
unsigned offset, s64 sectors, unsigned flags)
{
struct bch_fs *c = trans->c;
struct bkey_s_c k = flags & BTREE_TRIGGER_INSERT ? new : old;
struct replicas_delta_list *d;
BUG_ON(!(flags & (BTREE_TRIGGER_INSERT|BTREE_TRIGGER_OVERWRITE)));
switch (k.k->type) {
case KEY_TYPE_btree_ptr:
case KEY_TYPE_btree_ptr_v2:
sectors = !(flags & BTREE_TRIGGER_OVERWRITE)
? c->opts.btree_node_size
: -c->opts.btree_node_size;
return bch2_trans_mark_extent(trans, k, offset, sectors,
flags, BCH_DATA_btree);
case KEY_TYPE_extent:
case KEY_TYPE_reflink_v:
return bch2_trans_mark_extent(trans, k, offset, sectors,
flags, BCH_DATA_user);
case KEY_TYPE_stripe:
return bch2_trans_mark_stripe(trans, old, new, flags);
case KEY_TYPE_inode: {
int nr = (new.k->type == KEY_TYPE_inode) -
(old.k->type == KEY_TYPE_inode);
if (nr) {
d = replicas_deltas_realloc(trans, 0);
d->nr_inodes += nr;
}
return 0;
}
case KEY_TYPE_reservation: {
unsigned replicas = bkey_s_c_to_reservation(k).v->nr_replicas;
d = replicas_deltas_realloc(trans, 0);
sectors *= replicas;
replicas = clamp_t(unsigned, replicas, 1,
ARRAY_SIZE(d->persistent_reserved));
d->persistent_reserved[replicas - 1] += sectors;
return 0;
}
case KEY_TYPE_reflink_p:
return bch2_trans_mark_reflink_p(trans,
bkey_s_c_to_reflink_p(k),
offset, sectors, flags);
default:
return 0;
}
}
int bch2_trans_mark_update(struct btree_trans *trans,
struct btree_iter *iter,
struct bkey_i *new,
unsigned flags)
{
struct bkey_s_c old;
int ret;
if (unlikely(flags & BTREE_TRIGGER_NORUN))
return 0;
if (!btree_node_type_needs_gc(iter->btree_id))
return 0;
if (!btree_node_type_is_extents(iter->btree_id)) {
/* iterators should be uptodate, shouldn't get errors here: */
if (btree_iter_type(iter) != BTREE_ITER_CACHED) {
old = bch2_btree_iter_peek_slot(iter);
BUG_ON(bkey_err(old));
} else {
struct bkey_cached *ck = (void *) iter->l[0].b;
BUG_ON(!ck->valid);
old = bkey_i_to_s_c(ck->k);
}
if (old.k->type == new->k.type) {
ret = bch2_trans_mark_key(trans, old, bkey_i_to_s_c(new), 0, 0,
BTREE_TRIGGER_INSERT|BTREE_TRIGGER_OVERWRITE|flags);
} else {
ret = bch2_trans_mark_key(trans, old, bkey_i_to_s_c(new), 0, 0,
BTREE_TRIGGER_INSERT|flags) ?:
bch2_trans_mark_key(trans, old, bkey_i_to_s_c(new), 0, 0,
BTREE_TRIGGER_OVERWRITE|flags);
}
} else {
struct btree_iter *copy;
struct bkey _old;
EBUG_ON(btree_iter_type(iter) == BTREE_ITER_CACHED);
bkey_init(&_old);
old = (struct bkey_s_c) { &_old, NULL };
ret = bch2_trans_mark_key(trans, old, bkey_i_to_s_c(new),
0, new->k.size,
BTREE_TRIGGER_INSERT);
if (ret)
return ret;
copy = bch2_trans_copy_iter(trans, iter);
for_each_btree_key_continue(copy, 0, old, ret) {
unsigned offset = 0;
s64 sectors = -((s64) old.k->size);
flags |= BTREE_TRIGGER_OVERWRITE;
if (bkey_cmp(new->k.p, bkey_start_pos(old.k)) <= 0)
break;
switch (bch2_extent_overlap(&new->k, old.k)) {
case BCH_EXTENT_OVERLAP_ALL:
offset = 0;
sectors = -((s64) old.k->size);
break;
case BCH_EXTENT_OVERLAP_BACK:
offset = bkey_start_offset(&new->k) -
bkey_start_offset(old.k);
sectors = bkey_start_offset(&new->k) -
old.k->p.offset;
break;
case BCH_EXTENT_OVERLAP_FRONT:
offset = 0;
sectors = bkey_start_offset(old.k) -
new->k.p.offset;
break;
case BCH_EXTENT_OVERLAP_MIDDLE:
offset = bkey_start_offset(&new->k) -
bkey_start_offset(old.k);
sectors = -((s64) new->k.size);
flags |= BTREE_TRIGGER_OVERWRITE_SPLIT;
break;
}
BUG_ON(sectors >= 0);
ret = bch2_trans_mark_key(trans, old, bkey_i_to_s_c(new),
offset, sectors, flags);
if (ret)
break;
}
bch2_trans_iter_put(trans, copy);
}
return ret;
}
static int __bch2_trans_mark_metadata_bucket(struct btree_trans *trans,
struct bch_dev *ca, size_t b,
enum bch_data_type type,
unsigned sectors)
{
struct bch_fs *c = trans->c;
struct btree_iter *iter;
struct bkey_alloc_unpacked u;
struct bkey_alloc_buf *a;
struct bch_extent_ptr ptr = {
.dev = ca->dev_idx,
.offset = bucket_to_sector(ca, b),
};
int ret = 0;
a = bch2_trans_start_alloc_update(trans, &iter, &ptr, &u);
if (IS_ERR(a))
return PTR_ERR(a);
if (u.data_type && u.data_type != type) {
bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK,
"bucket %llu:%llu gen %u different types of data in same bucket: %s, %s\n"
"while marking %s",
iter->pos.inode, iter->pos.offset, u.gen,
bch2_data_types[u.data_type],
bch2_data_types[type],
bch2_data_types[type]);
ret = -EIO;
goto out;
}
if ((unsigned) (u.dirty_sectors + sectors) > ca->mi.bucket_size) {
bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK,
"bucket %llu:%llu gen %u data type %s sector count overflow: %u + %u > %u\n"
"while marking %s",
iter->pos.inode, iter->pos.offset, u.gen,
bch2_data_types[u.data_type ?: type],
u.dirty_sectors, sectors, ca->mi.bucket_size,
bch2_data_types[type]);
ret = -EIO;
goto out;
}
if (u.data_type == type &&
u.dirty_sectors == sectors)
goto out;
u.data_type = type;
u.dirty_sectors = sectors;
bch2_alloc_pack(c, a, u);
bch2_trans_update(trans, iter, &a->k, 0);
out:
bch2_trans_iter_put(trans, iter);
return ret;
}
int bch2_trans_mark_metadata_bucket(struct btree_trans *trans,
struct disk_reservation *res,
struct bch_dev *ca, size_t b,
enum bch_data_type type,
unsigned sectors)
{
return __bch2_trans_do(trans, res, NULL, 0,
__bch2_trans_mark_metadata_bucket(trans, ca, b, BCH_DATA_journal,
ca->mi.bucket_size));
}
static int bch2_trans_mark_metadata_sectors(struct btree_trans *trans,
struct disk_reservation *res,
struct bch_dev *ca,
u64 start, u64 end,
enum bch_data_type type,
u64 *bucket, unsigned *bucket_sectors)
{
int ret;
do {
u64 b = sector_to_bucket(ca, start);
unsigned sectors =
min_t(u64, bucket_to_sector(ca, b + 1), end) - start;
if (b != *bucket) {
if (*bucket_sectors) {
ret = bch2_trans_mark_metadata_bucket(trans, res, ca,
*bucket, type, *bucket_sectors);
if (ret)
return ret;
}
*bucket = b;
*bucket_sectors = 0;
}
*bucket_sectors += sectors;
start += sectors;
} while (!ret && start < end);
return 0;
}
static int __bch2_trans_mark_dev_sb(struct btree_trans *trans,
struct disk_reservation *res,
struct bch_dev *ca)
{
struct bch_sb_layout *layout = &ca->disk_sb.sb->layout;
u64 bucket = 0;
unsigned i, bucket_sectors = 0;
int ret;
for (i = 0; i < layout->nr_superblocks; i++) {
u64 offset = le64_to_cpu(layout->sb_offset[i]);
if (offset == BCH_SB_SECTOR) {
ret = bch2_trans_mark_metadata_sectors(trans, res, ca,
0, BCH_SB_SECTOR,
BCH_DATA_sb, &bucket, &bucket_sectors);
if (ret)
return ret;
}
ret = bch2_trans_mark_metadata_sectors(trans, res, ca, offset,
offset + (1 << layout->sb_max_size_bits),
BCH_DATA_sb, &bucket, &bucket_sectors);
if (ret)
return ret;
}
if (bucket_sectors) {
ret = bch2_trans_mark_metadata_bucket(trans, res, ca,
bucket, BCH_DATA_sb, bucket_sectors);
if (ret)
return ret;
}
for (i = 0; i < ca->journal.nr; i++) {
ret = bch2_trans_mark_metadata_bucket(trans, res, ca,
ca->journal.buckets[i],
BCH_DATA_journal, ca->mi.bucket_size);
if (ret)
return ret;
}
return 0;
}
int bch2_trans_mark_dev_sb(struct bch_fs *c,
struct disk_reservation *res,
struct bch_dev *ca)
{
return bch2_trans_do(c, res, NULL, 0,
__bch2_trans_mark_dev_sb(&trans, res, ca));
}
/* Disk reservations: */
#define SECTORS_CACHE 1024
int bch2_disk_reservation_add(struct bch_fs *c, struct disk_reservation *res,
u64 sectors, int flags)
{
struct bch_fs_pcpu *pcpu;
u64 old, v, get;
s64 sectors_available;
int ret;
percpu_down_read(&c->mark_lock);
preempt_disable();
pcpu = this_cpu_ptr(c->pcpu);
if (sectors <= pcpu->sectors_available)
goto out;
v = atomic64_read(&c->sectors_available);
do {
old = v;
get = min((u64) sectors + SECTORS_CACHE, old);
if (get < sectors) {
preempt_enable();
goto recalculate;
}
} while ((v = atomic64_cmpxchg(&c->sectors_available,
old, old - get)) != old);
pcpu->sectors_available += get;
out:
pcpu->sectors_available -= sectors;
this_cpu_add(*c->online_reserved, sectors);
res->sectors += sectors;
preempt_enable();
percpu_up_read(&c->mark_lock);
return 0;
recalculate:
mutex_lock(&c->sectors_available_lock);
percpu_u64_set(&c->pcpu->sectors_available, 0);
sectors_available = avail_factor(__bch2_fs_usage_read_short(c).free);
if (sectors <= sectors_available ||
(flags & BCH_DISK_RESERVATION_NOFAIL)) {
atomic64_set(&c->sectors_available,
max_t(s64, 0, sectors_available - sectors));
this_cpu_add(*c->online_reserved, sectors);
res->sectors += sectors;
ret = 0;
} else {
atomic64_set(&c->sectors_available, sectors_available);
ret = -ENOSPC;
}
mutex_unlock(&c->sectors_available_lock);
percpu_up_read(&c->mark_lock);
return ret;
}
/* Startup/shutdown: */
static void buckets_free_rcu(struct rcu_head *rcu)
{
struct bucket_array *buckets =
container_of(rcu, struct bucket_array, rcu);
kvpfree(buckets,
sizeof(struct bucket_array) +
buckets->nbuckets * sizeof(struct bucket));
}
int bch2_dev_buckets_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets)
{
struct bucket_array *buckets = NULL, *old_buckets = NULL;
unsigned long *buckets_nouse = NULL;
alloc_fifo free[RESERVE_NR];
alloc_fifo free_inc;
alloc_heap alloc_heap;
size_t btree_reserve = DIV_ROUND_UP(BTREE_NODE_RESERVE,
ca->mi.bucket_size / c->opts.btree_node_size);
/* XXX: these should be tunable */
size_t reserve_none = max_t(size_t, 1, nbuckets >> 9);
size_t copygc_reserve = max_t(size_t, 2, nbuckets >> 6);
size_t free_inc_nr = max(max_t(size_t, 1, nbuckets >> 12),
btree_reserve * 2);
bool resize = ca->buckets[0] != NULL;
int ret = -ENOMEM;
unsigned i;
memset(&free, 0, sizeof(free));
memset(&free_inc, 0, sizeof(free_inc));
memset(&alloc_heap, 0, sizeof(alloc_heap));
if (!(buckets = kvpmalloc(sizeof(struct bucket_array) +
nbuckets * sizeof(struct bucket),
GFP_KERNEL|__GFP_ZERO)) ||
!(buckets_nouse = kvpmalloc(BITS_TO_LONGS(nbuckets) *
sizeof(unsigned long),
GFP_KERNEL|__GFP_ZERO)) ||
!init_fifo(&free[RESERVE_MOVINGGC],
copygc_reserve, GFP_KERNEL) ||
!init_fifo(&free[RESERVE_NONE], reserve_none, GFP_KERNEL) ||
!init_fifo(&free_inc, free_inc_nr, GFP_KERNEL) ||
!init_heap(&alloc_heap, ALLOC_SCAN_BATCH(ca) << 1, GFP_KERNEL))
goto err;
buckets->first_bucket = ca->mi.first_bucket;
buckets->nbuckets = nbuckets;
bch2_copygc_stop(c);
if (resize) {
down_write(&c->gc_lock);
down_write(&ca->bucket_lock);
percpu_down_write(&c->mark_lock);
}
old_buckets = bucket_array(ca);
if (resize) {
size_t n = min(buckets->nbuckets, old_buckets->nbuckets);
memcpy(buckets->b,
old_buckets->b,
n * sizeof(struct bucket));
memcpy(buckets_nouse,
ca->buckets_nouse,
BITS_TO_LONGS(n) * sizeof(unsigned long));
}
rcu_assign_pointer(ca->buckets[0], buckets);
buckets = old_buckets;
swap(ca->buckets_nouse, buckets_nouse);
if (resize) {
percpu_up_write(&c->mark_lock);
up_write(&c->gc_lock);
}
spin_lock(&c->freelist_lock);
for (i = 0; i < RESERVE_NR; i++) {
fifo_move(&free[i], &ca->free[i]);
swap(ca->free[i], free[i]);
}
fifo_move(&free_inc, &ca->free_inc);
swap(ca->free_inc, free_inc);
spin_unlock(&c->freelist_lock);
/* with gc lock held, alloc_heap can't be in use: */
swap(ca->alloc_heap, alloc_heap);
nbuckets = ca->mi.nbuckets;
if (resize)
up_write(&ca->bucket_lock);
ret = 0;
err:
free_heap(&alloc_heap);
free_fifo(&free_inc);
for (i = 0; i < RESERVE_NR; i++)
free_fifo(&free[i]);
kvpfree(buckets_nouse,
BITS_TO_LONGS(nbuckets) * sizeof(unsigned long));
if (buckets)
call_rcu(&old_buckets->rcu, buckets_free_rcu);
return ret;
}
void bch2_dev_buckets_free(struct bch_dev *ca)
{
unsigned i;
free_heap(&ca->alloc_heap);
free_fifo(&ca->free_inc);
for (i = 0; i < RESERVE_NR; i++)
free_fifo(&ca->free[i]);
kvpfree(ca->buckets_nouse,
BITS_TO_LONGS(ca->mi.nbuckets) * sizeof(unsigned long));
kvpfree(rcu_dereference_protected(ca->buckets[0], 1),
sizeof(struct bucket_array) +
ca->mi.nbuckets * sizeof(struct bucket));
for (i = 0; i < ARRAY_SIZE(ca->usage); i++)
free_percpu(ca->usage[i]);
kfree(ca->usage_base);
}
int bch2_dev_buckets_alloc(struct bch_fs *c, struct bch_dev *ca)
{
unsigned i;
ca->usage_base = kzalloc(sizeof(struct bch_dev_usage), GFP_KERNEL);
if (!ca->usage_base)
return -ENOMEM;
for (i = 0; i < ARRAY_SIZE(ca->usage); i++) {
ca->usage[i] = alloc_percpu(struct bch_dev_usage);
if (!ca->usage[i])
return -ENOMEM;
}
return bch2_dev_buckets_resize(c, ca, ca->mi.nbuckets);;
}