linux/net/mctp/test/route-test.c
Jeremy Kerr d192eaf57f net: mctp: tests: Add a test for proper tag creation on local output
Ensure we have the correct key parameters on sending a message.

Signed-off-by: Jeremy Kerr <jk@codeconstruct.com.au>
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2024-02-22 13:32:55 +01:00

1070 lines
26 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include <kunit/test.h>
#include "utils.h"
struct mctp_test_route {
struct mctp_route rt;
struct sk_buff_head pkts;
};
static int mctp_test_route_output(struct mctp_route *rt, struct sk_buff *skb)
{
struct mctp_test_route *test_rt = container_of(rt, struct mctp_test_route, rt);
skb_queue_tail(&test_rt->pkts, skb);
return 0;
}
/* local version of mctp_route_alloc() */
static struct mctp_test_route *mctp_route_test_alloc(void)
{
struct mctp_test_route *rt;
rt = kzalloc(sizeof(*rt), GFP_KERNEL);
if (!rt)
return NULL;
INIT_LIST_HEAD(&rt->rt.list);
refcount_set(&rt->rt.refs, 1);
rt->rt.output = mctp_test_route_output;
skb_queue_head_init(&rt->pkts);
return rt;
}
static struct mctp_test_route *mctp_test_create_route(struct net *net,
struct mctp_dev *dev,
mctp_eid_t eid,
unsigned int mtu)
{
struct mctp_test_route *rt;
rt = mctp_route_test_alloc();
if (!rt)
return NULL;
rt->rt.min = eid;
rt->rt.max = eid;
rt->rt.mtu = mtu;
rt->rt.type = RTN_UNSPEC;
if (dev)
mctp_dev_hold(dev);
rt->rt.dev = dev;
list_add_rcu(&rt->rt.list, &net->mctp.routes);
return rt;
}
static void mctp_test_route_destroy(struct kunit *test,
struct mctp_test_route *rt)
{
unsigned int refs;
rtnl_lock();
list_del_rcu(&rt->rt.list);
rtnl_unlock();
skb_queue_purge(&rt->pkts);
if (rt->rt.dev)
mctp_dev_put(rt->rt.dev);
refs = refcount_read(&rt->rt.refs);
KUNIT_ASSERT_EQ_MSG(test, refs, 1, "route ref imbalance");
kfree_rcu(&rt->rt, rcu);
}
static void mctp_test_skb_set_dev(struct sk_buff *skb,
struct mctp_test_dev *dev)
{
struct mctp_skb_cb *cb;
cb = mctp_cb(skb);
cb->net = READ_ONCE(dev->mdev->net);
skb->dev = dev->ndev;
}
static struct sk_buff *mctp_test_create_skb(const struct mctp_hdr *hdr,
unsigned int data_len)
{
size_t hdr_len = sizeof(*hdr);
struct sk_buff *skb;
unsigned int i;
u8 *buf;
skb = alloc_skb(hdr_len + data_len, GFP_KERNEL);
if (!skb)
return NULL;
__mctp_cb(skb);
memcpy(skb_put(skb, hdr_len), hdr, hdr_len);
buf = skb_put(skb, data_len);
for (i = 0; i < data_len; i++)
buf[i] = i & 0xff;
return skb;
}
static struct sk_buff *__mctp_test_create_skb_data(const struct mctp_hdr *hdr,
const void *data,
size_t data_len)
{
size_t hdr_len = sizeof(*hdr);
struct sk_buff *skb;
skb = alloc_skb(hdr_len + data_len, GFP_KERNEL);
if (!skb)
return NULL;
__mctp_cb(skb);
memcpy(skb_put(skb, hdr_len), hdr, hdr_len);
memcpy(skb_put(skb, data_len), data, data_len);
return skb;
}
#define mctp_test_create_skb_data(h, d) \
__mctp_test_create_skb_data(h, d, sizeof(*d))
struct mctp_frag_test {
unsigned int mtu;
unsigned int msgsize;
unsigned int n_frags;
};
static void mctp_test_fragment(struct kunit *test)
{
const struct mctp_frag_test *params;
int rc, i, n, mtu, msgsize;
struct mctp_test_route *rt;
struct sk_buff *skb;
struct mctp_hdr hdr;
u8 seq;
params = test->param_value;
mtu = params->mtu;
msgsize = params->msgsize;
hdr.ver = 1;
hdr.src = 8;
hdr.dest = 10;
hdr.flags_seq_tag = MCTP_HDR_FLAG_TO;
skb = mctp_test_create_skb(&hdr, msgsize);
KUNIT_ASSERT_TRUE(test, skb);
rt = mctp_test_create_route(&init_net, NULL, 10, mtu);
KUNIT_ASSERT_TRUE(test, rt);
rc = mctp_do_fragment_route(&rt->rt, skb, mtu, MCTP_TAG_OWNER);
KUNIT_EXPECT_FALSE(test, rc);
n = rt->pkts.qlen;
KUNIT_EXPECT_EQ(test, n, params->n_frags);
for (i = 0;; i++) {
struct mctp_hdr *hdr2;
struct sk_buff *skb2;
u8 tag_mask, seq2;
bool first, last;
first = i == 0;
last = i == (n - 1);
skb2 = skb_dequeue(&rt->pkts);
if (!skb2)
break;
hdr2 = mctp_hdr(skb2);
tag_mask = MCTP_HDR_TAG_MASK | MCTP_HDR_FLAG_TO;
KUNIT_EXPECT_EQ(test, hdr2->ver, hdr.ver);
KUNIT_EXPECT_EQ(test, hdr2->src, hdr.src);
KUNIT_EXPECT_EQ(test, hdr2->dest, hdr.dest);
KUNIT_EXPECT_EQ(test, hdr2->flags_seq_tag & tag_mask,
hdr.flags_seq_tag & tag_mask);
KUNIT_EXPECT_EQ(test,
!!(hdr2->flags_seq_tag & MCTP_HDR_FLAG_SOM), first);
KUNIT_EXPECT_EQ(test,
!!(hdr2->flags_seq_tag & MCTP_HDR_FLAG_EOM), last);
seq2 = (hdr2->flags_seq_tag >> MCTP_HDR_SEQ_SHIFT) &
MCTP_HDR_SEQ_MASK;
if (first) {
seq = seq2;
} else {
seq++;
KUNIT_EXPECT_EQ(test, seq2, seq & MCTP_HDR_SEQ_MASK);
}
if (!last)
KUNIT_EXPECT_EQ(test, skb2->len, mtu);
else
KUNIT_EXPECT_LE(test, skb2->len, mtu);
kfree_skb(skb2);
}
mctp_test_route_destroy(test, rt);
}
static const struct mctp_frag_test mctp_frag_tests[] = {
{.mtu = 68, .msgsize = 63, .n_frags = 1},
{.mtu = 68, .msgsize = 64, .n_frags = 1},
{.mtu = 68, .msgsize = 65, .n_frags = 2},
{.mtu = 68, .msgsize = 66, .n_frags = 2},
{.mtu = 68, .msgsize = 127, .n_frags = 2},
{.mtu = 68, .msgsize = 128, .n_frags = 2},
{.mtu = 68, .msgsize = 129, .n_frags = 3},
{.mtu = 68, .msgsize = 130, .n_frags = 3},
};
static void mctp_frag_test_to_desc(const struct mctp_frag_test *t, char *desc)
{
sprintf(desc, "mtu %d len %d -> %d frags",
t->msgsize, t->mtu, t->n_frags);
}
KUNIT_ARRAY_PARAM(mctp_frag, mctp_frag_tests, mctp_frag_test_to_desc);
struct mctp_rx_input_test {
struct mctp_hdr hdr;
bool input;
};
static void mctp_test_rx_input(struct kunit *test)
{
const struct mctp_rx_input_test *params;
struct mctp_test_route *rt;
struct mctp_test_dev *dev;
struct sk_buff *skb;
params = test->param_value;
dev = mctp_test_create_dev();
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, dev);
rt = mctp_test_create_route(&init_net, dev->mdev, 8, 68);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, rt);
skb = mctp_test_create_skb(&params->hdr, 1);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, skb);
mctp_pkttype_receive(skb, dev->ndev, &mctp_packet_type, NULL);
KUNIT_EXPECT_EQ(test, !!rt->pkts.qlen, params->input);
mctp_test_route_destroy(test, rt);
mctp_test_destroy_dev(dev);
}
#define RX_HDR(_ver, _src, _dest, _fst) \
{ .ver = _ver, .src = _src, .dest = _dest, .flags_seq_tag = _fst }
/* we have a route for EID 8 only */
static const struct mctp_rx_input_test mctp_rx_input_tests[] = {
{ .hdr = RX_HDR(1, 10, 8, 0), .input = true },
{ .hdr = RX_HDR(1, 10, 9, 0), .input = false }, /* no input route */
{ .hdr = RX_HDR(2, 10, 8, 0), .input = false }, /* invalid version */
};
static void mctp_rx_input_test_to_desc(const struct mctp_rx_input_test *t,
char *desc)
{
sprintf(desc, "{%x,%x,%x,%x}", t->hdr.ver, t->hdr.src, t->hdr.dest,
t->hdr.flags_seq_tag);
}
KUNIT_ARRAY_PARAM(mctp_rx_input, mctp_rx_input_tests,
mctp_rx_input_test_to_desc);
/* set up a local dev, route on EID 8, and a socket listening on type 0 */
static void __mctp_route_test_init(struct kunit *test,
struct mctp_test_dev **devp,
struct mctp_test_route **rtp,
struct socket **sockp,
unsigned int netid)
{
struct sockaddr_mctp addr = {0};
struct mctp_test_route *rt;
struct mctp_test_dev *dev;
struct socket *sock;
int rc;
dev = mctp_test_create_dev();
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, dev);
if (netid != MCTP_NET_ANY)
WRITE_ONCE(dev->mdev->net, netid);
rt = mctp_test_create_route(&init_net, dev->mdev, 8, 68);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, rt);
rc = sock_create_kern(&init_net, AF_MCTP, SOCK_DGRAM, 0, &sock);
KUNIT_ASSERT_EQ(test, rc, 0);
addr.smctp_family = AF_MCTP;
addr.smctp_network = netid;
addr.smctp_addr.s_addr = 8;
addr.smctp_type = 0;
rc = kernel_bind(sock, (struct sockaddr *)&addr, sizeof(addr));
KUNIT_ASSERT_EQ(test, rc, 0);
*rtp = rt;
*devp = dev;
*sockp = sock;
}
static void __mctp_route_test_fini(struct kunit *test,
struct mctp_test_dev *dev,
struct mctp_test_route *rt,
struct socket *sock)
{
sock_release(sock);
mctp_test_route_destroy(test, rt);
mctp_test_destroy_dev(dev);
}
struct mctp_route_input_sk_test {
struct mctp_hdr hdr;
u8 type;
bool deliver;
};
static void mctp_test_route_input_sk(struct kunit *test)
{
const struct mctp_route_input_sk_test *params;
struct sk_buff *skb, *skb2;
struct mctp_test_route *rt;
struct mctp_test_dev *dev;
struct socket *sock;
int rc;
params = test->param_value;
__mctp_route_test_init(test, &dev, &rt, &sock, MCTP_NET_ANY);
skb = mctp_test_create_skb_data(&params->hdr, &params->type);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, skb);
mctp_test_skb_set_dev(skb, dev);
rc = mctp_route_input(&rt->rt, skb);
if (params->deliver) {
KUNIT_EXPECT_EQ(test, rc, 0);
skb2 = skb_recv_datagram(sock->sk, MSG_DONTWAIT, &rc);
KUNIT_EXPECT_NOT_ERR_OR_NULL(test, skb2);
KUNIT_EXPECT_EQ(test, skb->len, 1);
skb_free_datagram(sock->sk, skb2);
} else {
KUNIT_EXPECT_NE(test, rc, 0);
skb2 = skb_recv_datagram(sock->sk, MSG_DONTWAIT, &rc);
KUNIT_EXPECT_NULL(test, skb2);
}
__mctp_route_test_fini(test, dev, rt, sock);
}
#define FL_S (MCTP_HDR_FLAG_SOM)
#define FL_E (MCTP_HDR_FLAG_EOM)
#define FL_TO (MCTP_HDR_FLAG_TO)
#define FL_T(t) ((t) & MCTP_HDR_TAG_MASK)
static const struct mctp_route_input_sk_test mctp_route_input_sk_tests[] = {
{ .hdr = RX_HDR(1, 10, 8, FL_S | FL_E | FL_TO), .type = 0, .deliver = true },
{ .hdr = RX_HDR(1, 10, 8, FL_S | FL_E | FL_TO), .type = 1, .deliver = false },
{ .hdr = RX_HDR(1, 10, 8, FL_S | FL_E), .type = 0, .deliver = false },
{ .hdr = RX_HDR(1, 10, 8, FL_E | FL_TO), .type = 0, .deliver = false },
{ .hdr = RX_HDR(1, 10, 8, FL_TO), .type = 0, .deliver = false },
{ .hdr = RX_HDR(1, 10, 8, 0), .type = 0, .deliver = false },
};
static void mctp_route_input_sk_to_desc(const struct mctp_route_input_sk_test *t,
char *desc)
{
sprintf(desc, "{%x,%x,%x,%x} type %d", t->hdr.ver, t->hdr.src,
t->hdr.dest, t->hdr.flags_seq_tag, t->type);
}
KUNIT_ARRAY_PARAM(mctp_route_input_sk, mctp_route_input_sk_tests,
mctp_route_input_sk_to_desc);
struct mctp_route_input_sk_reasm_test {
const char *name;
struct mctp_hdr hdrs[4];
int n_hdrs;
int rx_len;
};
static void mctp_test_route_input_sk_reasm(struct kunit *test)
{
const struct mctp_route_input_sk_reasm_test *params;
struct sk_buff *skb, *skb2;
struct mctp_test_route *rt;
struct mctp_test_dev *dev;
struct socket *sock;
int i, rc;
u8 c;
params = test->param_value;
__mctp_route_test_init(test, &dev, &rt, &sock, MCTP_NET_ANY);
for (i = 0; i < params->n_hdrs; i++) {
c = i;
skb = mctp_test_create_skb_data(&params->hdrs[i], &c);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, skb);
mctp_test_skb_set_dev(skb, dev);
rc = mctp_route_input(&rt->rt, skb);
}
skb2 = skb_recv_datagram(sock->sk, MSG_DONTWAIT, &rc);
if (params->rx_len) {
KUNIT_EXPECT_NOT_ERR_OR_NULL(test, skb2);
KUNIT_EXPECT_EQ(test, skb2->len, params->rx_len);
skb_free_datagram(sock->sk, skb2);
} else {
KUNIT_EXPECT_NULL(test, skb2);
}
__mctp_route_test_fini(test, dev, rt, sock);
}
#define RX_FRAG(f, s) RX_HDR(1, 10, 8, FL_TO | (f) | ((s) << MCTP_HDR_SEQ_SHIFT))
static const struct mctp_route_input_sk_reasm_test mctp_route_input_sk_reasm_tests[] = {
{
.name = "single packet",
.hdrs = {
RX_FRAG(FL_S | FL_E, 0),
},
.n_hdrs = 1,
.rx_len = 1,
},
{
.name = "single packet, offset seq",
.hdrs = {
RX_FRAG(FL_S | FL_E, 1),
},
.n_hdrs = 1,
.rx_len = 1,
},
{
.name = "start & end packets",
.hdrs = {
RX_FRAG(FL_S, 0),
RX_FRAG(FL_E, 1),
},
.n_hdrs = 2,
.rx_len = 2,
},
{
.name = "start & end packets, offset seq",
.hdrs = {
RX_FRAG(FL_S, 1),
RX_FRAG(FL_E, 2),
},
.n_hdrs = 2,
.rx_len = 2,
},
{
.name = "start & end packets, out of order",
.hdrs = {
RX_FRAG(FL_E, 1),
RX_FRAG(FL_S, 0),
},
.n_hdrs = 2,
.rx_len = 0,
},
{
.name = "start, middle & end packets",
.hdrs = {
RX_FRAG(FL_S, 0),
RX_FRAG(0, 1),
RX_FRAG(FL_E, 2),
},
.n_hdrs = 3,
.rx_len = 3,
},
{
.name = "missing seq",
.hdrs = {
RX_FRAG(FL_S, 0),
RX_FRAG(FL_E, 2),
},
.n_hdrs = 2,
.rx_len = 0,
},
{
.name = "seq wrap",
.hdrs = {
RX_FRAG(FL_S, 3),
RX_FRAG(FL_E, 0),
},
.n_hdrs = 2,
.rx_len = 2,
},
};
static void mctp_route_input_sk_reasm_to_desc(
const struct mctp_route_input_sk_reasm_test *t,
char *desc)
{
sprintf(desc, "%s", t->name);
}
KUNIT_ARRAY_PARAM(mctp_route_input_sk_reasm, mctp_route_input_sk_reasm_tests,
mctp_route_input_sk_reasm_to_desc);
struct mctp_route_input_sk_keys_test {
const char *name;
mctp_eid_t key_peer_addr;
mctp_eid_t key_local_addr;
u8 key_tag;
struct mctp_hdr hdr;
bool deliver;
};
/* test packet rx in the presence of various key configurations */
static void mctp_test_route_input_sk_keys(struct kunit *test)
{
const struct mctp_route_input_sk_keys_test *params;
struct mctp_test_route *rt;
struct sk_buff *skb, *skb2;
struct mctp_test_dev *dev;
struct mctp_sk_key *key;
struct netns_mctp *mns;
struct mctp_sock *msk;
struct socket *sock;
unsigned long flags;
unsigned int net;
int rc;
u8 c;
params = test->param_value;
dev = mctp_test_create_dev();
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, dev);
net = READ_ONCE(dev->mdev->net);
rt = mctp_test_create_route(&init_net, dev->mdev, 8, 68);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, rt);
rc = sock_create_kern(&init_net, AF_MCTP, SOCK_DGRAM, 0, &sock);
KUNIT_ASSERT_EQ(test, rc, 0);
msk = container_of(sock->sk, struct mctp_sock, sk);
mns = &sock_net(sock->sk)->mctp;
/* set the incoming tag according to test params */
key = mctp_key_alloc(msk, net, params->key_local_addr,
params->key_peer_addr, params->key_tag,
GFP_KERNEL);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, key);
spin_lock_irqsave(&mns->keys_lock, flags);
mctp_reserve_tag(&init_net, key, msk);
spin_unlock_irqrestore(&mns->keys_lock, flags);
/* create packet and route */
c = 0;
skb = mctp_test_create_skb_data(&params->hdr, &c);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, skb);
mctp_test_skb_set_dev(skb, dev);
rc = mctp_route_input(&rt->rt, skb);
/* (potentially) receive message */
skb2 = skb_recv_datagram(sock->sk, MSG_DONTWAIT, &rc);
if (params->deliver)
KUNIT_EXPECT_NOT_ERR_OR_NULL(test, skb2);
else
KUNIT_EXPECT_PTR_EQ(test, skb2, NULL);
if (skb2)
skb_free_datagram(sock->sk, skb2);
mctp_key_unref(key);
__mctp_route_test_fini(test, dev, rt, sock);
}
static const struct mctp_route_input_sk_keys_test mctp_route_input_sk_keys_tests[] = {
{
.name = "direct match",
.key_peer_addr = 9,
.key_local_addr = 8,
.key_tag = 1,
.hdr = RX_HDR(1, 9, 8, FL_S | FL_E | FL_T(1)),
.deliver = true,
},
{
.name = "flipped src/dest",
.key_peer_addr = 8,
.key_local_addr = 9,
.key_tag = 1,
.hdr = RX_HDR(1, 9, 8, FL_S | FL_E | FL_T(1)),
.deliver = false,
},
{
.name = "peer addr mismatch",
.key_peer_addr = 9,
.key_local_addr = 8,
.key_tag = 1,
.hdr = RX_HDR(1, 10, 8, FL_S | FL_E | FL_T(1)),
.deliver = false,
},
{
.name = "tag value mismatch",
.key_peer_addr = 9,
.key_local_addr = 8,
.key_tag = 1,
.hdr = RX_HDR(1, 9, 8, FL_S | FL_E | FL_T(2)),
.deliver = false,
},
{
.name = "TO mismatch",
.key_peer_addr = 9,
.key_local_addr = 8,
.key_tag = 1,
.hdr = RX_HDR(1, 9, 8, FL_S | FL_E | FL_T(1) | FL_TO),
.deliver = false,
},
{
.name = "broadcast response",
.key_peer_addr = MCTP_ADDR_ANY,
.key_local_addr = 8,
.key_tag = 1,
.hdr = RX_HDR(1, 11, 8, FL_S | FL_E | FL_T(1)),
.deliver = true,
},
{
.name = "any local match",
.key_peer_addr = 12,
.key_local_addr = MCTP_ADDR_ANY,
.key_tag = 1,
.hdr = RX_HDR(1, 12, 8, FL_S | FL_E | FL_T(1)),
.deliver = true,
},
};
static void mctp_route_input_sk_keys_to_desc(
const struct mctp_route_input_sk_keys_test *t,
char *desc)
{
sprintf(desc, "%s", t->name);
}
KUNIT_ARRAY_PARAM(mctp_route_input_sk_keys, mctp_route_input_sk_keys_tests,
mctp_route_input_sk_keys_to_desc);
struct test_net {
unsigned int netid;
struct mctp_test_dev *dev;
struct mctp_test_route *rt;
struct socket *sock;
struct sk_buff *skb;
struct mctp_sk_key *key;
struct {
u8 type;
unsigned int data;
} msg;
};
static void
mctp_test_route_input_multiple_nets_bind_init(struct kunit *test,
struct test_net *t)
{
struct mctp_hdr hdr = RX_HDR(1, 9, 8, FL_S | FL_E | FL_T(1) | FL_TO);
t->msg.data = t->netid;
__mctp_route_test_init(test, &t->dev, &t->rt, &t->sock, t->netid);
t->skb = mctp_test_create_skb_data(&hdr, &t->msg);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, t->skb);
mctp_test_skb_set_dev(t->skb, t->dev);
}
static void
mctp_test_route_input_multiple_nets_bind_fini(struct kunit *test,
struct test_net *t)
{
__mctp_route_test_fini(test, t->dev, t->rt, t->sock);
}
/* Test that skbs from different nets (otherwise identical) get routed to their
* corresponding socket via the sockets' bind()
*/
static void mctp_test_route_input_multiple_nets_bind(struct kunit *test)
{
struct sk_buff *rx_skb1, *rx_skb2;
struct test_net t1, t2;
int rc;
t1.netid = 1;
t2.netid = 2;
t1.msg.type = 0;
t2.msg.type = 0;
mctp_test_route_input_multiple_nets_bind_init(test, &t1);
mctp_test_route_input_multiple_nets_bind_init(test, &t2);
rc = mctp_route_input(&t1.rt->rt, t1.skb);
KUNIT_ASSERT_EQ(test, rc, 0);
rc = mctp_route_input(&t2.rt->rt, t2.skb);
KUNIT_ASSERT_EQ(test, rc, 0);
rx_skb1 = skb_recv_datagram(t1.sock->sk, MSG_DONTWAIT, &rc);
KUNIT_EXPECT_NOT_ERR_OR_NULL(test, rx_skb1);
KUNIT_EXPECT_EQ(test, rx_skb1->len, sizeof(t1.msg));
KUNIT_EXPECT_EQ(test,
*(unsigned int *)skb_pull(rx_skb1, sizeof(t1.msg.data)),
t1.netid);
kfree_skb(rx_skb1);
rx_skb2 = skb_recv_datagram(t2.sock->sk, MSG_DONTWAIT, &rc);
KUNIT_EXPECT_NOT_ERR_OR_NULL(test, rx_skb2);
KUNIT_EXPECT_EQ(test, rx_skb2->len, sizeof(t2.msg));
KUNIT_EXPECT_EQ(test,
*(unsigned int *)skb_pull(rx_skb2, sizeof(t2.msg.data)),
t2.netid);
kfree_skb(rx_skb2);
mctp_test_route_input_multiple_nets_bind_fini(test, &t1);
mctp_test_route_input_multiple_nets_bind_fini(test, &t2);
}
static void
mctp_test_route_input_multiple_nets_key_init(struct kunit *test,
struct test_net *t)
{
struct mctp_hdr hdr = RX_HDR(1, 9, 8, FL_S | FL_E | FL_T(1));
struct mctp_sock *msk;
struct netns_mctp *mns;
unsigned long flags;
t->msg.data = t->netid;
__mctp_route_test_init(test, &t->dev, &t->rt, &t->sock, t->netid);
msk = container_of(t->sock->sk, struct mctp_sock, sk);
t->key = mctp_key_alloc(msk, t->netid, hdr.dest, hdr.src, 1, GFP_KERNEL);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, t->key);
mns = &sock_net(t->sock->sk)->mctp;
spin_lock_irqsave(&mns->keys_lock, flags);
mctp_reserve_tag(&init_net, t->key, msk);
spin_unlock_irqrestore(&mns->keys_lock, flags);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, t->key);
t->skb = mctp_test_create_skb_data(&hdr, &t->msg);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, t->skb);
mctp_test_skb_set_dev(t->skb, t->dev);
}
static void
mctp_test_route_input_multiple_nets_key_fini(struct kunit *test,
struct test_net *t)
{
mctp_key_unref(t->key);
__mctp_route_test_fini(test, t->dev, t->rt, t->sock);
}
/* test that skbs from different nets (otherwise identical) get routed to their
* corresponding socket via the sk_key
*/
static void mctp_test_route_input_multiple_nets_key(struct kunit *test)
{
struct sk_buff *rx_skb1, *rx_skb2;
struct test_net t1, t2;
int rc;
t1.netid = 1;
t2.netid = 2;
/* use type 1 which is not bound */
t1.msg.type = 1;
t2.msg.type = 1;
mctp_test_route_input_multiple_nets_key_init(test, &t1);
mctp_test_route_input_multiple_nets_key_init(test, &t2);
rc = mctp_route_input(&t1.rt->rt, t1.skb);
KUNIT_ASSERT_EQ(test, rc, 0);
rc = mctp_route_input(&t2.rt->rt, t2.skb);
KUNIT_ASSERT_EQ(test, rc, 0);
rx_skb1 = skb_recv_datagram(t1.sock->sk, MSG_DONTWAIT, &rc);
KUNIT_EXPECT_NOT_ERR_OR_NULL(test, rx_skb1);
KUNIT_EXPECT_EQ(test, rx_skb1->len, sizeof(t1.msg));
KUNIT_EXPECT_EQ(test,
*(unsigned int *)skb_pull(rx_skb1, sizeof(t1.msg.data)),
t1.netid);
kfree_skb(rx_skb1);
rx_skb2 = skb_recv_datagram(t2.sock->sk, MSG_DONTWAIT, &rc);
KUNIT_EXPECT_NOT_ERR_OR_NULL(test, rx_skb2);
KUNIT_EXPECT_EQ(test, rx_skb2->len, sizeof(t2.msg));
KUNIT_EXPECT_EQ(test,
*(unsigned int *)skb_pull(rx_skb2, sizeof(t2.msg.data)),
t2.netid);
kfree_skb(rx_skb2);
mctp_test_route_input_multiple_nets_key_fini(test, &t1);
mctp_test_route_input_multiple_nets_key_fini(test, &t2);
}
#if IS_ENABLED(CONFIG_MCTP_FLOWS)
static void mctp_test_flow_init(struct kunit *test,
struct mctp_test_dev **devp,
struct mctp_test_route **rtp,
struct socket **sock,
struct sk_buff **skbp,
unsigned int len)
{
struct mctp_test_route *rt;
struct mctp_test_dev *dev;
struct sk_buff *skb;
/* we have a slightly odd routing setup here; the test route
* is for EID 8, which is our local EID. We don't do a routing
* lookup, so that's fine - all we require is a path through
* mctp_local_output, which will call rt->output on whatever
* route we provide
*/
__mctp_route_test_init(test, &dev, &rt, sock, MCTP_NET_ANY);
/* Assign a single EID. ->addrs is freed on mctp netdev release */
dev->mdev->addrs = kmalloc(sizeof(u8), GFP_KERNEL);
dev->mdev->num_addrs = 1;
dev->mdev->addrs[0] = 8;
skb = alloc_skb(len + sizeof(struct mctp_hdr) + 1, GFP_KERNEL);
KUNIT_ASSERT_TRUE(test, skb);
__mctp_cb(skb);
skb_reserve(skb, sizeof(struct mctp_hdr) + 1);
memset(skb_put(skb, len), 0, len);
/* take a ref for the route, we'll decrement in local output */
refcount_inc(&rt->rt.refs);
*devp = dev;
*rtp = rt;
*skbp = skb;
}
static void mctp_test_flow_fini(struct kunit *test,
struct mctp_test_dev *dev,
struct mctp_test_route *rt,
struct socket *sock)
{
__mctp_route_test_fini(test, dev, rt, sock);
}
/* test that an outgoing skb has the correct MCTP extension data set */
static void mctp_test_packet_flow(struct kunit *test)
{
struct sk_buff *skb, *skb2;
struct mctp_test_route *rt;
struct mctp_test_dev *dev;
struct mctp_flow *flow;
struct socket *sock;
u8 dst = 8;
int n, rc;
mctp_test_flow_init(test, &dev, &rt, &sock, &skb, 30);
rc = mctp_local_output(sock->sk, &rt->rt, skb, dst, MCTP_TAG_OWNER);
KUNIT_ASSERT_EQ(test, rc, 0);
n = rt->pkts.qlen;
KUNIT_ASSERT_EQ(test, n, 1);
skb2 = skb_dequeue(&rt->pkts);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, skb2);
flow = skb_ext_find(skb2, SKB_EXT_MCTP);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, flow);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, flow->key);
KUNIT_ASSERT_PTR_EQ(test, flow->key->sk, sock->sk);
kfree_skb(skb2);
mctp_test_flow_fini(test, dev, rt, sock);
}
/* test that outgoing skbs, after fragmentation, all have the correct MCTP
* extension data set.
*/
static void mctp_test_fragment_flow(struct kunit *test)
{
struct mctp_flow *flows[2];
struct sk_buff *tx_skbs[2];
struct mctp_test_route *rt;
struct mctp_test_dev *dev;
struct sk_buff *skb;
struct socket *sock;
u8 dst = 8;
int n, rc;
mctp_test_flow_init(test, &dev, &rt, &sock, &skb, 100);
rc = mctp_local_output(sock->sk, &rt->rt, skb, dst, MCTP_TAG_OWNER);
KUNIT_ASSERT_EQ(test, rc, 0);
n = rt->pkts.qlen;
KUNIT_ASSERT_EQ(test, n, 2);
/* both resulting packets should have the same flow data */
tx_skbs[0] = skb_dequeue(&rt->pkts);
tx_skbs[1] = skb_dequeue(&rt->pkts);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, tx_skbs[0]);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, tx_skbs[1]);
flows[0] = skb_ext_find(tx_skbs[0], SKB_EXT_MCTP);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, flows[0]);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, flows[0]->key);
KUNIT_ASSERT_PTR_EQ(test, flows[0]->key->sk, sock->sk);
flows[1] = skb_ext_find(tx_skbs[1], SKB_EXT_MCTP);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, flows[1]);
KUNIT_ASSERT_PTR_EQ(test, flows[1]->key, flows[0]->key);
kfree_skb(tx_skbs[0]);
kfree_skb(tx_skbs[1]);
mctp_test_flow_fini(test, dev, rt, sock);
}
#else
static void mctp_test_packet_flow(struct kunit *test)
{
kunit_skip(test, "Requires CONFIG_MCTP_FLOWS=y");
}
static void mctp_test_fragment_flow(struct kunit *test)
{
kunit_skip(test, "Requires CONFIG_MCTP_FLOWS=y");
}
#endif
/* Test that outgoing skbs cause a suitable tag to be created */
static void mctp_test_route_output_key_create(struct kunit *test)
{
const unsigned int netid = 50;
const u8 dst = 26, src = 15;
struct mctp_test_route *rt;
struct mctp_test_dev *dev;
struct mctp_sk_key *key;
struct netns_mctp *mns;
unsigned long flags;
struct socket *sock;
struct sk_buff *skb;
bool empty, single;
const int len = 2;
int rc;
dev = mctp_test_create_dev();
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, dev);
WRITE_ONCE(dev->mdev->net, netid);
rt = mctp_test_create_route(&init_net, dev->mdev, dst, 68);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, rt);
rc = sock_create_kern(&init_net, AF_MCTP, SOCK_DGRAM, 0, &sock);
KUNIT_ASSERT_EQ(test, rc, 0);
dev->mdev->addrs = kmalloc(sizeof(u8), GFP_KERNEL);
dev->mdev->num_addrs = 1;
dev->mdev->addrs[0] = src;
skb = alloc_skb(sizeof(struct mctp_hdr) + 1 + len, GFP_KERNEL);
KUNIT_ASSERT_TRUE(test, skb);
__mctp_cb(skb);
skb_reserve(skb, sizeof(struct mctp_hdr) + 1 + len);
memset(skb_put(skb, len), 0, len);
refcount_inc(&rt->rt.refs);
mns = &sock_net(sock->sk)->mctp;
/* We assume we're starting from an empty keys list, which requires
* preceding tests to clean up correctly!
*/
spin_lock_irqsave(&mns->keys_lock, flags);
empty = hlist_empty(&mns->keys);
spin_unlock_irqrestore(&mns->keys_lock, flags);
KUNIT_ASSERT_TRUE(test, empty);
rc = mctp_local_output(sock->sk, &rt->rt, skb, dst, MCTP_TAG_OWNER);
KUNIT_ASSERT_EQ(test, rc, 0);
key = NULL;
single = false;
spin_lock_irqsave(&mns->keys_lock, flags);
if (!hlist_empty(&mns->keys)) {
key = hlist_entry(mns->keys.first, struct mctp_sk_key, hlist);
single = hlist_is_singular_node(&key->hlist, &mns->keys);
}
spin_unlock_irqrestore(&mns->keys_lock, flags);
KUNIT_ASSERT_NOT_NULL(test, key);
KUNIT_ASSERT_TRUE(test, single);
KUNIT_EXPECT_EQ(test, key->net, netid);
KUNIT_EXPECT_EQ(test, key->local_addr, src);
KUNIT_EXPECT_EQ(test, key->peer_addr, dst);
/* key has incoming tag, so inverse of what we sent */
KUNIT_EXPECT_FALSE(test, key->tag & MCTP_TAG_OWNER);
sock_release(sock);
mctp_test_route_destroy(test, rt);
mctp_test_destroy_dev(dev);
}
static struct kunit_case mctp_test_cases[] = {
KUNIT_CASE_PARAM(mctp_test_fragment, mctp_frag_gen_params),
KUNIT_CASE_PARAM(mctp_test_rx_input, mctp_rx_input_gen_params),
KUNIT_CASE_PARAM(mctp_test_route_input_sk, mctp_route_input_sk_gen_params),
KUNIT_CASE_PARAM(mctp_test_route_input_sk_reasm,
mctp_route_input_sk_reasm_gen_params),
KUNIT_CASE_PARAM(mctp_test_route_input_sk_keys,
mctp_route_input_sk_keys_gen_params),
KUNIT_CASE(mctp_test_route_input_multiple_nets_bind),
KUNIT_CASE(mctp_test_route_input_multiple_nets_key),
KUNIT_CASE(mctp_test_packet_flow),
KUNIT_CASE(mctp_test_fragment_flow),
KUNIT_CASE(mctp_test_route_output_key_create),
{}
};
static struct kunit_suite mctp_test_suite = {
.name = "mctp",
.test_cases = mctp_test_cases,
};
kunit_test_suite(mctp_test_suite);