linux/drivers/net/ethernet/sfc/rx_common.c
Björn Töpel b02e5a0ebb xsk: Propagate napi_id to XDP socket Rx path
Add napi_id to the xdp_rxq_info structure, and make sure the XDP
socket pick up the napi_id in the Rx path. The napi_id is used to find
the corresponding NAPI structure for socket busy polling.

Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Ilias Apalodimas <ilias.apalodimas@linaro.org>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Acked-by: Tariq Toukan <tariqt@nvidia.com>
Link: https://lore.kernel.org/bpf/20201130185205.196029-7-bjorn.topel@gmail.com
2020-12-01 00:09:25 +01:00

1092 lines
31 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/****************************************************************************
* Driver for Solarflare network controllers and boards
* Copyright 2018 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#include "net_driver.h"
#include <linux/module.h>
#include <linux/iommu.h>
#include "efx.h"
#include "nic.h"
#include "rx_common.h"
/* This is the percentage fill level below which new RX descriptors
* will be added to the RX descriptor ring.
*/
static unsigned int rx_refill_threshold;
module_param(rx_refill_threshold, uint, 0444);
MODULE_PARM_DESC(rx_refill_threshold,
"RX descriptor ring refill threshold (%)");
/* Number of RX buffers to recycle pages for. When creating the RX page recycle
* ring, this number is divided by the number of buffers per page to calculate
* the number of pages to store in the RX page recycle ring.
*/
#define EFX_RECYCLE_RING_SIZE_IOMMU 4096
#define EFX_RECYCLE_RING_SIZE_NOIOMMU (2 * EFX_RX_PREFERRED_BATCH)
/* RX maximum head room required.
*
* This must be at least 1 to prevent overflow, plus one packet-worth
* to allow pipelined receives.
*/
#define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS)
/* Check the RX page recycle ring for a page that can be reused. */
static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue)
{
struct efx_nic *efx = rx_queue->efx;
struct efx_rx_page_state *state;
unsigned int index;
struct page *page;
index = rx_queue->page_remove & rx_queue->page_ptr_mask;
page = rx_queue->page_ring[index];
if (page == NULL)
return NULL;
rx_queue->page_ring[index] = NULL;
/* page_remove cannot exceed page_add. */
if (rx_queue->page_remove != rx_queue->page_add)
++rx_queue->page_remove;
/* If page_count is 1 then we hold the only reference to this page. */
if (page_count(page) == 1) {
++rx_queue->page_recycle_count;
return page;
} else {
state = page_address(page);
dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
PAGE_SIZE << efx->rx_buffer_order,
DMA_FROM_DEVICE);
put_page(page);
++rx_queue->page_recycle_failed;
}
return NULL;
}
/* Attempt to recycle the page if there is an RX recycle ring; the page can
* only be added if this is the final RX buffer, to prevent pages being used in
* the descriptor ring and appearing in the recycle ring simultaneously.
*/
static void efx_recycle_rx_page(struct efx_channel *channel,
struct efx_rx_buffer *rx_buf)
{
struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
struct efx_nic *efx = rx_queue->efx;
struct page *page = rx_buf->page;
unsigned int index;
/* Only recycle the page after processing the final buffer. */
if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE))
return;
index = rx_queue->page_add & rx_queue->page_ptr_mask;
if (rx_queue->page_ring[index] == NULL) {
unsigned int read_index = rx_queue->page_remove &
rx_queue->page_ptr_mask;
/* The next slot in the recycle ring is available, but
* increment page_remove if the read pointer currently
* points here.
*/
if (read_index == index)
++rx_queue->page_remove;
rx_queue->page_ring[index] = page;
++rx_queue->page_add;
return;
}
++rx_queue->page_recycle_full;
efx_unmap_rx_buffer(efx, rx_buf);
put_page(rx_buf->page);
}
/* Recycle the pages that are used by buffers that have just been received. */
void efx_recycle_rx_pages(struct efx_channel *channel,
struct efx_rx_buffer *rx_buf,
unsigned int n_frags)
{
struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
do {
efx_recycle_rx_page(channel, rx_buf);
rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
} while (--n_frags);
}
void efx_discard_rx_packet(struct efx_channel *channel,
struct efx_rx_buffer *rx_buf,
unsigned int n_frags)
{
struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
efx_recycle_rx_pages(channel, rx_buf, n_frags);
efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
}
static void efx_init_rx_recycle_ring(struct efx_rx_queue *rx_queue)
{
unsigned int bufs_in_recycle_ring, page_ring_size;
struct efx_nic *efx = rx_queue->efx;
/* Set the RX recycle ring size */
#ifdef CONFIG_PPC64
bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
#else
if (iommu_present(&pci_bus_type))
bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
else
bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_NOIOMMU;
#endif /* CONFIG_PPC64 */
page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring /
efx->rx_bufs_per_page);
rx_queue->page_ring = kcalloc(page_ring_size,
sizeof(*rx_queue->page_ring), GFP_KERNEL);
rx_queue->page_ptr_mask = page_ring_size - 1;
}
static void efx_fini_rx_recycle_ring(struct efx_rx_queue *rx_queue)
{
struct efx_nic *efx = rx_queue->efx;
int i;
/* Unmap and release the pages in the recycle ring. Remove the ring. */
for (i = 0; i <= rx_queue->page_ptr_mask; i++) {
struct page *page = rx_queue->page_ring[i];
struct efx_rx_page_state *state;
if (page == NULL)
continue;
state = page_address(page);
dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
PAGE_SIZE << efx->rx_buffer_order,
DMA_FROM_DEVICE);
put_page(page);
}
kfree(rx_queue->page_ring);
rx_queue->page_ring = NULL;
}
static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
struct efx_rx_buffer *rx_buf)
{
/* Release the page reference we hold for the buffer. */
if (rx_buf->page)
put_page(rx_buf->page);
/* If this is the last buffer in a page, unmap and free it. */
if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) {
efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
efx_free_rx_buffers(rx_queue, rx_buf, 1);
}
rx_buf->page = NULL;
}
int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
{
struct efx_nic *efx = rx_queue->efx;
unsigned int entries;
int rc;
/* Create the smallest power-of-two aligned ring */
entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
rx_queue->ptr_mask = entries - 1;
netif_dbg(efx, probe, efx->net_dev,
"creating RX queue %d size %#x mask %#x\n",
efx_rx_queue_index(rx_queue), efx->rxq_entries,
rx_queue->ptr_mask);
/* Allocate RX buffers */
rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
GFP_KERNEL);
if (!rx_queue->buffer)
return -ENOMEM;
rc = efx_nic_probe_rx(rx_queue);
if (rc) {
kfree(rx_queue->buffer);
rx_queue->buffer = NULL;
}
return rc;
}
void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
{
unsigned int max_fill, trigger, max_trigger;
struct efx_nic *efx = rx_queue->efx;
int rc = 0;
netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
"initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
/* Initialise ptr fields */
rx_queue->added_count = 0;
rx_queue->notified_count = 0;
rx_queue->removed_count = 0;
rx_queue->min_fill = -1U;
efx_init_rx_recycle_ring(rx_queue);
rx_queue->page_remove = 0;
rx_queue->page_add = rx_queue->page_ptr_mask + 1;
rx_queue->page_recycle_count = 0;
rx_queue->page_recycle_failed = 0;
rx_queue->page_recycle_full = 0;
/* Initialise limit fields */
max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
max_trigger =
max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page;
if (rx_refill_threshold != 0) {
trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
if (trigger > max_trigger)
trigger = max_trigger;
} else {
trigger = max_trigger;
}
rx_queue->max_fill = max_fill;
rx_queue->fast_fill_trigger = trigger;
rx_queue->refill_enabled = true;
/* Initialise XDP queue information */
rc = xdp_rxq_info_reg(&rx_queue->xdp_rxq_info, efx->net_dev,
rx_queue->core_index, 0);
if (rc) {
netif_err(efx, rx_err, efx->net_dev,
"Failure to initialise XDP queue information rc=%d\n",
rc);
efx->xdp_rxq_info_failed = true;
} else {
rx_queue->xdp_rxq_info_valid = true;
}
/* Set up RX descriptor ring */
efx_nic_init_rx(rx_queue);
}
void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
{
struct efx_rx_buffer *rx_buf;
int i;
netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
"shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
del_timer_sync(&rx_queue->slow_fill);
/* Release RX buffers from the current read ptr to the write ptr */
if (rx_queue->buffer) {
for (i = rx_queue->removed_count; i < rx_queue->added_count;
i++) {
unsigned int index = i & rx_queue->ptr_mask;
rx_buf = efx_rx_buffer(rx_queue, index);
efx_fini_rx_buffer(rx_queue, rx_buf);
}
}
efx_fini_rx_recycle_ring(rx_queue);
if (rx_queue->xdp_rxq_info_valid)
xdp_rxq_info_unreg(&rx_queue->xdp_rxq_info);
rx_queue->xdp_rxq_info_valid = false;
}
void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
{
netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
"destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
efx_nic_remove_rx(rx_queue);
kfree(rx_queue->buffer);
rx_queue->buffer = NULL;
}
/* Unmap a DMA-mapped page. This function is only called for the final RX
* buffer in a page.
*/
void efx_unmap_rx_buffer(struct efx_nic *efx,
struct efx_rx_buffer *rx_buf)
{
struct page *page = rx_buf->page;
if (page) {
struct efx_rx_page_state *state = page_address(page);
dma_unmap_page(&efx->pci_dev->dev,
state->dma_addr,
PAGE_SIZE << efx->rx_buffer_order,
DMA_FROM_DEVICE);
}
}
void efx_free_rx_buffers(struct efx_rx_queue *rx_queue,
struct efx_rx_buffer *rx_buf,
unsigned int num_bufs)
{
do {
if (rx_buf->page) {
put_page(rx_buf->page);
rx_buf->page = NULL;
}
rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
} while (--num_bufs);
}
void efx_rx_slow_fill(struct timer_list *t)
{
struct efx_rx_queue *rx_queue = from_timer(rx_queue, t, slow_fill);
/* Post an event to cause NAPI to run and refill the queue */
efx_nic_generate_fill_event(rx_queue);
++rx_queue->slow_fill_count;
}
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
{
mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(10));
}
/* efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers
*
* @rx_queue: Efx RX queue
*
* This allocates a batch of pages, maps them for DMA, and populates
* struct efx_rx_buffers for each one. Return a negative error code or
* 0 on success. If a single page can be used for multiple buffers,
* then the page will either be inserted fully, or not at all.
*/
static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue, bool atomic)
{
unsigned int page_offset, index, count;
struct efx_nic *efx = rx_queue->efx;
struct efx_rx_page_state *state;
struct efx_rx_buffer *rx_buf;
dma_addr_t dma_addr;
struct page *page;
count = 0;
do {
page = efx_reuse_page(rx_queue);
if (page == NULL) {
page = alloc_pages(__GFP_COMP |
(atomic ? GFP_ATOMIC : GFP_KERNEL),
efx->rx_buffer_order);
if (unlikely(page == NULL))
return -ENOMEM;
dma_addr =
dma_map_page(&efx->pci_dev->dev, page, 0,
PAGE_SIZE << efx->rx_buffer_order,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
dma_addr))) {
__free_pages(page, efx->rx_buffer_order);
return -EIO;
}
state = page_address(page);
state->dma_addr = dma_addr;
} else {
state = page_address(page);
dma_addr = state->dma_addr;
}
dma_addr += sizeof(struct efx_rx_page_state);
page_offset = sizeof(struct efx_rx_page_state);
do {
index = rx_queue->added_count & rx_queue->ptr_mask;
rx_buf = efx_rx_buffer(rx_queue, index);
rx_buf->dma_addr = dma_addr + efx->rx_ip_align +
EFX_XDP_HEADROOM;
rx_buf->page = page;
rx_buf->page_offset = page_offset + efx->rx_ip_align +
EFX_XDP_HEADROOM;
rx_buf->len = efx->rx_dma_len;
rx_buf->flags = 0;
++rx_queue->added_count;
get_page(page);
dma_addr += efx->rx_page_buf_step;
page_offset += efx->rx_page_buf_step;
} while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE);
rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE;
} while (++count < efx->rx_pages_per_batch);
return 0;
}
void efx_rx_config_page_split(struct efx_nic *efx)
{
efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align +
EFX_XDP_HEADROOM + EFX_XDP_TAILROOM,
EFX_RX_BUF_ALIGNMENT);
efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 :
((PAGE_SIZE - sizeof(struct efx_rx_page_state)) /
efx->rx_page_buf_step);
efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) /
efx->rx_bufs_per_page;
efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH,
efx->rx_bufs_per_page);
}
/* efx_fast_push_rx_descriptors - push new RX descriptors quickly
* @rx_queue: RX descriptor queue
*
* This will aim to fill the RX descriptor queue up to
* @rx_queue->@max_fill. If there is insufficient atomic
* memory to do so, a slow fill will be scheduled.
*
* The caller must provide serialisation (none is used here). In practise,
* this means this function must run from the NAPI handler, or be called
* when NAPI is disabled.
*/
void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue, bool atomic)
{
struct efx_nic *efx = rx_queue->efx;
unsigned int fill_level, batch_size;
int space, rc = 0;
if (!rx_queue->refill_enabled)
return;
/* Calculate current fill level, and exit if we don't need to fill */
fill_level = (rx_queue->added_count - rx_queue->removed_count);
EFX_WARN_ON_ONCE_PARANOID(fill_level > rx_queue->efx->rxq_entries);
if (fill_level >= rx_queue->fast_fill_trigger)
goto out;
/* Record minimum fill level */
if (unlikely(fill_level < rx_queue->min_fill)) {
if (fill_level)
rx_queue->min_fill = fill_level;
}
batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page;
space = rx_queue->max_fill - fill_level;
EFX_WARN_ON_ONCE_PARANOID(space < batch_size);
netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
"RX queue %d fast-filling descriptor ring from"
" level %d to level %d\n",
efx_rx_queue_index(rx_queue), fill_level,
rx_queue->max_fill);
do {
rc = efx_init_rx_buffers(rx_queue, atomic);
if (unlikely(rc)) {
/* Ensure that we don't leave the rx queue empty */
efx_schedule_slow_fill(rx_queue);
goto out;
}
} while ((space -= batch_size) >= batch_size);
netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
"RX queue %d fast-filled descriptor ring "
"to level %d\n", efx_rx_queue_index(rx_queue),
rx_queue->added_count - rx_queue->removed_count);
out:
if (rx_queue->notified_count != rx_queue->added_count)
efx_nic_notify_rx_desc(rx_queue);
}
/* Pass a received packet up through GRO. GRO can handle pages
* regardless of checksum state and skbs with a good checksum.
*/
void
efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf,
unsigned int n_frags, u8 *eh, __wsum csum)
{
struct napi_struct *napi = &channel->napi_str;
struct efx_nic *efx = channel->efx;
struct sk_buff *skb;
skb = napi_get_frags(napi);
if (unlikely(!skb)) {
struct efx_rx_queue *rx_queue;
rx_queue = efx_channel_get_rx_queue(channel);
efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
return;
}
if (efx->net_dev->features & NETIF_F_RXHASH &&
efx_rx_buf_hash_valid(efx, eh))
skb_set_hash(skb, efx_rx_buf_hash(efx, eh),
PKT_HASH_TYPE_L3);
if (csum) {
skb->csum = csum;
skb->ip_summed = CHECKSUM_COMPLETE;
} else {
skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
}
skb->csum_level = !!(rx_buf->flags & EFX_RX_PKT_CSUM_LEVEL);
for (;;) {
skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
rx_buf->page, rx_buf->page_offset,
rx_buf->len);
rx_buf->page = NULL;
skb->len += rx_buf->len;
if (skb_shinfo(skb)->nr_frags == n_frags)
break;
rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
}
skb->data_len = skb->len;
skb->truesize += n_frags * efx->rx_buffer_truesize;
skb_record_rx_queue(skb, channel->rx_queue.core_index);
napi_gro_frags(napi);
}
/* RSS contexts. We're using linked lists and crappy O(n) algorithms, because
* (a) this is an infrequent control-plane operation and (b) n is small (max 64)
*/
struct efx_rss_context *efx_alloc_rss_context_entry(struct efx_nic *efx)
{
struct list_head *head = &efx->rss_context.list;
struct efx_rss_context *ctx, *new;
u32 id = 1; /* Don't use zero, that refers to the master RSS context */
WARN_ON(!mutex_is_locked(&efx->rss_lock));
/* Search for first gap in the numbering */
list_for_each_entry(ctx, head, list) {
if (ctx->user_id != id)
break;
id++;
/* Check for wrap. If this happens, we have nearly 2^32
* allocated RSS contexts, which seems unlikely.
*/
if (WARN_ON_ONCE(!id))
return NULL;
}
/* Create the new entry */
new = kmalloc(sizeof(*new), GFP_KERNEL);
if (!new)
return NULL;
new->context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
new->rx_hash_udp_4tuple = false;
/* Insert the new entry into the gap */
new->user_id = id;
list_add_tail(&new->list, &ctx->list);
return new;
}
struct efx_rss_context *efx_find_rss_context_entry(struct efx_nic *efx, u32 id)
{
struct list_head *head = &efx->rss_context.list;
struct efx_rss_context *ctx;
WARN_ON(!mutex_is_locked(&efx->rss_lock));
list_for_each_entry(ctx, head, list)
if (ctx->user_id == id)
return ctx;
return NULL;
}
void efx_free_rss_context_entry(struct efx_rss_context *ctx)
{
list_del(&ctx->list);
kfree(ctx);
}
void efx_set_default_rx_indir_table(struct efx_nic *efx,
struct efx_rss_context *ctx)
{
size_t i;
for (i = 0; i < ARRAY_SIZE(ctx->rx_indir_table); i++)
ctx->rx_indir_table[i] =
ethtool_rxfh_indir_default(i, efx->rss_spread);
}
/**
* efx_filter_is_mc_recipient - test whether spec is a multicast recipient
* @spec: Specification to test
*
* Return: %true if the specification is a non-drop RX filter that
* matches a local MAC address I/G bit value of 1 or matches a local
* IPv4 or IPv6 address value in the respective multicast address
* range. Otherwise %false.
*/
bool efx_filter_is_mc_recipient(const struct efx_filter_spec *spec)
{
if (!(spec->flags & EFX_FILTER_FLAG_RX) ||
spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP)
return false;
if (spec->match_flags &
(EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_LOC_MAC_IG) &&
is_multicast_ether_addr(spec->loc_mac))
return true;
if ((spec->match_flags &
(EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
(EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
if (spec->ether_type == htons(ETH_P_IP) &&
ipv4_is_multicast(spec->loc_host[0]))
return true;
if (spec->ether_type == htons(ETH_P_IPV6) &&
((const u8 *)spec->loc_host)[0] == 0xff)
return true;
}
return false;
}
bool efx_filter_spec_equal(const struct efx_filter_spec *left,
const struct efx_filter_spec *right)
{
if ((left->match_flags ^ right->match_flags) |
((left->flags ^ right->flags) &
(EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
return false;
return memcmp(&left->outer_vid, &right->outer_vid,
sizeof(struct efx_filter_spec) -
offsetof(struct efx_filter_spec, outer_vid)) == 0;
}
u32 efx_filter_spec_hash(const struct efx_filter_spec *spec)
{
BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
return jhash2((const u32 *)&spec->outer_vid,
(sizeof(struct efx_filter_spec) -
offsetof(struct efx_filter_spec, outer_vid)) / 4,
0);
}
#ifdef CONFIG_RFS_ACCEL
bool efx_rps_check_rule(struct efx_arfs_rule *rule, unsigned int filter_idx,
bool *force)
{
if (rule->filter_id == EFX_ARFS_FILTER_ID_PENDING) {
/* ARFS is currently updating this entry, leave it */
return false;
}
if (rule->filter_id == EFX_ARFS_FILTER_ID_ERROR) {
/* ARFS tried and failed to update this, so it's probably out
* of date. Remove the filter and the ARFS rule entry.
*/
rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING;
*force = true;
return true;
} else if (WARN_ON(rule->filter_id != filter_idx)) { /* can't happen */
/* ARFS has moved on, so old filter is not needed. Since we did
* not mark the rule with EFX_ARFS_FILTER_ID_REMOVING, it will
* not be removed by efx_rps_hash_del() subsequently.
*/
*force = true;
return true;
}
/* Remove it iff ARFS wants to. */
return true;
}
static
struct hlist_head *efx_rps_hash_bucket(struct efx_nic *efx,
const struct efx_filter_spec *spec)
{
u32 hash = efx_filter_spec_hash(spec);
lockdep_assert_held(&efx->rps_hash_lock);
if (!efx->rps_hash_table)
return NULL;
return &efx->rps_hash_table[hash % EFX_ARFS_HASH_TABLE_SIZE];
}
struct efx_arfs_rule *efx_rps_hash_find(struct efx_nic *efx,
const struct efx_filter_spec *spec)
{
struct efx_arfs_rule *rule;
struct hlist_head *head;
struct hlist_node *node;
head = efx_rps_hash_bucket(efx, spec);
if (!head)
return NULL;
hlist_for_each(node, head) {
rule = container_of(node, struct efx_arfs_rule, node);
if (efx_filter_spec_equal(spec, &rule->spec))
return rule;
}
return NULL;
}
struct efx_arfs_rule *efx_rps_hash_add(struct efx_nic *efx,
const struct efx_filter_spec *spec,
bool *new)
{
struct efx_arfs_rule *rule;
struct hlist_head *head;
struct hlist_node *node;
head = efx_rps_hash_bucket(efx, spec);
if (!head)
return NULL;
hlist_for_each(node, head) {
rule = container_of(node, struct efx_arfs_rule, node);
if (efx_filter_spec_equal(spec, &rule->spec)) {
*new = false;
return rule;
}
}
rule = kmalloc(sizeof(*rule), GFP_ATOMIC);
*new = true;
if (rule) {
memcpy(&rule->spec, spec, sizeof(rule->spec));
hlist_add_head(&rule->node, head);
}
return rule;
}
void efx_rps_hash_del(struct efx_nic *efx, const struct efx_filter_spec *spec)
{
struct efx_arfs_rule *rule;
struct hlist_head *head;
struct hlist_node *node;
head = efx_rps_hash_bucket(efx, spec);
if (WARN_ON(!head))
return;
hlist_for_each(node, head) {
rule = container_of(node, struct efx_arfs_rule, node);
if (efx_filter_spec_equal(spec, &rule->spec)) {
/* Someone already reused the entry. We know that if
* this check doesn't fire (i.e. filter_id == REMOVING)
* then the REMOVING mark was put there by our caller,
* because caller is holding a lock on filter table and
* only holders of that lock set REMOVING.
*/
if (rule->filter_id != EFX_ARFS_FILTER_ID_REMOVING)
return;
hlist_del(node);
kfree(rule);
return;
}
}
/* We didn't find it. */
WARN_ON(1);
}
#endif
int efx_probe_filters(struct efx_nic *efx)
{
int rc;
mutex_lock(&efx->mac_lock);
down_write(&efx->filter_sem);
rc = efx->type->filter_table_probe(efx);
if (rc)
goto out_unlock;
#ifdef CONFIG_RFS_ACCEL
if (efx->type->offload_features & NETIF_F_NTUPLE) {
struct efx_channel *channel;
int i, success = 1;
efx_for_each_channel(channel, efx) {
channel->rps_flow_id =
kcalloc(efx->type->max_rx_ip_filters,
sizeof(*channel->rps_flow_id),
GFP_KERNEL);
if (!channel->rps_flow_id)
success = 0;
else
for (i = 0;
i < efx->type->max_rx_ip_filters;
++i)
channel->rps_flow_id[i] =
RPS_FLOW_ID_INVALID;
channel->rfs_expire_index = 0;
channel->rfs_filter_count = 0;
}
if (!success) {
efx_for_each_channel(channel, efx)
kfree(channel->rps_flow_id);
efx->type->filter_table_remove(efx);
rc = -ENOMEM;
goto out_unlock;
}
}
#endif
out_unlock:
up_write(&efx->filter_sem);
mutex_unlock(&efx->mac_lock);
return rc;
}
void efx_remove_filters(struct efx_nic *efx)
{
#ifdef CONFIG_RFS_ACCEL
struct efx_channel *channel;
efx_for_each_channel(channel, efx) {
cancel_delayed_work_sync(&channel->filter_work);
kfree(channel->rps_flow_id);
channel->rps_flow_id = NULL;
}
#endif
down_write(&efx->filter_sem);
efx->type->filter_table_remove(efx);
up_write(&efx->filter_sem);
}
#ifdef CONFIG_RFS_ACCEL
static void efx_filter_rfs_work(struct work_struct *data)
{
struct efx_async_filter_insertion *req = container_of(data, struct efx_async_filter_insertion,
work);
struct efx_nic *efx = netdev_priv(req->net_dev);
struct efx_channel *channel = efx_get_channel(efx, req->rxq_index);
int slot_idx = req - efx->rps_slot;
struct efx_arfs_rule *rule;
u16 arfs_id = 0;
int rc;
rc = efx->type->filter_insert(efx, &req->spec, true);
if (rc >= 0)
/* Discard 'priority' part of EF10+ filter ID (mcdi_filters) */
rc %= efx->type->max_rx_ip_filters;
if (efx->rps_hash_table) {
spin_lock_bh(&efx->rps_hash_lock);
rule = efx_rps_hash_find(efx, &req->spec);
/* The rule might have already gone, if someone else's request
* for the same spec was already worked and then expired before
* we got around to our work. In that case we have nothing
* tying us to an arfs_id, meaning that as soon as the filter
* is considered for expiry it will be removed.
*/
if (rule) {
if (rc < 0)
rule->filter_id = EFX_ARFS_FILTER_ID_ERROR;
else
rule->filter_id = rc;
arfs_id = rule->arfs_id;
}
spin_unlock_bh(&efx->rps_hash_lock);
}
if (rc >= 0) {
/* Remember this so we can check whether to expire the filter
* later.
*/
mutex_lock(&efx->rps_mutex);
if (channel->rps_flow_id[rc] == RPS_FLOW_ID_INVALID)
channel->rfs_filter_count++;
channel->rps_flow_id[rc] = req->flow_id;
mutex_unlock(&efx->rps_mutex);
if (req->spec.ether_type == htons(ETH_P_IP))
netif_info(efx, rx_status, efx->net_dev,
"steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d id %u]\n",
(req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
req->spec.rem_host, ntohs(req->spec.rem_port),
req->spec.loc_host, ntohs(req->spec.loc_port),
req->rxq_index, req->flow_id, rc, arfs_id);
else
netif_info(efx, rx_status, efx->net_dev,
"steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d id %u]\n",
(req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
req->spec.rem_host, ntohs(req->spec.rem_port),
req->spec.loc_host, ntohs(req->spec.loc_port),
req->rxq_index, req->flow_id, rc, arfs_id);
channel->n_rfs_succeeded++;
} else {
if (req->spec.ether_type == htons(ETH_P_IP))
netif_dbg(efx, rx_status, efx->net_dev,
"failed to steer %s %pI4:%u:%pI4:%u to queue %u [flow %u rc %d id %u]\n",
(req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
req->spec.rem_host, ntohs(req->spec.rem_port),
req->spec.loc_host, ntohs(req->spec.loc_port),
req->rxq_index, req->flow_id, rc, arfs_id);
else
netif_dbg(efx, rx_status, efx->net_dev,
"failed to steer %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u rc %d id %u]\n",
(req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
req->spec.rem_host, ntohs(req->spec.rem_port),
req->spec.loc_host, ntohs(req->spec.loc_port),
req->rxq_index, req->flow_id, rc, arfs_id);
channel->n_rfs_failed++;
/* We're overloading the NIC's filter tables, so let's do a
* chunk of extra expiry work.
*/
__efx_filter_rfs_expire(channel, min(channel->rfs_filter_count,
100u));
}
/* Release references */
clear_bit(slot_idx, &efx->rps_slot_map);
dev_put(req->net_dev);
}
int efx_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb,
u16 rxq_index, u32 flow_id)
{
struct efx_nic *efx = netdev_priv(net_dev);
struct efx_async_filter_insertion *req;
struct efx_arfs_rule *rule;
struct flow_keys fk;
int slot_idx;
bool new;
int rc;
/* find a free slot */
for (slot_idx = 0; slot_idx < EFX_RPS_MAX_IN_FLIGHT; slot_idx++)
if (!test_and_set_bit(slot_idx, &efx->rps_slot_map))
break;
if (slot_idx >= EFX_RPS_MAX_IN_FLIGHT)
return -EBUSY;
if (flow_id == RPS_FLOW_ID_INVALID) {
rc = -EINVAL;
goto out_clear;
}
if (!skb_flow_dissect_flow_keys(skb, &fk, 0)) {
rc = -EPROTONOSUPPORT;
goto out_clear;
}
if (fk.basic.n_proto != htons(ETH_P_IP) && fk.basic.n_proto != htons(ETH_P_IPV6)) {
rc = -EPROTONOSUPPORT;
goto out_clear;
}
if (fk.control.flags & FLOW_DIS_IS_FRAGMENT) {
rc = -EPROTONOSUPPORT;
goto out_clear;
}
req = efx->rps_slot + slot_idx;
efx_filter_init_rx(&req->spec, EFX_FILTER_PRI_HINT,
efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0,
rxq_index);
req->spec.match_flags =
EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT;
req->spec.ether_type = fk.basic.n_proto;
req->spec.ip_proto = fk.basic.ip_proto;
if (fk.basic.n_proto == htons(ETH_P_IP)) {
req->spec.rem_host[0] = fk.addrs.v4addrs.src;
req->spec.loc_host[0] = fk.addrs.v4addrs.dst;
} else {
memcpy(req->spec.rem_host, &fk.addrs.v6addrs.src,
sizeof(struct in6_addr));
memcpy(req->spec.loc_host, &fk.addrs.v6addrs.dst,
sizeof(struct in6_addr));
}
req->spec.rem_port = fk.ports.src;
req->spec.loc_port = fk.ports.dst;
if (efx->rps_hash_table) {
/* Add it to ARFS hash table */
spin_lock(&efx->rps_hash_lock);
rule = efx_rps_hash_add(efx, &req->spec, &new);
if (!rule) {
rc = -ENOMEM;
goto out_unlock;
}
if (new)
rule->arfs_id = efx->rps_next_id++ % RPS_NO_FILTER;
rc = rule->arfs_id;
/* Skip if existing or pending filter already does the right thing */
if (!new && rule->rxq_index == rxq_index &&
rule->filter_id >= EFX_ARFS_FILTER_ID_PENDING)
goto out_unlock;
rule->rxq_index = rxq_index;
rule->filter_id = EFX_ARFS_FILTER_ID_PENDING;
spin_unlock(&efx->rps_hash_lock);
} else {
/* Without an ARFS hash table, we just use arfs_id 0 for all
* filters. This means if multiple flows hash to the same
* flow_id, all but the most recently touched will be eligible
* for expiry.
*/
rc = 0;
}
/* Queue the request */
dev_hold(req->net_dev = net_dev);
INIT_WORK(&req->work, efx_filter_rfs_work);
req->rxq_index = rxq_index;
req->flow_id = flow_id;
schedule_work(&req->work);
return rc;
out_unlock:
spin_unlock(&efx->rps_hash_lock);
out_clear:
clear_bit(slot_idx, &efx->rps_slot_map);
return rc;
}
bool __efx_filter_rfs_expire(struct efx_channel *channel, unsigned int quota)
{
bool (*expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index);
struct efx_nic *efx = channel->efx;
unsigned int index, size, start;
u32 flow_id;
if (!mutex_trylock(&efx->rps_mutex))
return false;
expire_one = efx->type->filter_rfs_expire_one;
index = channel->rfs_expire_index;
start = index;
size = efx->type->max_rx_ip_filters;
while (quota) {
flow_id = channel->rps_flow_id[index];
if (flow_id != RPS_FLOW_ID_INVALID) {
quota--;
if (expire_one(efx, flow_id, index)) {
netif_info(efx, rx_status, efx->net_dev,
"expired filter %d [channel %u flow %u]\n",
index, channel->channel, flow_id);
channel->rps_flow_id[index] = RPS_FLOW_ID_INVALID;
channel->rfs_filter_count--;
}
}
if (++index == size)
index = 0;
/* If we were called with a quota that exceeds the total number
* of filters in the table (which shouldn't happen, but could
* if two callers race), ensure that we don't loop forever -
* stop when we've examined every row of the table.
*/
if (index == start)
break;
}
channel->rfs_expire_index = index;
mutex_unlock(&efx->rps_mutex);
return true;
}
#endif /* CONFIG_RFS_ACCEL */