linux/drivers/gpu/drm/amd/amdgpu/gmc_v8_0.c
Christian König f3368128ba drm/amdgpu: move validation of the VM size into the VM code
This moves validation of the VM size parameter into amdgpu_vm_adjust_size().

Signed-off-by: Christian König <christian.koenig@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2017-12-06 12:48:30 -05:00

1693 lines
47 KiB
C

/*
* Copyright 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <linux/firmware.h>
#include <drm/drmP.h>
#include "amdgpu.h"
#include "gmc_v8_0.h"
#include "amdgpu_ucode.h"
#include "gmc/gmc_8_1_d.h"
#include "gmc/gmc_8_1_sh_mask.h"
#include "bif/bif_5_0_d.h"
#include "bif/bif_5_0_sh_mask.h"
#include "oss/oss_3_0_d.h"
#include "oss/oss_3_0_sh_mask.h"
#include "dce/dce_10_0_d.h"
#include "dce/dce_10_0_sh_mask.h"
#include "vid.h"
#include "vi.h"
#include "amdgpu_atombios.h"
static void gmc_v8_0_set_gart_funcs(struct amdgpu_device *adev);
static void gmc_v8_0_set_irq_funcs(struct amdgpu_device *adev);
static int gmc_v8_0_wait_for_idle(void *handle);
MODULE_FIRMWARE("amdgpu/tonga_mc.bin");
MODULE_FIRMWARE("amdgpu/polaris11_mc.bin");
MODULE_FIRMWARE("amdgpu/polaris10_mc.bin");
MODULE_FIRMWARE("amdgpu/polaris12_mc.bin");
static const u32 golden_settings_tonga_a11[] =
{
mmMC_ARB_WTM_GRPWT_RD, 0x00000003, 0x00000000,
mmMC_HUB_RDREQ_DMIF_LIMIT, 0x0000007f, 0x00000028,
mmMC_HUB_WDP_UMC, 0x00007fb6, 0x00000991,
mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff,
};
static const u32 tonga_mgcg_cgcg_init[] =
{
mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
};
static const u32 golden_settings_fiji_a10[] =
{
mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff,
};
static const u32 fiji_mgcg_cgcg_init[] =
{
mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
};
static const u32 golden_settings_polaris11_a11[] =
{
mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff
};
static const u32 golden_settings_polaris10_a11[] =
{
mmMC_ARB_WTM_GRPWT_RD, 0x00000003, 0x00000000,
mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff
};
static const u32 cz_mgcg_cgcg_init[] =
{
mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
};
static const u32 stoney_mgcg_cgcg_init[] =
{
mmATC_MISC_CG, 0xffffffff, 0x000c0200,
mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
};
static const u32 golden_settings_stoney_common[] =
{
mmMC_HUB_RDREQ_UVD, MC_HUB_RDREQ_UVD__PRESCALE_MASK, 0x00000004,
mmMC_RD_GRP_OTH, MC_RD_GRP_OTH__UVD_MASK, 0x00600000
};
static void gmc_v8_0_init_golden_registers(struct amdgpu_device *adev)
{
switch (adev->asic_type) {
case CHIP_FIJI:
amdgpu_program_register_sequence(adev,
fiji_mgcg_cgcg_init,
ARRAY_SIZE(fiji_mgcg_cgcg_init));
amdgpu_program_register_sequence(adev,
golden_settings_fiji_a10,
ARRAY_SIZE(golden_settings_fiji_a10));
break;
case CHIP_TONGA:
amdgpu_program_register_sequence(adev,
tonga_mgcg_cgcg_init,
ARRAY_SIZE(tonga_mgcg_cgcg_init));
amdgpu_program_register_sequence(adev,
golden_settings_tonga_a11,
ARRAY_SIZE(golden_settings_tonga_a11));
break;
case CHIP_POLARIS11:
case CHIP_POLARIS12:
amdgpu_program_register_sequence(adev,
golden_settings_polaris11_a11,
ARRAY_SIZE(golden_settings_polaris11_a11));
break;
case CHIP_POLARIS10:
amdgpu_program_register_sequence(adev,
golden_settings_polaris10_a11,
ARRAY_SIZE(golden_settings_polaris10_a11));
break;
case CHIP_CARRIZO:
amdgpu_program_register_sequence(adev,
cz_mgcg_cgcg_init,
ARRAY_SIZE(cz_mgcg_cgcg_init));
break;
case CHIP_STONEY:
amdgpu_program_register_sequence(adev,
stoney_mgcg_cgcg_init,
ARRAY_SIZE(stoney_mgcg_cgcg_init));
amdgpu_program_register_sequence(adev,
golden_settings_stoney_common,
ARRAY_SIZE(golden_settings_stoney_common));
break;
default:
break;
}
}
static void gmc_v8_0_mc_stop(struct amdgpu_device *adev)
{
u32 blackout;
gmc_v8_0_wait_for_idle(adev);
blackout = RREG32(mmMC_SHARED_BLACKOUT_CNTL);
if (REG_GET_FIELD(blackout, MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE) != 1) {
/* Block CPU access */
WREG32(mmBIF_FB_EN, 0);
/* blackout the MC */
blackout = REG_SET_FIELD(blackout,
MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE, 1);
WREG32(mmMC_SHARED_BLACKOUT_CNTL, blackout);
}
/* wait for the MC to settle */
udelay(100);
}
static void gmc_v8_0_mc_resume(struct amdgpu_device *adev)
{
u32 tmp;
/* unblackout the MC */
tmp = RREG32(mmMC_SHARED_BLACKOUT_CNTL);
tmp = REG_SET_FIELD(tmp, MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE, 0);
WREG32(mmMC_SHARED_BLACKOUT_CNTL, tmp);
/* allow CPU access */
tmp = REG_SET_FIELD(0, BIF_FB_EN, FB_READ_EN, 1);
tmp = REG_SET_FIELD(tmp, BIF_FB_EN, FB_WRITE_EN, 1);
WREG32(mmBIF_FB_EN, tmp);
}
/**
* gmc_v8_0_init_microcode - load ucode images from disk
*
* @adev: amdgpu_device pointer
*
* Use the firmware interface to load the ucode images into
* the driver (not loaded into hw).
* Returns 0 on success, error on failure.
*/
static int gmc_v8_0_init_microcode(struct amdgpu_device *adev)
{
const char *chip_name;
char fw_name[30];
int err;
DRM_DEBUG("\n");
switch (adev->asic_type) {
case CHIP_TONGA:
chip_name = "tonga";
break;
case CHIP_POLARIS11:
chip_name = "polaris11";
break;
case CHIP_POLARIS10:
chip_name = "polaris10";
break;
case CHIP_POLARIS12:
chip_name = "polaris12";
break;
case CHIP_FIJI:
case CHIP_CARRIZO:
case CHIP_STONEY:
return 0;
default: BUG();
}
snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_mc.bin", chip_name);
err = request_firmware(&adev->mc.fw, fw_name, adev->dev);
if (err)
goto out;
err = amdgpu_ucode_validate(adev->mc.fw);
out:
if (err) {
pr_err("mc: Failed to load firmware \"%s\"\n", fw_name);
release_firmware(adev->mc.fw);
adev->mc.fw = NULL;
}
return err;
}
/**
* gmc_v8_0_tonga_mc_load_microcode - load tonga MC ucode into the hw
*
* @adev: amdgpu_device pointer
*
* Load the GDDR MC ucode into the hw (CIK).
* Returns 0 on success, error on failure.
*/
static int gmc_v8_0_tonga_mc_load_microcode(struct amdgpu_device *adev)
{
const struct mc_firmware_header_v1_0 *hdr;
const __le32 *fw_data = NULL;
const __le32 *io_mc_regs = NULL;
u32 running;
int i, ucode_size, regs_size;
/* Skip MC ucode loading on SR-IOV capable boards.
* vbios does this for us in asic_init in that case.
* Skip MC ucode loading on VF, because hypervisor will do that
* for this adaptor.
*/
if (amdgpu_sriov_bios(adev))
return 0;
if (!adev->mc.fw)
return -EINVAL;
hdr = (const struct mc_firmware_header_v1_0 *)adev->mc.fw->data;
amdgpu_ucode_print_mc_hdr(&hdr->header);
adev->mc.fw_version = le32_to_cpu(hdr->header.ucode_version);
regs_size = le32_to_cpu(hdr->io_debug_size_bytes) / (4 * 2);
io_mc_regs = (const __le32 *)
(adev->mc.fw->data + le32_to_cpu(hdr->io_debug_array_offset_bytes));
ucode_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
fw_data = (const __le32 *)
(adev->mc.fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes));
running = REG_GET_FIELD(RREG32(mmMC_SEQ_SUP_CNTL), MC_SEQ_SUP_CNTL, RUN);
if (running == 0) {
/* reset the engine and set to writable */
WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
WREG32(mmMC_SEQ_SUP_CNTL, 0x00000010);
/* load mc io regs */
for (i = 0; i < regs_size; i++) {
WREG32(mmMC_SEQ_IO_DEBUG_INDEX, le32_to_cpup(io_mc_regs++));
WREG32(mmMC_SEQ_IO_DEBUG_DATA, le32_to_cpup(io_mc_regs++));
}
/* load the MC ucode */
for (i = 0; i < ucode_size; i++)
WREG32(mmMC_SEQ_SUP_PGM, le32_to_cpup(fw_data++));
/* put the engine back into the active state */
WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
WREG32(mmMC_SEQ_SUP_CNTL, 0x00000004);
WREG32(mmMC_SEQ_SUP_CNTL, 0x00000001);
/* wait for training to complete */
for (i = 0; i < adev->usec_timeout; i++) {
if (REG_GET_FIELD(RREG32(mmMC_SEQ_TRAIN_WAKEUP_CNTL),
MC_SEQ_TRAIN_WAKEUP_CNTL, TRAIN_DONE_D0))
break;
udelay(1);
}
for (i = 0; i < adev->usec_timeout; i++) {
if (REG_GET_FIELD(RREG32(mmMC_SEQ_TRAIN_WAKEUP_CNTL),
MC_SEQ_TRAIN_WAKEUP_CNTL, TRAIN_DONE_D1))
break;
udelay(1);
}
}
return 0;
}
static int gmc_v8_0_polaris_mc_load_microcode(struct amdgpu_device *adev)
{
const struct mc_firmware_header_v1_0 *hdr;
const __le32 *fw_data = NULL;
const __le32 *io_mc_regs = NULL;
u32 data, vbios_version;
int i, ucode_size, regs_size;
/* Skip MC ucode loading on SR-IOV capable boards.
* vbios does this for us in asic_init in that case.
* Skip MC ucode loading on VF, because hypervisor will do that
* for this adaptor.
*/
if (amdgpu_sriov_bios(adev))
return 0;
WREG32(mmMC_SEQ_IO_DEBUG_INDEX, 0x9F);
data = RREG32(mmMC_SEQ_IO_DEBUG_DATA);
vbios_version = data & 0xf;
if (vbios_version == 0)
return 0;
if (!adev->mc.fw)
return -EINVAL;
hdr = (const struct mc_firmware_header_v1_0 *)adev->mc.fw->data;
amdgpu_ucode_print_mc_hdr(&hdr->header);
adev->mc.fw_version = le32_to_cpu(hdr->header.ucode_version);
regs_size = le32_to_cpu(hdr->io_debug_size_bytes) / (4 * 2);
io_mc_regs = (const __le32 *)
(adev->mc.fw->data + le32_to_cpu(hdr->io_debug_array_offset_bytes));
ucode_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
fw_data = (const __le32 *)
(adev->mc.fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes));
data = RREG32(mmMC_SEQ_MISC0);
data &= ~(0x40);
WREG32(mmMC_SEQ_MISC0, data);
/* load mc io regs */
for (i = 0; i < regs_size; i++) {
WREG32(mmMC_SEQ_IO_DEBUG_INDEX, le32_to_cpup(io_mc_regs++));
WREG32(mmMC_SEQ_IO_DEBUG_DATA, le32_to_cpup(io_mc_regs++));
}
WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
WREG32(mmMC_SEQ_SUP_CNTL, 0x00000010);
/* load the MC ucode */
for (i = 0; i < ucode_size; i++)
WREG32(mmMC_SEQ_SUP_PGM, le32_to_cpup(fw_data++));
/* put the engine back into the active state */
WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
WREG32(mmMC_SEQ_SUP_CNTL, 0x00000004);
WREG32(mmMC_SEQ_SUP_CNTL, 0x00000001);
/* wait for training to complete */
for (i = 0; i < adev->usec_timeout; i++) {
data = RREG32(mmMC_SEQ_MISC0);
if (data & 0x80)
break;
udelay(1);
}
return 0;
}
static void gmc_v8_0_vram_gtt_location(struct amdgpu_device *adev,
struct amdgpu_mc *mc)
{
u64 base = 0;
if (!amdgpu_sriov_vf(adev))
base = RREG32(mmMC_VM_FB_LOCATION) & 0xFFFF;
base <<= 24;
amdgpu_vram_location(adev, &adev->mc, base);
amdgpu_gart_location(adev, mc);
}
/**
* gmc_v8_0_mc_program - program the GPU memory controller
*
* @adev: amdgpu_device pointer
*
* Set the location of vram, gart, and AGP in the GPU's
* physical address space (CIK).
*/
static void gmc_v8_0_mc_program(struct amdgpu_device *adev)
{
u32 tmp;
int i, j;
/* Initialize HDP */
for (i = 0, j = 0; i < 32; i++, j += 0x6) {
WREG32((0xb05 + j), 0x00000000);
WREG32((0xb06 + j), 0x00000000);
WREG32((0xb07 + j), 0x00000000);
WREG32((0xb08 + j), 0x00000000);
WREG32((0xb09 + j), 0x00000000);
}
WREG32(mmHDP_REG_COHERENCY_FLUSH_CNTL, 0);
if (gmc_v8_0_wait_for_idle((void *)adev)) {
dev_warn(adev->dev, "Wait for MC idle timedout !\n");
}
if (adev->mode_info.num_crtc) {
/* Lockout access through VGA aperture*/
tmp = RREG32(mmVGA_HDP_CONTROL);
tmp = REG_SET_FIELD(tmp, VGA_HDP_CONTROL, VGA_MEMORY_DISABLE, 1);
WREG32(mmVGA_HDP_CONTROL, tmp);
/* disable VGA render */
tmp = RREG32(mmVGA_RENDER_CONTROL);
tmp = REG_SET_FIELD(tmp, VGA_RENDER_CONTROL, VGA_VSTATUS_CNTL, 0);
WREG32(mmVGA_RENDER_CONTROL, tmp);
}
/* Update configuration */
WREG32(mmMC_VM_SYSTEM_APERTURE_LOW_ADDR,
adev->mc.vram_start >> 12);
WREG32(mmMC_VM_SYSTEM_APERTURE_HIGH_ADDR,
adev->mc.vram_end >> 12);
WREG32(mmMC_VM_SYSTEM_APERTURE_DEFAULT_ADDR,
adev->vram_scratch.gpu_addr >> 12);
if (amdgpu_sriov_vf(adev)) {
tmp = ((adev->mc.vram_end >> 24) & 0xFFFF) << 16;
tmp |= ((adev->mc.vram_start >> 24) & 0xFFFF);
WREG32(mmMC_VM_FB_LOCATION, tmp);
/* XXX double check these! */
WREG32(mmHDP_NONSURFACE_BASE, (adev->mc.vram_start >> 8));
WREG32(mmHDP_NONSURFACE_INFO, (2 << 7) | (1 << 30));
WREG32(mmHDP_NONSURFACE_SIZE, 0x3FFFFFFF);
}
WREG32(mmMC_VM_AGP_BASE, 0);
WREG32(mmMC_VM_AGP_TOP, 0x0FFFFFFF);
WREG32(mmMC_VM_AGP_BOT, 0x0FFFFFFF);
if (gmc_v8_0_wait_for_idle((void *)adev)) {
dev_warn(adev->dev, "Wait for MC idle timedout !\n");
}
WREG32(mmBIF_FB_EN, BIF_FB_EN__FB_READ_EN_MASK | BIF_FB_EN__FB_WRITE_EN_MASK);
tmp = RREG32(mmHDP_MISC_CNTL);
tmp = REG_SET_FIELD(tmp, HDP_MISC_CNTL, FLUSH_INVALIDATE_CACHE, 0);
WREG32(mmHDP_MISC_CNTL, tmp);
tmp = RREG32(mmHDP_HOST_PATH_CNTL);
WREG32(mmHDP_HOST_PATH_CNTL, tmp);
}
/**
* gmc_v8_0_mc_init - initialize the memory controller driver params
*
* @adev: amdgpu_device pointer
*
* Look up the amount of vram, vram width, and decide how to place
* vram and gart within the GPU's physical address space (CIK).
* Returns 0 for success.
*/
static int gmc_v8_0_mc_init(struct amdgpu_device *adev)
{
int r;
adev->mc.vram_width = amdgpu_atombios_get_vram_width(adev);
if (!adev->mc.vram_width) {
u32 tmp;
int chansize, numchan;
/* Get VRAM informations */
tmp = RREG32(mmMC_ARB_RAMCFG);
if (REG_GET_FIELD(tmp, MC_ARB_RAMCFG, CHANSIZE)) {
chansize = 64;
} else {
chansize = 32;
}
tmp = RREG32(mmMC_SHARED_CHMAP);
switch (REG_GET_FIELD(tmp, MC_SHARED_CHMAP, NOOFCHAN)) {
case 0:
default:
numchan = 1;
break;
case 1:
numchan = 2;
break;
case 2:
numchan = 4;
break;
case 3:
numchan = 8;
break;
case 4:
numchan = 3;
break;
case 5:
numchan = 6;
break;
case 6:
numchan = 10;
break;
case 7:
numchan = 12;
break;
case 8:
numchan = 16;
break;
}
adev->mc.vram_width = numchan * chansize;
}
/* size in MB on si */
adev->mc.mc_vram_size = RREG32(mmCONFIG_MEMSIZE) * 1024ULL * 1024ULL;
adev->mc.real_vram_size = RREG32(mmCONFIG_MEMSIZE) * 1024ULL * 1024ULL;
if (!(adev->flags & AMD_IS_APU)) {
r = amdgpu_device_resize_fb_bar(adev);
if (r)
return r;
}
adev->mc.aper_base = pci_resource_start(adev->pdev, 0);
adev->mc.aper_size = pci_resource_len(adev->pdev, 0);
#ifdef CONFIG_X86_64
if (adev->flags & AMD_IS_APU) {
adev->mc.aper_base = ((u64)RREG32(mmMC_VM_FB_OFFSET)) << 22;
adev->mc.aper_size = adev->mc.real_vram_size;
}
#endif
/* In case the PCI BAR is larger than the actual amount of vram */
adev->mc.visible_vram_size = adev->mc.aper_size;
if (adev->mc.visible_vram_size > adev->mc.real_vram_size)
adev->mc.visible_vram_size = adev->mc.real_vram_size;
/* set the gart size */
if (amdgpu_gart_size == -1) {
switch (adev->asic_type) {
case CHIP_POLARIS11: /* all engines support GPUVM */
case CHIP_POLARIS10: /* all engines support GPUVM */
case CHIP_POLARIS12: /* all engines support GPUVM */
default:
adev->mc.gart_size = 256ULL << 20;
break;
case CHIP_TONGA: /* UVD, VCE do not support GPUVM */
case CHIP_FIJI: /* UVD, VCE do not support GPUVM */
case CHIP_CARRIZO: /* UVD, VCE do not support GPUVM, DCE SG support */
case CHIP_STONEY: /* UVD does not support GPUVM, DCE SG support */
adev->mc.gart_size = 1024ULL << 20;
break;
}
} else {
adev->mc.gart_size = (u64)amdgpu_gart_size << 20;
}
gmc_v8_0_vram_gtt_location(adev, &adev->mc);
return 0;
}
/*
* GART
* VMID 0 is the physical GPU addresses as used by the kernel.
* VMIDs 1-15 are used for userspace clients and are handled
* by the amdgpu vm/hsa code.
*/
/**
* gmc_v8_0_gart_flush_gpu_tlb - gart tlb flush callback
*
* @adev: amdgpu_device pointer
* @vmid: vm instance to flush
*
* Flush the TLB for the requested page table (CIK).
*/
static void gmc_v8_0_gart_flush_gpu_tlb(struct amdgpu_device *adev,
uint32_t vmid)
{
/* flush hdp cache */
WREG32(mmHDP_MEM_COHERENCY_FLUSH_CNTL, 0);
/* bits 0-15 are the VM contexts0-15 */
WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
}
/**
* gmc_v8_0_gart_set_pte_pde - update the page tables using MMIO
*
* @adev: amdgpu_device pointer
* @cpu_pt_addr: cpu address of the page table
* @gpu_page_idx: entry in the page table to update
* @addr: dst addr to write into pte/pde
* @flags: access flags
*
* Update the page tables using the CPU.
*/
static int gmc_v8_0_gart_set_pte_pde(struct amdgpu_device *adev,
void *cpu_pt_addr,
uint32_t gpu_page_idx,
uint64_t addr,
uint64_t flags)
{
void __iomem *ptr = (void *)cpu_pt_addr;
uint64_t value;
/*
* PTE format on VI:
* 63:40 reserved
* 39:12 4k physical page base address
* 11:7 fragment
* 6 write
* 5 read
* 4 exe
* 3 reserved
* 2 snooped
* 1 system
* 0 valid
*
* PDE format on VI:
* 63:59 block fragment size
* 58:40 reserved
* 39:1 physical base address of PTE
* bits 5:1 must be 0.
* 0 valid
*/
value = addr & 0x000000FFFFFFF000ULL;
value |= flags;
writeq(value, ptr + (gpu_page_idx * 8));
return 0;
}
static uint64_t gmc_v8_0_get_vm_pte_flags(struct amdgpu_device *adev,
uint32_t flags)
{
uint64_t pte_flag = 0;
if (flags & AMDGPU_VM_PAGE_EXECUTABLE)
pte_flag |= AMDGPU_PTE_EXECUTABLE;
if (flags & AMDGPU_VM_PAGE_READABLE)
pte_flag |= AMDGPU_PTE_READABLE;
if (flags & AMDGPU_VM_PAGE_WRITEABLE)
pte_flag |= AMDGPU_PTE_WRITEABLE;
if (flags & AMDGPU_VM_PAGE_PRT)
pte_flag |= AMDGPU_PTE_PRT;
return pte_flag;
}
static uint64_t gmc_v8_0_get_vm_pde(struct amdgpu_device *adev, uint64_t addr)
{
BUG_ON(addr & 0xFFFFFF0000000FFFULL);
return addr;
}
/**
* gmc_v8_0_set_fault_enable_default - update VM fault handling
*
* @adev: amdgpu_device pointer
* @value: true redirects VM faults to the default page
*/
static void gmc_v8_0_set_fault_enable_default(struct amdgpu_device *adev,
bool value)
{
u32 tmp;
tmp = RREG32(mmVM_CONTEXT1_CNTL);
tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
DUMMY_PAGE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
PDE0_PROTECTION_FAULT_ENABLE_DEFAULT, value);
tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
VALID_PROTECTION_FAULT_ENABLE_DEFAULT, value);
tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
READ_PROTECTION_FAULT_ENABLE_DEFAULT, value);
tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
WRITE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
EXECUTE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
WREG32(mmVM_CONTEXT1_CNTL, tmp);
}
/**
* gmc_v8_0_set_prt - set PRT VM fault
*
* @adev: amdgpu_device pointer
* @enable: enable/disable VM fault handling for PRT
*/
static void gmc_v8_0_set_prt(struct amdgpu_device *adev, bool enable)
{
u32 tmp;
if (enable && !adev->mc.prt_warning) {
dev_warn(adev->dev, "Disabling VM faults because of PRT request!\n");
adev->mc.prt_warning = true;
}
tmp = RREG32(mmVM_PRT_CNTL);
tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
CB_DISABLE_READ_FAULT_ON_UNMAPPED_ACCESS, enable);
tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
CB_DISABLE_WRITE_FAULT_ON_UNMAPPED_ACCESS, enable);
tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
TC_DISABLE_READ_FAULT_ON_UNMAPPED_ACCESS, enable);
tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
TC_DISABLE_WRITE_FAULT_ON_UNMAPPED_ACCESS, enable);
tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
L2_CACHE_STORE_INVALID_ENTRIES, enable);
tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
L1_TLB_STORE_INVALID_ENTRIES, enable);
tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
MASK_PDE0_FAULT, enable);
WREG32(mmVM_PRT_CNTL, tmp);
if (enable) {
uint32_t low = AMDGPU_VA_RESERVED_SIZE >> AMDGPU_GPU_PAGE_SHIFT;
uint32_t high = adev->vm_manager.max_pfn;
WREG32(mmVM_PRT_APERTURE0_LOW_ADDR, low);
WREG32(mmVM_PRT_APERTURE1_LOW_ADDR, low);
WREG32(mmVM_PRT_APERTURE2_LOW_ADDR, low);
WREG32(mmVM_PRT_APERTURE3_LOW_ADDR, low);
WREG32(mmVM_PRT_APERTURE0_HIGH_ADDR, high);
WREG32(mmVM_PRT_APERTURE1_HIGH_ADDR, high);
WREG32(mmVM_PRT_APERTURE2_HIGH_ADDR, high);
WREG32(mmVM_PRT_APERTURE3_HIGH_ADDR, high);
} else {
WREG32(mmVM_PRT_APERTURE0_LOW_ADDR, 0xfffffff);
WREG32(mmVM_PRT_APERTURE1_LOW_ADDR, 0xfffffff);
WREG32(mmVM_PRT_APERTURE2_LOW_ADDR, 0xfffffff);
WREG32(mmVM_PRT_APERTURE3_LOW_ADDR, 0xfffffff);
WREG32(mmVM_PRT_APERTURE0_HIGH_ADDR, 0x0);
WREG32(mmVM_PRT_APERTURE1_HIGH_ADDR, 0x0);
WREG32(mmVM_PRT_APERTURE2_HIGH_ADDR, 0x0);
WREG32(mmVM_PRT_APERTURE3_HIGH_ADDR, 0x0);
}
}
/**
* gmc_v8_0_gart_enable - gart enable
*
* @adev: amdgpu_device pointer
*
* This sets up the TLBs, programs the page tables for VMID0,
* sets up the hw for VMIDs 1-15 which are allocated on
* demand, and sets up the global locations for the LDS, GDS,
* and GPUVM for FSA64 clients (CIK).
* Returns 0 for success, errors for failure.
*/
static int gmc_v8_0_gart_enable(struct amdgpu_device *adev)
{
int r, i;
u32 tmp, field;
if (adev->gart.robj == NULL) {
dev_err(adev->dev, "No VRAM object for PCIE GART.\n");
return -EINVAL;
}
r = amdgpu_gart_table_vram_pin(adev);
if (r)
return r;
/* Setup TLB control */
tmp = RREG32(mmMC_VM_MX_L1_TLB_CNTL);
tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_TLB, 1);
tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_FRAGMENT_PROCESSING, 1);
tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, SYSTEM_ACCESS_MODE, 3);
tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_ADVANCED_DRIVER_MODEL, 1);
tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, SYSTEM_APERTURE_UNMAPPED_ACCESS, 0);
WREG32(mmMC_VM_MX_L1_TLB_CNTL, tmp);
/* Setup L2 cache */
tmp = RREG32(mmVM_L2_CNTL);
tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_CACHE, 1);
tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_FRAGMENT_PROCESSING, 1);
tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE, 1);
tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_PDE0_CACHE_LRU_UPDATE_BY_WRITE, 1);
tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, EFFECTIVE_L2_QUEUE_SIZE, 7);
tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, CONTEXT1_IDENTITY_ACCESS_MODE, 1);
tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_DEFAULT_PAGE_OUT_TO_SYSTEM_MEMORY, 1);
WREG32(mmVM_L2_CNTL, tmp);
tmp = RREG32(mmVM_L2_CNTL2);
tmp = REG_SET_FIELD(tmp, VM_L2_CNTL2, INVALIDATE_ALL_L1_TLBS, 1);
tmp = REG_SET_FIELD(tmp, VM_L2_CNTL2, INVALIDATE_L2_CACHE, 1);
WREG32(mmVM_L2_CNTL2, tmp);
field = adev->vm_manager.fragment_size;
tmp = RREG32(mmVM_L2_CNTL3);
tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, L2_CACHE_BIGK_ASSOCIATIVITY, 1);
tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, BANK_SELECT, field);
tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, L2_CACHE_BIGK_FRAGMENT_SIZE, field);
WREG32(mmVM_L2_CNTL3, tmp);
/* XXX: set to enable PTE/PDE in system memory */
tmp = RREG32(mmVM_L2_CNTL4);
tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_PHYSICAL, 0);
tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_SHARED, 0);
tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_SNOOP, 0);
tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_PHYSICAL, 0);
tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_SHARED, 0);
tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_SNOOP, 0);
tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_PHYSICAL, 0);
tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_SHARED, 0);
tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_SNOOP, 0);
tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_PHYSICAL, 0);
tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_SHARED, 0);
tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_SNOOP, 0);
WREG32(mmVM_L2_CNTL4, tmp);
/* setup context0 */
WREG32(mmVM_CONTEXT0_PAGE_TABLE_START_ADDR, adev->mc.gart_start >> 12);
WREG32(mmVM_CONTEXT0_PAGE_TABLE_END_ADDR, adev->mc.gart_end >> 12);
WREG32(mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR, adev->gart.table_addr >> 12);
WREG32(mmVM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR,
(u32)(adev->dummy_page.addr >> 12));
WREG32(mmVM_CONTEXT0_CNTL2, 0);
tmp = RREG32(mmVM_CONTEXT0_CNTL);
tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, ENABLE_CONTEXT, 1);
tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, PAGE_TABLE_DEPTH, 0);
tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
WREG32(mmVM_CONTEXT0_CNTL, tmp);
WREG32(mmVM_L2_CONTEXT1_IDENTITY_APERTURE_LOW_ADDR, 0);
WREG32(mmVM_L2_CONTEXT1_IDENTITY_APERTURE_HIGH_ADDR, 0);
WREG32(mmVM_L2_CONTEXT_IDENTITY_PHYSICAL_OFFSET, 0);
/* empty context1-15 */
/* FIXME start with 4G, once using 2 level pt switch to full
* vm size space
*/
/* set vm size, must be a multiple of 4 */
WREG32(mmVM_CONTEXT1_PAGE_TABLE_START_ADDR, 0);
WREG32(mmVM_CONTEXT1_PAGE_TABLE_END_ADDR, adev->vm_manager.max_pfn - 1);
for (i = 1; i < 16; i++) {
if (i < 8)
WREG32(mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + i,
adev->gart.table_addr >> 12);
else
WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + i - 8,
adev->gart.table_addr >> 12);
}
/* enable context1-15 */
WREG32(mmVM_CONTEXT1_PROTECTION_FAULT_DEFAULT_ADDR,
(u32)(adev->dummy_page.addr >> 12));
WREG32(mmVM_CONTEXT1_CNTL2, 4);
tmp = RREG32(mmVM_CONTEXT1_CNTL);
tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, ENABLE_CONTEXT, 1);
tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PAGE_TABLE_DEPTH, 1);
tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, DUMMY_PAGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PDE0_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, VALID_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, READ_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, WRITE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, EXECUTE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PAGE_TABLE_BLOCK_SIZE,
adev->vm_manager.block_size - 9);
WREG32(mmVM_CONTEXT1_CNTL, tmp);
if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_ALWAYS)
gmc_v8_0_set_fault_enable_default(adev, false);
else
gmc_v8_0_set_fault_enable_default(adev, true);
gmc_v8_0_gart_flush_gpu_tlb(adev, 0);
DRM_INFO("PCIE GART of %uM enabled (table at 0x%016llX).\n",
(unsigned)(adev->mc.gart_size >> 20),
(unsigned long long)adev->gart.table_addr);
adev->gart.ready = true;
return 0;
}
static int gmc_v8_0_gart_init(struct amdgpu_device *adev)
{
int r;
if (adev->gart.robj) {
WARN(1, "R600 PCIE GART already initialized\n");
return 0;
}
/* Initialize common gart structure */
r = amdgpu_gart_init(adev);
if (r)
return r;
adev->gart.table_size = adev->gart.num_gpu_pages * 8;
adev->gart.gart_pte_flags = AMDGPU_PTE_EXECUTABLE;
return amdgpu_gart_table_vram_alloc(adev);
}
/**
* gmc_v8_0_gart_disable - gart disable
*
* @adev: amdgpu_device pointer
*
* This disables all VM page table (CIK).
*/
static void gmc_v8_0_gart_disable(struct amdgpu_device *adev)
{
u32 tmp;
/* Disable all tables */
WREG32(mmVM_CONTEXT0_CNTL, 0);
WREG32(mmVM_CONTEXT1_CNTL, 0);
/* Setup TLB control */
tmp = RREG32(mmMC_VM_MX_L1_TLB_CNTL);
tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_TLB, 0);
tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_FRAGMENT_PROCESSING, 0);
tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_ADVANCED_DRIVER_MODEL, 0);
WREG32(mmMC_VM_MX_L1_TLB_CNTL, tmp);
/* Setup L2 cache */
tmp = RREG32(mmVM_L2_CNTL);
tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_CACHE, 0);
WREG32(mmVM_L2_CNTL, tmp);
WREG32(mmVM_L2_CNTL2, 0);
amdgpu_gart_table_vram_unpin(adev);
}
/**
* gmc_v8_0_gart_fini - vm fini callback
*
* @adev: amdgpu_device pointer
*
* Tears down the driver GART/VM setup (CIK).
*/
static void gmc_v8_0_gart_fini(struct amdgpu_device *adev)
{
amdgpu_gart_table_vram_free(adev);
amdgpu_gart_fini(adev);
}
/**
* gmc_v8_0_vm_decode_fault - print human readable fault info
*
* @adev: amdgpu_device pointer
* @status: VM_CONTEXT1_PROTECTION_FAULT_STATUS register value
* @addr: VM_CONTEXT1_PROTECTION_FAULT_ADDR register value
*
* Print human readable fault information (CIK).
*/
static void gmc_v8_0_vm_decode_fault(struct amdgpu_device *adev,
u32 status, u32 addr, u32 mc_client)
{
u32 mc_id;
u32 vmid = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, VMID);
u32 protections = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS,
PROTECTIONS);
char block[5] = { mc_client >> 24, (mc_client >> 16) & 0xff,
(mc_client >> 8) & 0xff, mc_client & 0xff, 0 };
mc_id = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS,
MEMORY_CLIENT_ID);
dev_err(adev->dev, "VM fault (0x%02x, vmid %d) at page %u, %s from '%s' (0x%08x) (%d)\n",
protections, vmid, addr,
REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS,
MEMORY_CLIENT_RW) ?
"write" : "read", block, mc_client, mc_id);
}
static int gmc_v8_0_convert_vram_type(int mc_seq_vram_type)
{
switch (mc_seq_vram_type) {
case MC_SEQ_MISC0__MT__GDDR1:
return AMDGPU_VRAM_TYPE_GDDR1;
case MC_SEQ_MISC0__MT__DDR2:
return AMDGPU_VRAM_TYPE_DDR2;
case MC_SEQ_MISC0__MT__GDDR3:
return AMDGPU_VRAM_TYPE_GDDR3;
case MC_SEQ_MISC0__MT__GDDR4:
return AMDGPU_VRAM_TYPE_GDDR4;
case MC_SEQ_MISC0__MT__GDDR5:
return AMDGPU_VRAM_TYPE_GDDR5;
case MC_SEQ_MISC0__MT__HBM:
return AMDGPU_VRAM_TYPE_HBM;
case MC_SEQ_MISC0__MT__DDR3:
return AMDGPU_VRAM_TYPE_DDR3;
default:
return AMDGPU_VRAM_TYPE_UNKNOWN;
}
}
static int gmc_v8_0_early_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
gmc_v8_0_set_gart_funcs(adev);
gmc_v8_0_set_irq_funcs(adev);
adev->mc.shared_aperture_start = 0x2000000000000000ULL;
adev->mc.shared_aperture_end =
adev->mc.shared_aperture_start + (4ULL << 30) - 1;
adev->mc.private_aperture_start =
adev->mc.shared_aperture_end + 1;
adev->mc.private_aperture_end =
adev->mc.private_aperture_start + (4ULL << 30) - 1;
return 0;
}
static int gmc_v8_0_late_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
if (amdgpu_vm_fault_stop != AMDGPU_VM_FAULT_STOP_ALWAYS)
return amdgpu_irq_get(adev, &adev->mc.vm_fault, 0);
else
return 0;
}
#define mmMC_SEQ_MISC0_FIJI 0xA71
static int gmc_v8_0_sw_init(void *handle)
{
int r;
int dma_bits;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
if (adev->flags & AMD_IS_APU) {
adev->mc.vram_type = AMDGPU_VRAM_TYPE_UNKNOWN;
} else {
u32 tmp;
if (adev->asic_type == CHIP_FIJI)
tmp = RREG32(mmMC_SEQ_MISC0_FIJI);
else
tmp = RREG32(mmMC_SEQ_MISC0);
tmp &= MC_SEQ_MISC0__MT__MASK;
adev->mc.vram_type = gmc_v8_0_convert_vram_type(tmp);
}
r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 146, &adev->mc.vm_fault);
if (r)
return r;
r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 147, &adev->mc.vm_fault);
if (r)
return r;
/* Adjust VM size here.
* Currently set to 4GB ((1 << 20) 4k pages).
* Max GPUVM size for cayman and SI is 40 bits.
*/
amdgpu_vm_adjust_size(adev, 64, 9, 1, 40);
/* Set the internal MC address mask
* This is the max address of the GPU's
* internal address space.
*/
adev->mc.mc_mask = 0xffffffffffULL; /* 40 bit MC */
adev->mc.stolen_size = 256 * 1024;
/* set DMA mask + need_dma32 flags.
* PCIE - can handle 40-bits.
* IGP - can handle 40-bits
* PCI - dma32 for legacy pci gart, 40 bits on newer asics
*/
adev->need_dma32 = false;
dma_bits = adev->need_dma32 ? 32 : 40;
r = pci_set_dma_mask(adev->pdev, DMA_BIT_MASK(dma_bits));
if (r) {
adev->need_dma32 = true;
dma_bits = 32;
pr_warn("amdgpu: No suitable DMA available\n");
}
r = pci_set_consistent_dma_mask(adev->pdev, DMA_BIT_MASK(dma_bits));
if (r) {
pci_set_consistent_dma_mask(adev->pdev, DMA_BIT_MASK(32));
pr_warn("amdgpu: No coherent DMA available\n");
}
r = gmc_v8_0_init_microcode(adev);
if (r) {
DRM_ERROR("Failed to load mc firmware!\n");
return r;
}
r = gmc_v8_0_mc_init(adev);
if (r)
return r;
/* Memory manager */
r = amdgpu_bo_init(adev);
if (r)
return r;
r = gmc_v8_0_gart_init(adev);
if (r)
return r;
/*
* number of VMs
* VMID 0 is reserved for System
* amdgpu graphics/compute will use VMIDs 1-7
* amdkfd will use VMIDs 8-15
*/
adev->vm_manager.id_mgr[0].num_ids = AMDGPU_NUM_OF_VMIDS;
amdgpu_vm_manager_init(adev);
/* base offset of vram pages */
if (adev->flags & AMD_IS_APU) {
u64 tmp = RREG32(mmMC_VM_FB_OFFSET);
tmp <<= 22;
adev->vm_manager.vram_base_offset = tmp;
} else {
adev->vm_manager.vram_base_offset = 0;
}
return 0;
}
static int gmc_v8_0_sw_fini(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
amdgpu_gem_force_release(adev);
amdgpu_vm_manager_fini(adev);
gmc_v8_0_gart_fini(adev);
amdgpu_bo_fini(adev);
release_firmware(adev->mc.fw);
adev->mc.fw = NULL;
return 0;
}
static int gmc_v8_0_hw_init(void *handle)
{
int r;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
gmc_v8_0_init_golden_registers(adev);
gmc_v8_0_mc_program(adev);
if (adev->asic_type == CHIP_TONGA) {
r = gmc_v8_0_tonga_mc_load_microcode(adev);
if (r) {
DRM_ERROR("Failed to load MC firmware!\n");
return r;
}
} else if (adev->asic_type == CHIP_POLARIS11 ||
adev->asic_type == CHIP_POLARIS10 ||
adev->asic_type == CHIP_POLARIS12) {
r = gmc_v8_0_polaris_mc_load_microcode(adev);
if (r) {
DRM_ERROR("Failed to load MC firmware!\n");
return r;
}
}
r = gmc_v8_0_gart_enable(adev);
if (r)
return r;
return r;
}
static int gmc_v8_0_hw_fini(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
amdgpu_irq_put(adev, &adev->mc.vm_fault, 0);
gmc_v8_0_gart_disable(adev);
return 0;
}
static int gmc_v8_0_suspend(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
gmc_v8_0_hw_fini(adev);
return 0;
}
static int gmc_v8_0_resume(void *handle)
{
int r;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
r = gmc_v8_0_hw_init(adev);
if (r)
return r;
amdgpu_vm_reset_all_ids(adev);
return 0;
}
static bool gmc_v8_0_is_idle(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
u32 tmp = RREG32(mmSRBM_STATUS);
if (tmp & (SRBM_STATUS__MCB_BUSY_MASK | SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK |
SRBM_STATUS__MCC_BUSY_MASK | SRBM_STATUS__MCD_BUSY_MASK | SRBM_STATUS__VMC_BUSY_MASK))
return false;
return true;
}
static int gmc_v8_0_wait_for_idle(void *handle)
{
unsigned i;
u32 tmp;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
for (i = 0; i < adev->usec_timeout; i++) {
/* read MC_STATUS */
tmp = RREG32(mmSRBM_STATUS) & (SRBM_STATUS__MCB_BUSY_MASK |
SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK |
SRBM_STATUS__MCC_BUSY_MASK |
SRBM_STATUS__MCD_BUSY_MASK |
SRBM_STATUS__VMC_BUSY_MASK |
SRBM_STATUS__VMC1_BUSY_MASK);
if (!tmp)
return 0;
udelay(1);
}
return -ETIMEDOUT;
}
static bool gmc_v8_0_check_soft_reset(void *handle)
{
u32 srbm_soft_reset = 0;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
u32 tmp = RREG32(mmSRBM_STATUS);
if (tmp & SRBM_STATUS__VMC_BUSY_MASK)
srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset,
SRBM_SOFT_RESET, SOFT_RESET_VMC, 1);
if (tmp & (SRBM_STATUS__MCB_BUSY_MASK | SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK |
SRBM_STATUS__MCC_BUSY_MASK | SRBM_STATUS__MCD_BUSY_MASK)) {
if (!(adev->flags & AMD_IS_APU))
srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset,
SRBM_SOFT_RESET, SOFT_RESET_MC, 1);
}
if (srbm_soft_reset) {
adev->mc.srbm_soft_reset = srbm_soft_reset;
return true;
} else {
adev->mc.srbm_soft_reset = 0;
return false;
}
}
static int gmc_v8_0_pre_soft_reset(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
if (!adev->mc.srbm_soft_reset)
return 0;
gmc_v8_0_mc_stop(adev);
if (gmc_v8_0_wait_for_idle(adev)) {
dev_warn(adev->dev, "Wait for GMC idle timed out !\n");
}
return 0;
}
static int gmc_v8_0_soft_reset(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
u32 srbm_soft_reset;
if (!adev->mc.srbm_soft_reset)
return 0;
srbm_soft_reset = adev->mc.srbm_soft_reset;
if (srbm_soft_reset) {
u32 tmp;
tmp = RREG32(mmSRBM_SOFT_RESET);
tmp |= srbm_soft_reset;
dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
WREG32(mmSRBM_SOFT_RESET, tmp);
tmp = RREG32(mmSRBM_SOFT_RESET);
udelay(50);
tmp &= ~srbm_soft_reset;
WREG32(mmSRBM_SOFT_RESET, tmp);
tmp = RREG32(mmSRBM_SOFT_RESET);
/* Wait a little for things to settle down */
udelay(50);
}
return 0;
}
static int gmc_v8_0_post_soft_reset(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
if (!adev->mc.srbm_soft_reset)
return 0;
gmc_v8_0_mc_resume(adev);
return 0;
}
static int gmc_v8_0_vm_fault_interrupt_state(struct amdgpu_device *adev,
struct amdgpu_irq_src *src,
unsigned type,
enum amdgpu_interrupt_state state)
{
u32 tmp;
u32 bits = (VM_CONTEXT1_CNTL__RANGE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
VM_CONTEXT1_CNTL__DUMMY_PAGE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
VM_CONTEXT1_CNTL__PDE0_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
VM_CONTEXT1_CNTL__VALID_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
VM_CONTEXT1_CNTL__READ_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
VM_CONTEXT1_CNTL__WRITE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
VM_CONTEXT1_CNTL__EXECUTE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK);
switch (state) {
case AMDGPU_IRQ_STATE_DISABLE:
/* system context */
tmp = RREG32(mmVM_CONTEXT0_CNTL);
tmp &= ~bits;
WREG32(mmVM_CONTEXT0_CNTL, tmp);
/* VMs */
tmp = RREG32(mmVM_CONTEXT1_CNTL);
tmp &= ~bits;
WREG32(mmVM_CONTEXT1_CNTL, tmp);
break;
case AMDGPU_IRQ_STATE_ENABLE:
/* system context */
tmp = RREG32(mmVM_CONTEXT0_CNTL);
tmp |= bits;
WREG32(mmVM_CONTEXT0_CNTL, tmp);
/* VMs */
tmp = RREG32(mmVM_CONTEXT1_CNTL);
tmp |= bits;
WREG32(mmVM_CONTEXT1_CNTL, tmp);
break;
default:
break;
}
return 0;
}
static int gmc_v8_0_process_interrupt(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
u32 addr, status, mc_client;
if (amdgpu_sriov_vf(adev)) {
dev_err(adev->dev, "GPU fault detected: %d 0x%08x\n",
entry->src_id, entry->src_data[0]);
dev_err(adev->dev, " Can't decode VM fault info here on SRIOV VF\n");
return 0;
}
addr = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_ADDR);
status = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_STATUS);
mc_client = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_MCCLIENT);
/* reset addr and status */
WREG32_P(mmVM_CONTEXT1_CNTL2, 1, ~1);
if (!addr && !status)
return 0;
if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_FIRST)
gmc_v8_0_set_fault_enable_default(adev, false);
if (printk_ratelimit()) {
dev_err(adev->dev, "GPU fault detected: %d 0x%08x\n",
entry->src_id, entry->src_data[0]);
dev_err(adev->dev, " VM_CONTEXT1_PROTECTION_FAULT_ADDR 0x%08X\n",
addr);
dev_err(adev->dev, " VM_CONTEXT1_PROTECTION_FAULT_STATUS 0x%08X\n",
status);
gmc_v8_0_vm_decode_fault(adev, status, addr, mc_client);
}
return 0;
}
static void fiji_update_mc_medium_grain_clock_gating(struct amdgpu_device *adev,
bool enable)
{
uint32_t data;
if (enable && (adev->cg_flags & AMD_CG_SUPPORT_MC_MGCG)) {
data = RREG32(mmMC_HUB_MISC_HUB_CG);
data |= MC_HUB_MISC_HUB_CG__ENABLE_MASK;
WREG32(mmMC_HUB_MISC_HUB_CG, data);
data = RREG32(mmMC_HUB_MISC_SIP_CG);
data |= MC_HUB_MISC_SIP_CG__ENABLE_MASK;
WREG32(mmMC_HUB_MISC_SIP_CG, data);
data = RREG32(mmMC_HUB_MISC_VM_CG);
data |= MC_HUB_MISC_VM_CG__ENABLE_MASK;
WREG32(mmMC_HUB_MISC_VM_CG, data);
data = RREG32(mmMC_XPB_CLK_GAT);
data |= MC_XPB_CLK_GAT__ENABLE_MASK;
WREG32(mmMC_XPB_CLK_GAT, data);
data = RREG32(mmATC_MISC_CG);
data |= ATC_MISC_CG__ENABLE_MASK;
WREG32(mmATC_MISC_CG, data);
data = RREG32(mmMC_CITF_MISC_WR_CG);
data |= MC_CITF_MISC_WR_CG__ENABLE_MASK;
WREG32(mmMC_CITF_MISC_WR_CG, data);
data = RREG32(mmMC_CITF_MISC_RD_CG);
data |= MC_CITF_MISC_RD_CG__ENABLE_MASK;
WREG32(mmMC_CITF_MISC_RD_CG, data);
data = RREG32(mmMC_CITF_MISC_VM_CG);
data |= MC_CITF_MISC_VM_CG__ENABLE_MASK;
WREG32(mmMC_CITF_MISC_VM_CG, data);
data = RREG32(mmVM_L2_CG);
data |= VM_L2_CG__ENABLE_MASK;
WREG32(mmVM_L2_CG, data);
} else {
data = RREG32(mmMC_HUB_MISC_HUB_CG);
data &= ~MC_HUB_MISC_HUB_CG__ENABLE_MASK;
WREG32(mmMC_HUB_MISC_HUB_CG, data);
data = RREG32(mmMC_HUB_MISC_SIP_CG);
data &= ~MC_HUB_MISC_SIP_CG__ENABLE_MASK;
WREG32(mmMC_HUB_MISC_SIP_CG, data);
data = RREG32(mmMC_HUB_MISC_VM_CG);
data &= ~MC_HUB_MISC_VM_CG__ENABLE_MASK;
WREG32(mmMC_HUB_MISC_VM_CG, data);
data = RREG32(mmMC_XPB_CLK_GAT);
data &= ~MC_XPB_CLK_GAT__ENABLE_MASK;
WREG32(mmMC_XPB_CLK_GAT, data);
data = RREG32(mmATC_MISC_CG);
data &= ~ATC_MISC_CG__ENABLE_MASK;
WREG32(mmATC_MISC_CG, data);
data = RREG32(mmMC_CITF_MISC_WR_CG);
data &= ~MC_CITF_MISC_WR_CG__ENABLE_MASK;
WREG32(mmMC_CITF_MISC_WR_CG, data);
data = RREG32(mmMC_CITF_MISC_RD_CG);
data &= ~MC_CITF_MISC_RD_CG__ENABLE_MASK;
WREG32(mmMC_CITF_MISC_RD_CG, data);
data = RREG32(mmMC_CITF_MISC_VM_CG);
data &= ~MC_CITF_MISC_VM_CG__ENABLE_MASK;
WREG32(mmMC_CITF_MISC_VM_CG, data);
data = RREG32(mmVM_L2_CG);
data &= ~VM_L2_CG__ENABLE_MASK;
WREG32(mmVM_L2_CG, data);
}
}
static void fiji_update_mc_light_sleep(struct amdgpu_device *adev,
bool enable)
{
uint32_t data;
if (enable && (adev->cg_flags & AMD_CG_SUPPORT_MC_LS)) {
data = RREG32(mmMC_HUB_MISC_HUB_CG);
data |= MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK;
WREG32(mmMC_HUB_MISC_HUB_CG, data);
data = RREG32(mmMC_HUB_MISC_SIP_CG);
data |= MC_HUB_MISC_SIP_CG__MEM_LS_ENABLE_MASK;
WREG32(mmMC_HUB_MISC_SIP_CG, data);
data = RREG32(mmMC_HUB_MISC_VM_CG);
data |= MC_HUB_MISC_VM_CG__MEM_LS_ENABLE_MASK;
WREG32(mmMC_HUB_MISC_VM_CG, data);
data = RREG32(mmMC_XPB_CLK_GAT);
data |= MC_XPB_CLK_GAT__MEM_LS_ENABLE_MASK;
WREG32(mmMC_XPB_CLK_GAT, data);
data = RREG32(mmATC_MISC_CG);
data |= ATC_MISC_CG__MEM_LS_ENABLE_MASK;
WREG32(mmATC_MISC_CG, data);
data = RREG32(mmMC_CITF_MISC_WR_CG);
data |= MC_CITF_MISC_WR_CG__MEM_LS_ENABLE_MASK;
WREG32(mmMC_CITF_MISC_WR_CG, data);
data = RREG32(mmMC_CITF_MISC_RD_CG);
data |= MC_CITF_MISC_RD_CG__MEM_LS_ENABLE_MASK;
WREG32(mmMC_CITF_MISC_RD_CG, data);
data = RREG32(mmMC_CITF_MISC_VM_CG);
data |= MC_CITF_MISC_VM_CG__MEM_LS_ENABLE_MASK;
WREG32(mmMC_CITF_MISC_VM_CG, data);
data = RREG32(mmVM_L2_CG);
data |= VM_L2_CG__MEM_LS_ENABLE_MASK;
WREG32(mmVM_L2_CG, data);
} else {
data = RREG32(mmMC_HUB_MISC_HUB_CG);
data &= ~MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK;
WREG32(mmMC_HUB_MISC_HUB_CG, data);
data = RREG32(mmMC_HUB_MISC_SIP_CG);
data &= ~MC_HUB_MISC_SIP_CG__MEM_LS_ENABLE_MASK;
WREG32(mmMC_HUB_MISC_SIP_CG, data);
data = RREG32(mmMC_HUB_MISC_VM_CG);
data &= ~MC_HUB_MISC_VM_CG__MEM_LS_ENABLE_MASK;
WREG32(mmMC_HUB_MISC_VM_CG, data);
data = RREG32(mmMC_XPB_CLK_GAT);
data &= ~MC_XPB_CLK_GAT__MEM_LS_ENABLE_MASK;
WREG32(mmMC_XPB_CLK_GAT, data);
data = RREG32(mmATC_MISC_CG);
data &= ~ATC_MISC_CG__MEM_LS_ENABLE_MASK;
WREG32(mmATC_MISC_CG, data);
data = RREG32(mmMC_CITF_MISC_WR_CG);
data &= ~MC_CITF_MISC_WR_CG__MEM_LS_ENABLE_MASK;
WREG32(mmMC_CITF_MISC_WR_CG, data);
data = RREG32(mmMC_CITF_MISC_RD_CG);
data &= ~MC_CITF_MISC_RD_CG__MEM_LS_ENABLE_MASK;
WREG32(mmMC_CITF_MISC_RD_CG, data);
data = RREG32(mmMC_CITF_MISC_VM_CG);
data &= ~MC_CITF_MISC_VM_CG__MEM_LS_ENABLE_MASK;
WREG32(mmMC_CITF_MISC_VM_CG, data);
data = RREG32(mmVM_L2_CG);
data &= ~VM_L2_CG__MEM_LS_ENABLE_MASK;
WREG32(mmVM_L2_CG, data);
}
}
static int gmc_v8_0_set_clockgating_state(void *handle,
enum amd_clockgating_state state)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
if (amdgpu_sriov_vf(adev))
return 0;
switch (adev->asic_type) {
case CHIP_FIJI:
fiji_update_mc_medium_grain_clock_gating(adev,
state == AMD_CG_STATE_GATE);
fiji_update_mc_light_sleep(adev,
state == AMD_CG_STATE_GATE);
break;
default:
break;
}
return 0;
}
static int gmc_v8_0_set_powergating_state(void *handle,
enum amd_powergating_state state)
{
return 0;
}
static void gmc_v8_0_get_clockgating_state(void *handle, u32 *flags)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
int data;
if (amdgpu_sriov_vf(adev))
*flags = 0;
/* AMD_CG_SUPPORT_MC_MGCG */
data = RREG32(mmMC_HUB_MISC_HUB_CG);
if (data & MC_HUB_MISC_HUB_CG__ENABLE_MASK)
*flags |= AMD_CG_SUPPORT_MC_MGCG;
/* AMD_CG_SUPPORT_MC_LS */
if (data & MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK)
*flags |= AMD_CG_SUPPORT_MC_LS;
}
static const struct amd_ip_funcs gmc_v8_0_ip_funcs = {
.name = "gmc_v8_0",
.early_init = gmc_v8_0_early_init,
.late_init = gmc_v8_0_late_init,
.sw_init = gmc_v8_0_sw_init,
.sw_fini = gmc_v8_0_sw_fini,
.hw_init = gmc_v8_0_hw_init,
.hw_fini = gmc_v8_0_hw_fini,
.suspend = gmc_v8_0_suspend,
.resume = gmc_v8_0_resume,
.is_idle = gmc_v8_0_is_idle,
.wait_for_idle = gmc_v8_0_wait_for_idle,
.check_soft_reset = gmc_v8_0_check_soft_reset,
.pre_soft_reset = gmc_v8_0_pre_soft_reset,
.soft_reset = gmc_v8_0_soft_reset,
.post_soft_reset = gmc_v8_0_post_soft_reset,
.set_clockgating_state = gmc_v8_0_set_clockgating_state,
.set_powergating_state = gmc_v8_0_set_powergating_state,
.get_clockgating_state = gmc_v8_0_get_clockgating_state,
};
static const struct amdgpu_gart_funcs gmc_v8_0_gart_funcs = {
.flush_gpu_tlb = gmc_v8_0_gart_flush_gpu_tlb,
.set_pte_pde = gmc_v8_0_gart_set_pte_pde,
.set_prt = gmc_v8_0_set_prt,
.get_vm_pte_flags = gmc_v8_0_get_vm_pte_flags,
.get_vm_pde = gmc_v8_0_get_vm_pde
};
static const struct amdgpu_irq_src_funcs gmc_v8_0_irq_funcs = {
.set = gmc_v8_0_vm_fault_interrupt_state,
.process = gmc_v8_0_process_interrupt,
};
static void gmc_v8_0_set_gart_funcs(struct amdgpu_device *adev)
{
if (adev->gart.gart_funcs == NULL)
adev->gart.gart_funcs = &gmc_v8_0_gart_funcs;
}
static void gmc_v8_0_set_irq_funcs(struct amdgpu_device *adev)
{
adev->mc.vm_fault.num_types = 1;
adev->mc.vm_fault.funcs = &gmc_v8_0_irq_funcs;
}
const struct amdgpu_ip_block_version gmc_v8_0_ip_block =
{
.type = AMD_IP_BLOCK_TYPE_GMC,
.major = 8,
.minor = 0,
.rev = 0,
.funcs = &gmc_v8_0_ip_funcs,
};
const struct amdgpu_ip_block_version gmc_v8_1_ip_block =
{
.type = AMD_IP_BLOCK_TYPE_GMC,
.major = 8,
.minor = 1,
.rev = 0,
.funcs = &gmc_v8_0_ip_funcs,
};
const struct amdgpu_ip_block_version gmc_v8_5_ip_block =
{
.type = AMD_IP_BLOCK_TYPE_GMC,
.major = 8,
.minor = 5,
.rev = 0,
.funcs = &gmc_v8_0_ip_funcs,
};