mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-11 13:04:03 +08:00
f8bbbfc3b9
This patch adds a jited flag into sk_filter struct in order to indicate whether a filter is currently jited or not. The size of sk_filter is not being expanded as the 32 bit 'len' member allows upper bits to be reused since a filter can currently only grow as large as BPF_MAXINSNS. Therefore, there's enough room also for other in future needed flags to reuse 'len' field if necessary. The jited flag also allows for having alternative interpreter functions running as currently, we can only detect jit compiled filters by testing fp->bpf_func to not equal the address of sk_run_filter(). Joint work with Alexei Starovoitov. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Cc: Pablo Neira Ayuso <pablo@netfilter.org> Signed-off-by: David S. Miller <davem@davemloft.net>
825 lines
20 KiB
C
825 lines
20 KiB
C
#include <linux/moduleloader.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/filter.h>
|
|
#include <linux/cache.h>
|
|
#include <linux/if_vlan.h>
|
|
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/ptrace.h>
|
|
|
|
#include "bpf_jit.h"
|
|
|
|
int bpf_jit_enable __read_mostly;
|
|
|
|
static inline bool is_simm13(unsigned int value)
|
|
{
|
|
return value + 0x1000 < 0x2000;
|
|
}
|
|
|
|
static void bpf_flush_icache(void *start_, void *end_)
|
|
{
|
|
#ifdef CONFIG_SPARC64
|
|
/* Cheetah's I-cache is fully coherent. */
|
|
if (tlb_type == spitfire) {
|
|
unsigned long start = (unsigned long) start_;
|
|
unsigned long end = (unsigned long) end_;
|
|
|
|
start &= ~7UL;
|
|
end = (end + 7UL) & ~7UL;
|
|
while (start < end) {
|
|
flushi(start);
|
|
start += 32;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#define SEEN_DATAREF 1 /* might call external helpers */
|
|
#define SEEN_XREG 2 /* ebx is used */
|
|
#define SEEN_MEM 4 /* use mem[] for temporary storage */
|
|
|
|
#define S13(X) ((X) & 0x1fff)
|
|
#define IMMED 0x00002000
|
|
#define RD(X) ((X) << 25)
|
|
#define RS1(X) ((X) << 14)
|
|
#define RS2(X) ((X))
|
|
#define OP(X) ((X) << 30)
|
|
#define OP2(X) ((X) << 22)
|
|
#define OP3(X) ((X) << 19)
|
|
#define COND(X) ((X) << 25)
|
|
#define F1(X) OP(X)
|
|
#define F2(X, Y) (OP(X) | OP2(Y))
|
|
#define F3(X, Y) (OP(X) | OP3(Y))
|
|
|
|
#define CONDN COND(0x0)
|
|
#define CONDE COND(0x1)
|
|
#define CONDLE COND(0x2)
|
|
#define CONDL COND(0x3)
|
|
#define CONDLEU COND(0x4)
|
|
#define CONDCS COND(0x5)
|
|
#define CONDNEG COND(0x6)
|
|
#define CONDVC COND(0x7)
|
|
#define CONDA COND(0x8)
|
|
#define CONDNE COND(0x9)
|
|
#define CONDG COND(0xa)
|
|
#define CONDGE COND(0xb)
|
|
#define CONDGU COND(0xc)
|
|
#define CONDCC COND(0xd)
|
|
#define CONDPOS COND(0xe)
|
|
#define CONDVS COND(0xf)
|
|
|
|
#define CONDGEU CONDCC
|
|
#define CONDLU CONDCS
|
|
|
|
#define WDISP22(X) (((X) >> 2) & 0x3fffff)
|
|
|
|
#define BA (F2(0, 2) | CONDA)
|
|
#define BGU (F2(0, 2) | CONDGU)
|
|
#define BLEU (F2(0, 2) | CONDLEU)
|
|
#define BGEU (F2(0, 2) | CONDGEU)
|
|
#define BLU (F2(0, 2) | CONDLU)
|
|
#define BE (F2(0, 2) | CONDE)
|
|
#define BNE (F2(0, 2) | CONDNE)
|
|
|
|
#ifdef CONFIG_SPARC64
|
|
#define BNE_PTR (F2(0, 1) | CONDNE | (2 << 20))
|
|
#else
|
|
#define BNE_PTR BNE
|
|
#endif
|
|
|
|
#define SETHI(K, REG) \
|
|
(F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
|
|
#define OR_LO(K, REG) \
|
|
(F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
|
|
|
|
#define ADD F3(2, 0x00)
|
|
#define AND F3(2, 0x01)
|
|
#define ANDCC F3(2, 0x11)
|
|
#define OR F3(2, 0x02)
|
|
#define XOR F3(2, 0x03)
|
|
#define SUB F3(2, 0x04)
|
|
#define SUBCC F3(2, 0x14)
|
|
#define MUL F3(2, 0x0a) /* umul */
|
|
#define DIV F3(2, 0x0e) /* udiv */
|
|
#define SLL F3(2, 0x25)
|
|
#define SRL F3(2, 0x26)
|
|
#define JMPL F3(2, 0x38)
|
|
#define CALL F1(1)
|
|
#define BR F2(0, 0x01)
|
|
#define RD_Y F3(2, 0x28)
|
|
#define WR_Y F3(2, 0x30)
|
|
|
|
#define LD32 F3(3, 0x00)
|
|
#define LD8 F3(3, 0x01)
|
|
#define LD16 F3(3, 0x02)
|
|
#define LD64 F3(3, 0x0b)
|
|
#define ST32 F3(3, 0x04)
|
|
|
|
#ifdef CONFIG_SPARC64
|
|
#define LDPTR LD64
|
|
#define BASE_STACKFRAME 176
|
|
#else
|
|
#define LDPTR LD32
|
|
#define BASE_STACKFRAME 96
|
|
#endif
|
|
|
|
#define LD32I (LD32 | IMMED)
|
|
#define LD8I (LD8 | IMMED)
|
|
#define LD16I (LD16 | IMMED)
|
|
#define LD64I (LD64 | IMMED)
|
|
#define LDPTRI (LDPTR | IMMED)
|
|
#define ST32I (ST32 | IMMED)
|
|
|
|
#define emit_nop() \
|
|
do { \
|
|
*prog++ = SETHI(0, G0); \
|
|
} while (0)
|
|
|
|
#define emit_neg() \
|
|
do { /* sub %g0, r_A, r_A */ \
|
|
*prog++ = SUB | RS1(G0) | RS2(r_A) | RD(r_A); \
|
|
} while (0)
|
|
|
|
#define emit_reg_move(FROM, TO) \
|
|
do { /* or %g0, FROM, TO */ \
|
|
*prog++ = OR | RS1(G0) | RS2(FROM) | RD(TO); \
|
|
} while (0)
|
|
|
|
#define emit_clear(REG) \
|
|
do { /* or %g0, %g0, REG */ \
|
|
*prog++ = OR | RS1(G0) | RS2(G0) | RD(REG); \
|
|
} while (0)
|
|
|
|
#define emit_set_const(K, REG) \
|
|
do { /* sethi %hi(K), REG */ \
|
|
*prog++ = SETHI(K, REG); \
|
|
/* or REG, %lo(K), REG */ \
|
|
*prog++ = OR_LO(K, REG); \
|
|
} while (0)
|
|
|
|
/* Emit
|
|
*
|
|
* OP r_A, r_X, r_A
|
|
*/
|
|
#define emit_alu_X(OPCODE) \
|
|
do { \
|
|
seen |= SEEN_XREG; \
|
|
*prog++ = OPCODE | RS1(r_A) | RS2(r_X) | RD(r_A); \
|
|
} while (0)
|
|
|
|
/* Emit either:
|
|
*
|
|
* OP r_A, K, r_A
|
|
*
|
|
* or
|
|
*
|
|
* sethi %hi(K), r_TMP
|
|
* or r_TMP, %lo(K), r_TMP
|
|
* OP r_A, r_TMP, r_A
|
|
*
|
|
* depending upon whether K fits in a signed 13-bit
|
|
* immediate instruction field. Emit nothing if K
|
|
* is zero.
|
|
*/
|
|
#define emit_alu_K(OPCODE, K) \
|
|
do { \
|
|
if (K) { \
|
|
unsigned int _insn = OPCODE; \
|
|
_insn |= RS1(r_A) | RD(r_A); \
|
|
if (is_simm13(K)) { \
|
|
*prog++ = _insn | IMMED | S13(K); \
|
|
} else { \
|
|
emit_set_const(K, r_TMP); \
|
|
*prog++ = _insn | RS2(r_TMP); \
|
|
} \
|
|
} \
|
|
} while (0)
|
|
|
|
#define emit_loadimm(K, DEST) \
|
|
do { \
|
|
if (is_simm13(K)) { \
|
|
/* or %g0, K, DEST */ \
|
|
*prog++ = OR | IMMED | RS1(G0) | S13(K) | RD(DEST); \
|
|
} else { \
|
|
emit_set_const(K, DEST); \
|
|
} \
|
|
} while (0)
|
|
|
|
#define emit_loadptr(BASE, STRUCT, FIELD, DEST) \
|
|
do { unsigned int _off = offsetof(STRUCT, FIELD); \
|
|
BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(void *)); \
|
|
*prog++ = LDPTRI | RS1(BASE) | S13(_off) | RD(DEST); \
|
|
} while (0)
|
|
|
|
#define emit_load32(BASE, STRUCT, FIELD, DEST) \
|
|
do { unsigned int _off = offsetof(STRUCT, FIELD); \
|
|
BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u32)); \
|
|
*prog++ = LD32I | RS1(BASE) | S13(_off) | RD(DEST); \
|
|
} while (0)
|
|
|
|
#define emit_load16(BASE, STRUCT, FIELD, DEST) \
|
|
do { unsigned int _off = offsetof(STRUCT, FIELD); \
|
|
BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u16)); \
|
|
*prog++ = LD16I | RS1(BASE) | S13(_off) | RD(DEST); \
|
|
} while (0)
|
|
|
|
#define __emit_load8(BASE, STRUCT, FIELD, DEST) \
|
|
do { unsigned int _off = offsetof(STRUCT, FIELD); \
|
|
*prog++ = LD8I | RS1(BASE) | S13(_off) | RD(DEST); \
|
|
} while (0)
|
|
|
|
#define emit_load8(BASE, STRUCT, FIELD, DEST) \
|
|
do { BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u8)); \
|
|
__emit_load8(BASE, STRUCT, FIELD, DEST); \
|
|
} while (0)
|
|
|
|
#define emit_ldmem(OFF, DEST) \
|
|
do { *prog++ = LD32I | RS1(FP) | S13(-(OFF)) | RD(DEST); \
|
|
} while (0)
|
|
|
|
#define emit_stmem(OFF, SRC) \
|
|
do { *prog++ = LD32I | RS1(FP) | S13(-(OFF)) | RD(SRC); \
|
|
} while (0)
|
|
|
|
#ifdef CONFIG_SMP
|
|
#ifdef CONFIG_SPARC64
|
|
#define emit_load_cpu(REG) \
|
|
emit_load16(G6, struct thread_info, cpu, REG)
|
|
#else
|
|
#define emit_load_cpu(REG) \
|
|
emit_load32(G6, struct thread_info, cpu, REG)
|
|
#endif
|
|
#else
|
|
#define emit_load_cpu(REG) emit_clear(REG)
|
|
#endif
|
|
|
|
#define emit_skb_loadptr(FIELD, DEST) \
|
|
emit_loadptr(r_SKB, struct sk_buff, FIELD, DEST)
|
|
#define emit_skb_load32(FIELD, DEST) \
|
|
emit_load32(r_SKB, struct sk_buff, FIELD, DEST)
|
|
#define emit_skb_load16(FIELD, DEST) \
|
|
emit_load16(r_SKB, struct sk_buff, FIELD, DEST)
|
|
#define __emit_skb_load8(FIELD, DEST) \
|
|
__emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
|
|
#define emit_skb_load8(FIELD, DEST) \
|
|
emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
|
|
|
|
#define emit_jmpl(BASE, IMM_OFF, LREG) \
|
|
*prog++ = (JMPL | IMMED | RS1(BASE) | S13(IMM_OFF) | RD(LREG))
|
|
|
|
#define emit_call(FUNC) \
|
|
do { void *_here = image + addrs[i] - 8; \
|
|
unsigned int _off = (void *)(FUNC) - _here; \
|
|
*prog++ = CALL | (((_off) >> 2) & 0x3fffffff); \
|
|
emit_nop(); \
|
|
} while (0)
|
|
|
|
#define emit_branch(BR_OPC, DEST) \
|
|
do { unsigned int _here = addrs[i] - 8; \
|
|
*prog++ = BR_OPC | WDISP22((DEST) - _here); \
|
|
} while (0)
|
|
|
|
#define emit_branch_off(BR_OPC, OFF) \
|
|
do { *prog++ = BR_OPC | WDISP22(OFF); \
|
|
} while (0)
|
|
|
|
#define emit_jump(DEST) emit_branch(BA, DEST)
|
|
|
|
#define emit_read_y(REG) *prog++ = RD_Y | RD(REG)
|
|
#define emit_write_y(REG) *prog++ = WR_Y | IMMED | RS1(REG) | S13(0)
|
|
|
|
#define emit_cmp(R1, R2) \
|
|
*prog++ = (SUBCC | RS1(R1) | RS2(R2) | RD(G0))
|
|
|
|
#define emit_cmpi(R1, IMM) \
|
|
*prog++ = (SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
|
|
|
|
#define emit_btst(R1, R2) \
|
|
*prog++ = (ANDCC | RS1(R1) | RS2(R2) | RD(G0))
|
|
|
|
#define emit_btsti(R1, IMM) \
|
|
*prog++ = (ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
|
|
|
|
#define emit_sub(R1, R2, R3) \
|
|
*prog++ = (SUB | RS1(R1) | RS2(R2) | RD(R3))
|
|
|
|
#define emit_subi(R1, IMM, R3) \
|
|
*prog++ = (SUB | IMMED | RS1(R1) | S13(IMM) | RD(R3))
|
|
|
|
#define emit_add(R1, R2, R3) \
|
|
*prog++ = (ADD | RS1(R1) | RS2(R2) | RD(R3))
|
|
|
|
#define emit_addi(R1, IMM, R3) \
|
|
*prog++ = (ADD | IMMED | RS1(R1) | S13(IMM) | RD(R3))
|
|
|
|
#define emit_and(R1, R2, R3) \
|
|
*prog++ = (AND | RS1(R1) | RS2(R2) | RD(R3))
|
|
|
|
#define emit_andi(R1, IMM, R3) \
|
|
*prog++ = (AND | IMMED | RS1(R1) | S13(IMM) | RD(R3))
|
|
|
|
#define emit_alloc_stack(SZ) \
|
|
*prog++ = (SUB | IMMED | RS1(SP) | S13(SZ) | RD(SP))
|
|
|
|
#define emit_release_stack(SZ) \
|
|
*prog++ = (ADD | IMMED | RS1(SP) | S13(SZ) | RD(SP))
|
|
|
|
/* A note about branch offset calculations. The addrs[] array,
|
|
* indexed by BPF instruction, records the address after all the
|
|
* sparc instructions emitted for that BPF instruction.
|
|
*
|
|
* The most common case is to emit a branch at the end of such
|
|
* a code sequence. So this would be two instructions, the
|
|
* branch and it's delay slot.
|
|
*
|
|
* Therefore by default the branch emitters calculate the branch
|
|
* offset field as:
|
|
*
|
|
* destination - (addrs[i] - 8)
|
|
*
|
|
* This "addrs[i] - 8" is the address of the branch itself or
|
|
* what "." would be in assembler notation. The "8" part is
|
|
* how we take into consideration the branch and it's delay
|
|
* slot mentioned above.
|
|
*
|
|
* Sometimes we need to emit a branch earlier in the code
|
|
* sequence. And in these situations we adjust "destination"
|
|
* to accomodate this difference. For example, if we needed
|
|
* to emit a branch (and it's delay slot) right before the
|
|
* final instruction emitted for a BPF opcode, we'd use
|
|
* "destination + 4" instead of just plain "destination" above.
|
|
*
|
|
* This is why you see all of these funny emit_branch() and
|
|
* emit_jump() calls with adjusted offsets.
|
|
*/
|
|
|
|
void bpf_jit_compile(struct sk_filter *fp)
|
|
{
|
|
unsigned int cleanup_addr, proglen, oldproglen = 0;
|
|
u32 temp[8], *prog, *func, seen = 0, pass;
|
|
const struct sock_filter *filter = fp->insns;
|
|
int i, flen = fp->len, pc_ret0 = -1;
|
|
unsigned int *addrs;
|
|
void *image;
|
|
|
|
if (!bpf_jit_enable)
|
|
return;
|
|
|
|
addrs = kmalloc(flen * sizeof(*addrs), GFP_KERNEL);
|
|
if (addrs == NULL)
|
|
return;
|
|
|
|
/* Before first pass, make a rough estimation of addrs[]
|
|
* each bpf instruction is translated to less than 64 bytes
|
|
*/
|
|
for (proglen = 0, i = 0; i < flen; i++) {
|
|
proglen += 64;
|
|
addrs[i] = proglen;
|
|
}
|
|
cleanup_addr = proglen; /* epilogue address */
|
|
image = NULL;
|
|
for (pass = 0; pass < 10; pass++) {
|
|
u8 seen_or_pass0 = (pass == 0) ? (SEEN_XREG | SEEN_DATAREF | SEEN_MEM) : seen;
|
|
|
|
/* no prologue/epilogue for trivial filters (RET something) */
|
|
proglen = 0;
|
|
prog = temp;
|
|
|
|
/* Prologue */
|
|
if (seen_or_pass0) {
|
|
if (seen_or_pass0 & SEEN_MEM) {
|
|
unsigned int sz = BASE_STACKFRAME;
|
|
sz += BPF_MEMWORDS * sizeof(u32);
|
|
emit_alloc_stack(sz);
|
|
}
|
|
|
|
/* Make sure we dont leek kernel memory. */
|
|
if (seen_or_pass0 & SEEN_XREG)
|
|
emit_clear(r_X);
|
|
|
|
/* If this filter needs to access skb data,
|
|
* load %o4 and %o5 with:
|
|
* %o4 = skb->len - skb->data_len
|
|
* %o5 = skb->data
|
|
* And also back up %o7 into r_saved_O7 so we can
|
|
* invoke the stubs using 'call'.
|
|
*/
|
|
if (seen_or_pass0 & SEEN_DATAREF) {
|
|
emit_load32(r_SKB, struct sk_buff, len, r_HEADLEN);
|
|
emit_load32(r_SKB, struct sk_buff, data_len, r_TMP);
|
|
emit_sub(r_HEADLEN, r_TMP, r_HEADLEN);
|
|
emit_loadptr(r_SKB, struct sk_buff, data, r_SKB_DATA);
|
|
}
|
|
}
|
|
emit_reg_move(O7, r_saved_O7);
|
|
|
|
switch (filter[0].code) {
|
|
case BPF_S_RET_K:
|
|
case BPF_S_LD_W_LEN:
|
|
case BPF_S_ANC_PROTOCOL:
|
|
case BPF_S_ANC_PKTTYPE:
|
|
case BPF_S_ANC_IFINDEX:
|
|
case BPF_S_ANC_MARK:
|
|
case BPF_S_ANC_RXHASH:
|
|
case BPF_S_ANC_VLAN_TAG:
|
|
case BPF_S_ANC_VLAN_TAG_PRESENT:
|
|
case BPF_S_ANC_CPU:
|
|
case BPF_S_ANC_QUEUE:
|
|
case BPF_S_LD_W_ABS:
|
|
case BPF_S_LD_H_ABS:
|
|
case BPF_S_LD_B_ABS:
|
|
/* The first instruction sets the A register (or is
|
|
* a "RET 'constant'")
|
|
*/
|
|
break;
|
|
default:
|
|
/* Make sure we dont leak kernel information to the
|
|
* user.
|
|
*/
|
|
emit_clear(r_A); /* A = 0 */
|
|
}
|
|
|
|
for (i = 0; i < flen; i++) {
|
|
unsigned int K = filter[i].k;
|
|
unsigned int t_offset;
|
|
unsigned int f_offset;
|
|
u32 t_op, f_op;
|
|
int ilen;
|
|
|
|
switch (filter[i].code) {
|
|
case BPF_S_ALU_ADD_X: /* A += X; */
|
|
emit_alu_X(ADD);
|
|
break;
|
|
case BPF_S_ALU_ADD_K: /* A += K; */
|
|
emit_alu_K(ADD, K);
|
|
break;
|
|
case BPF_S_ALU_SUB_X: /* A -= X; */
|
|
emit_alu_X(SUB);
|
|
break;
|
|
case BPF_S_ALU_SUB_K: /* A -= K */
|
|
emit_alu_K(SUB, K);
|
|
break;
|
|
case BPF_S_ALU_AND_X: /* A &= X */
|
|
emit_alu_X(AND);
|
|
break;
|
|
case BPF_S_ALU_AND_K: /* A &= K */
|
|
emit_alu_K(AND, K);
|
|
break;
|
|
case BPF_S_ALU_OR_X: /* A |= X */
|
|
emit_alu_X(OR);
|
|
break;
|
|
case BPF_S_ALU_OR_K: /* A |= K */
|
|
emit_alu_K(OR, K);
|
|
break;
|
|
case BPF_S_ANC_ALU_XOR_X: /* A ^= X; */
|
|
case BPF_S_ALU_XOR_X:
|
|
emit_alu_X(XOR);
|
|
break;
|
|
case BPF_S_ALU_XOR_K: /* A ^= K */
|
|
emit_alu_K(XOR, K);
|
|
break;
|
|
case BPF_S_ALU_LSH_X: /* A <<= X */
|
|
emit_alu_X(SLL);
|
|
break;
|
|
case BPF_S_ALU_LSH_K: /* A <<= K */
|
|
emit_alu_K(SLL, K);
|
|
break;
|
|
case BPF_S_ALU_RSH_X: /* A >>= X */
|
|
emit_alu_X(SRL);
|
|
break;
|
|
case BPF_S_ALU_RSH_K: /* A >>= K */
|
|
emit_alu_K(SRL, K);
|
|
break;
|
|
case BPF_S_ALU_MUL_X: /* A *= X; */
|
|
emit_alu_X(MUL);
|
|
break;
|
|
case BPF_S_ALU_MUL_K: /* A *= K */
|
|
emit_alu_K(MUL, K);
|
|
break;
|
|
case BPF_S_ALU_DIV_K: /* A /= K with K != 0*/
|
|
if (K == 1)
|
|
break;
|
|
emit_write_y(G0);
|
|
#ifdef CONFIG_SPARC32
|
|
/* The Sparc v8 architecture requires
|
|
* three instructions between a %y
|
|
* register write and the first use.
|
|
*/
|
|
emit_nop();
|
|
emit_nop();
|
|
emit_nop();
|
|
#endif
|
|
emit_alu_K(DIV, K);
|
|
break;
|
|
case BPF_S_ALU_DIV_X: /* A /= X; */
|
|
emit_cmpi(r_X, 0);
|
|
if (pc_ret0 > 0) {
|
|
t_offset = addrs[pc_ret0 - 1];
|
|
#ifdef CONFIG_SPARC32
|
|
emit_branch(BE, t_offset + 20);
|
|
#else
|
|
emit_branch(BE, t_offset + 8);
|
|
#endif
|
|
emit_nop(); /* delay slot */
|
|
} else {
|
|
emit_branch_off(BNE, 16);
|
|
emit_nop();
|
|
#ifdef CONFIG_SPARC32
|
|
emit_jump(cleanup_addr + 20);
|
|
#else
|
|
emit_jump(cleanup_addr + 8);
|
|
#endif
|
|
emit_clear(r_A);
|
|
}
|
|
emit_write_y(G0);
|
|
#ifdef CONFIG_SPARC32
|
|
/* The Sparc v8 architecture requires
|
|
* three instructions between a %y
|
|
* register write and the first use.
|
|
*/
|
|
emit_nop();
|
|
emit_nop();
|
|
emit_nop();
|
|
#endif
|
|
emit_alu_X(DIV);
|
|
break;
|
|
case BPF_S_ALU_NEG:
|
|
emit_neg();
|
|
break;
|
|
case BPF_S_RET_K:
|
|
if (!K) {
|
|
if (pc_ret0 == -1)
|
|
pc_ret0 = i;
|
|
emit_clear(r_A);
|
|
} else {
|
|
emit_loadimm(K, r_A);
|
|
}
|
|
/* Fallthrough */
|
|
case BPF_S_RET_A:
|
|
if (seen_or_pass0) {
|
|
if (i != flen - 1) {
|
|
emit_jump(cleanup_addr);
|
|
emit_nop();
|
|
break;
|
|
}
|
|
if (seen_or_pass0 & SEEN_MEM) {
|
|
unsigned int sz = BASE_STACKFRAME;
|
|
sz += BPF_MEMWORDS * sizeof(u32);
|
|
emit_release_stack(sz);
|
|
}
|
|
}
|
|
/* jmpl %r_saved_O7 + 8, %g0 */
|
|
emit_jmpl(r_saved_O7, 8, G0);
|
|
emit_reg_move(r_A, O0); /* delay slot */
|
|
break;
|
|
case BPF_S_MISC_TAX:
|
|
seen |= SEEN_XREG;
|
|
emit_reg_move(r_A, r_X);
|
|
break;
|
|
case BPF_S_MISC_TXA:
|
|
seen |= SEEN_XREG;
|
|
emit_reg_move(r_X, r_A);
|
|
break;
|
|
case BPF_S_ANC_CPU:
|
|
emit_load_cpu(r_A);
|
|
break;
|
|
case BPF_S_ANC_PROTOCOL:
|
|
emit_skb_load16(protocol, r_A);
|
|
break;
|
|
#if 0
|
|
/* GCC won't let us take the address of
|
|
* a bit field even though we very much
|
|
* know what we are doing here.
|
|
*/
|
|
case BPF_S_ANC_PKTTYPE:
|
|
__emit_skb_load8(pkt_type, r_A);
|
|
emit_alu_K(SRL, 5);
|
|
break;
|
|
#endif
|
|
case BPF_S_ANC_IFINDEX:
|
|
emit_skb_loadptr(dev, r_A);
|
|
emit_cmpi(r_A, 0);
|
|
emit_branch(BNE_PTR, cleanup_addr + 4);
|
|
emit_nop();
|
|
emit_load32(r_A, struct net_device, ifindex, r_A);
|
|
break;
|
|
case BPF_S_ANC_MARK:
|
|
emit_skb_load32(mark, r_A);
|
|
break;
|
|
case BPF_S_ANC_QUEUE:
|
|
emit_skb_load16(queue_mapping, r_A);
|
|
break;
|
|
case BPF_S_ANC_HATYPE:
|
|
emit_skb_loadptr(dev, r_A);
|
|
emit_cmpi(r_A, 0);
|
|
emit_branch(BNE_PTR, cleanup_addr + 4);
|
|
emit_nop();
|
|
emit_load16(r_A, struct net_device, type, r_A);
|
|
break;
|
|
case BPF_S_ANC_RXHASH:
|
|
emit_skb_load32(hash, r_A);
|
|
break;
|
|
case BPF_S_ANC_VLAN_TAG:
|
|
case BPF_S_ANC_VLAN_TAG_PRESENT:
|
|
emit_skb_load16(vlan_tci, r_A);
|
|
if (filter[i].code == BPF_S_ANC_VLAN_TAG) {
|
|
emit_andi(r_A, VLAN_VID_MASK, r_A);
|
|
} else {
|
|
emit_loadimm(VLAN_TAG_PRESENT, r_TMP);
|
|
emit_and(r_A, r_TMP, r_A);
|
|
}
|
|
break;
|
|
|
|
case BPF_S_LD_IMM:
|
|
emit_loadimm(K, r_A);
|
|
break;
|
|
case BPF_S_LDX_IMM:
|
|
emit_loadimm(K, r_X);
|
|
break;
|
|
case BPF_S_LD_MEM:
|
|
emit_ldmem(K * 4, r_A);
|
|
break;
|
|
case BPF_S_LDX_MEM:
|
|
emit_ldmem(K * 4, r_X);
|
|
break;
|
|
case BPF_S_ST:
|
|
emit_stmem(K * 4, r_A);
|
|
break;
|
|
case BPF_S_STX:
|
|
emit_stmem(K * 4, r_X);
|
|
break;
|
|
|
|
#define CHOOSE_LOAD_FUNC(K, func) \
|
|
((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
|
|
|
|
case BPF_S_LD_W_ABS:
|
|
func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_word);
|
|
common_load: seen |= SEEN_DATAREF;
|
|
emit_loadimm(K, r_OFF);
|
|
emit_call(func);
|
|
break;
|
|
case BPF_S_LD_H_ABS:
|
|
func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_half);
|
|
goto common_load;
|
|
case BPF_S_LD_B_ABS:
|
|
func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte);
|
|
goto common_load;
|
|
case BPF_S_LDX_B_MSH:
|
|
func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte_msh);
|
|
goto common_load;
|
|
case BPF_S_LD_W_IND:
|
|
func = bpf_jit_load_word;
|
|
common_load_ind: seen |= SEEN_DATAREF | SEEN_XREG;
|
|
if (K) {
|
|
if (is_simm13(K)) {
|
|
emit_addi(r_X, K, r_OFF);
|
|
} else {
|
|
emit_loadimm(K, r_TMP);
|
|
emit_add(r_X, r_TMP, r_OFF);
|
|
}
|
|
} else {
|
|
emit_reg_move(r_X, r_OFF);
|
|
}
|
|
emit_call(func);
|
|
break;
|
|
case BPF_S_LD_H_IND:
|
|
func = bpf_jit_load_half;
|
|
goto common_load_ind;
|
|
case BPF_S_LD_B_IND:
|
|
func = bpf_jit_load_byte;
|
|
goto common_load_ind;
|
|
case BPF_S_JMP_JA:
|
|
emit_jump(addrs[i + K]);
|
|
emit_nop();
|
|
break;
|
|
|
|
#define COND_SEL(CODE, TOP, FOP) \
|
|
case CODE: \
|
|
t_op = TOP; \
|
|
f_op = FOP; \
|
|
goto cond_branch
|
|
|
|
COND_SEL(BPF_S_JMP_JGT_K, BGU, BLEU);
|
|
COND_SEL(BPF_S_JMP_JGE_K, BGEU, BLU);
|
|
COND_SEL(BPF_S_JMP_JEQ_K, BE, BNE);
|
|
COND_SEL(BPF_S_JMP_JSET_K, BNE, BE);
|
|
COND_SEL(BPF_S_JMP_JGT_X, BGU, BLEU);
|
|
COND_SEL(BPF_S_JMP_JGE_X, BGEU, BLU);
|
|
COND_SEL(BPF_S_JMP_JEQ_X, BE, BNE);
|
|
COND_SEL(BPF_S_JMP_JSET_X, BNE, BE);
|
|
|
|
cond_branch: f_offset = addrs[i + filter[i].jf];
|
|
t_offset = addrs[i + filter[i].jt];
|
|
|
|
/* same targets, can avoid doing the test :) */
|
|
if (filter[i].jt == filter[i].jf) {
|
|
emit_jump(t_offset);
|
|
emit_nop();
|
|
break;
|
|
}
|
|
|
|
switch (filter[i].code) {
|
|
case BPF_S_JMP_JGT_X:
|
|
case BPF_S_JMP_JGE_X:
|
|
case BPF_S_JMP_JEQ_X:
|
|
seen |= SEEN_XREG;
|
|
emit_cmp(r_A, r_X);
|
|
break;
|
|
case BPF_S_JMP_JSET_X:
|
|
seen |= SEEN_XREG;
|
|
emit_btst(r_A, r_X);
|
|
break;
|
|
case BPF_S_JMP_JEQ_K:
|
|
case BPF_S_JMP_JGT_K:
|
|
case BPF_S_JMP_JGE_K:
|
|
if (is_simm13(K)) {
|
|
emit_cmpi(r_A, K);
|
|
} else {
|
|
emit_loadimm(K, r_TMP);
|
|
emit_cmp(r_A, r_TMP);
|
|
}
|
|
break;
|
|
case BPF_S_JMP_JSET_K:
|
|
if (is_simm13(K)) {
|
|
emit_btsti(r_A, K);
|
|
} else {
|
|
emit_loadimm(K, r_TMP);
|
|
emit_btst(r_A, r_TMP);
|
|
}
|
|
break;
|
|
}
|
|
if (filter[i].jt != 0) {
|
|
if (filter[i].jf)
|
|
t_offset += 8;
|
|
emit_branch(t_op, t_offset);
|
|
emit_nop(); /* delay slot */
|
|
if (filter[i].jf) {
|
|
emit_jump(f_offset);
|
|
emit_nop();
|
|
}
|
|
break;
|
|
}
|
|
emit_branch(f_op, f_offset);
|
|
emit_nop(); /* delay slot */
|
|
break;
|
|
|
|
default:
|
|
/* hmm, too complex filter, give up with jit compiler */
|
|
goto out;
|
|
}
|
|
ilen = (void *) prog - (void *) temp;
|
|
if (image) {
|
|
if (unlikely(proglen + ilen > oldproglen)) {
|
|
pr_err("bpb_jit_compile fatal error\n");
|
|
kfree(addrs);
|
|
module_free(NULL, image);
|
|
return;
|
|
}
|
|
memcpy(image + proglen, temp, ilen);
|
|
}
|
|
proglen += ilen;
|
|
addrs[i] = proglen;
|
|
prog = temp;
|
|
}
|
|
/* last bpf instruction is always a RET :
|
|
* use it to give the cleanup instruction(s) addr
|
|
*/
|
|
cleanup_addr = proglen - 8; /* jmpl; mov r_A,%o0; */
|
|
if (seen_or_pass0 & SEEN_MEM)
|
|
cleanup_addr -= 4; /* add %sp, X, %sp; */
|
|
|
|
if (image) {
|
|
if (proglen != oldproglen)
|
|
pr_err("bpb_jit_compile proglen=%u != oldproglen=%u\n",
|
|
proglen, oldproglen);
|
|
break;
|
|
}
|
|
if (proglen == oldproglen) {
|
|
image = module_alloc(proglen);
|
|
if (!image)
|
|
goto out;
|
|
}
|
|
oldproglen = proglen;
|
|
}
|
|
|
|
if (bpf_jit_enable > 1)
|
|
bpf_jit_dump(flen, proglen, pass, image);
|
|
|
|
if (image) {
|
|
bpf_flush_icache(image, image + proglen);
|
|
fp->bpf_func = (void *)image;
|
|
fp->jited = 1;
|
|
}
|
|
out:
|
|
kfree(addrs);
|
|
return;
|
|
}
|
|
|
|
void bpf_jit_free(struct sk_filter *fp)
|
|
{
|
|
if (fp->jited)
|
|
module_free(NULL, fp->bpf_func);
|
|
kfree(fp);
|
|
}
|