mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-29 14:05:19 +08:00
32d6bd9059
This is the third version of the patchset previously sent [1]. I have basically only rebased it on top of 4.7-rc1 tree and dropped "dm: get rid of superfluous gfp flags" which went through dm tree. I am sending it now because it is tree wide and chances for conflicts are reduced considerably when we want to target rc2. I plan to send the next step and rename the flag and move to a better semantic later during this release cycle so we will have a new semantic ready for 4.8 merge window hopefully. Motivation: While working on something unrelated I've checked the current usage of __GFP_REPEAT in the tree. It seems that a majority of the usage is and always has been bogus because __GFP_REPEAT has always been about costly high order allocations while we are using it for order-0 or very small orders very often. It seems that a big pile of them is just a copy&paste when a code has been adopted from one arch to another. I think it makes some sense to get rid of them because they are just making the semantic more unclear. Please note that GFP_REPEAT is documented as * __GFP_REPEAT: Try hard to allocate the memory, but the allocation attempt * _might_ fail. This depends upon the particular VM implementation. while !costly requests have basically nofail semantic. So one could reasonably expect that order-0 request with __GFP_REPEAT will not loop for ever. This is not implemented right now though. I would like to move on with __GFP_REPEAT and define a better semantic for it. $ git grep __GFP_REPEAT origin/master | wc -l 111 $ git grep __GFP_REPEAT | wc -l 36 So we are down to the third after this patch series. The remaining places really seem to be relying on __GFP_REPEAT due to large allocation requests. This still needs some double checking which I will do later after all the simple ones are sorted out. I am touching a lot of arch specific code here and I hope I got it right but as a matter of fact I even didn't compile test for some archs as I do not have cross compiler for them. Patches should be quite trivial to review for stupid compile mistakes though. The tricky parts are usually hidden by macro definitions and thats where I would appreciate help from arch maintainers. [1] http://lkml.kernel.org/r/1461849846-27209-1-git-send-email-mhocko@kernel.org This patch (of 19): __GFP_REPEAT has a rather weak semantic but since it has been introduced around 2.6.12 it has been ignored for low order allocations. Yet we have the full kernel tree with its usage for apparently order-0 allocations. This is really confusing because __GFP_REPEAT is explicitly documented to allow allocation failures which is a weaker semantic than the current order-0 has (basically nofail). Let's simply drop __GFP_REPEAT from those places. This would allow to identify place which really need allocator to retry harder and formulate a more specific semantic for what the flag is supposed to do actually. Link: http://lkml.kernel.org/r/1464599699-30131-2-git-send-email-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Andy Lutomirski <luto@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chen Liqin <liqin.linux@gmail.com> Cc: Chris Metcalf <cmetcalf@mellanox.com> [for tile] Cc: Guan Xuetao <gxt@mprc.pku.edu.cn> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Helge Deller <deller@gmx.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: John Crispin <blogic@openwrt.org> Cc: Lennox Wu <lennox.wu@gmail.com> Cc: Ley Foon Tan <lftan@altera.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Rich Felker <dalias@libc.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
434 lines
10 KiB
C
434 lines
10 KiB
C
/*
|
|
* This file contains ioremap and related functions for 64-bit machines.
|
|
*
|
|
* Derived from arch/ppc64/mm/init.c
|
|
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
|
|
*
|
|
* Modifications by Paul Mackerras (PowerMac) (paulus@samba.org)
|
|
* and Cort Dougan (PReP) (cort@cs.nmt.edu)
|
|
* Copyright (C) 1996 Paul Mackerras
|
|
*
|
|
* Derived from "arch/i386/mm/init.c"
|
|
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
|
|
*
|
|
* Dave Engebretsen <engebret@us.ibm.com>
|
|
* Rework for PPC64 port.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
*/
|
|
|
|
#include <linux/signal.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/string.h>
|
|
#include <linux/export.h>
|
|
#include <linux/types.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/hugetlb.h>
|
|
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/page.h>
|
|
#include <asm/prom.h>
|
|
#include <asm/io.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/mmu.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/cputable.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/firmware.h>
|
|
#include <asm/dma.h>
|
|
|
|
#include "mmu_decl.h"
|
|
|
|
#ifdef CONFIG_PPC_STD_MMU_64
|
|
#if TASK_SIZE_USER64 > (1UL << (ESID_BITS + SID_SHIFT))
|
|
#error TASK_SIZE_USER64 exceeds user VSID range
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
/*
|
|
* partition table and process table for ISA 3.0
|
|
*/
|
|
struct prtb_entry *process_tb;
|
|
struct patb_entry *partition_tb;
|
|
/*
|
|
* page table size
|
|
*/
|
|
unsigned long __pte_index_size;
|
|
EXPORT_SYMBOL(__pte_index_size);
|
|
unsigned long __pmd_index_size;
|
|
EXPORT_SYMBOL(__pmd_index_size);
|
|
unsigned long __pud_index_size;
|
|
EXPORT_SYMBOL(__pud_index_size);
|
|
unsigned long __pgd_index_size;
|
|
EXPORT_SYMBOL(__pgd_index_size);
|
|
unsigned long __pmd_cache_index;
|
|
EXPORT_SYMBOL(__pmd_cache_index);
|
|
unsigned long __pte_table_size;
|
|
EXPORT_SYMBOL(__pte_table_size);
|
|
unsigned long __pmd_table_size;
|
|
EXPORT_SYMBOL(__pmd_table_size);
|
|
unsigned long __pud_table_size;
|
|
EXPORT_SYMBOL(__pud_table_size);
|
|
unsigned long __pgd_table_size;
|
|
EXPORT_SYMBOL(__pgd_table_size);
|
|
unsigned long __pmd_val_bits;
|
|
EXPORT_SYMBOL(__pmd_val_bits);
|
|
unsigned long __pud_val_bits;
|
|
EXPORT_SYMBOL(__pud_val_bits);
|
|
unsigned long __pgd_val_bits;
|
|
EXPORT_SYMBOL(__pgd_val_bits);
|
|
unsigned long __kernel_virt_start;
|
|
EXPORT_SYMBOL(__kernel_virt_start);
|
|
unsigned long __kernel_virt_size;
|
|
EXPORT_SYMBOL(__kernel_virt_size);
|
|
unsigned long __vmalloc_start;
|
|
EXPORT_SYMBOL(__vmalloc_start);
|
|
unsigned long __vmalloc_end;
|
|
EXPORT_SYMBOL(__vmalloc_end);
|
|
struct page *vmemmap;
|
|
EXPORT_SYMBOL(vmemmap);
|
|
unsigned long __pte_frag_nr;
|
|
EXPORT_SYMBOL(__pte_frag_nr);
|
|
unsigned long __pte_frag_size_shift;
|
|
EXPORT_SYMBOL(__pte_frag_size_shift);
|
|
unsigned long ioremap_bot;
|
|
#else /* !CONFIG_PPC_BOOK3S_64 */
|
|
unsigned long ioremap_bot = IOREMAP_BASE;
|
|
#endif
|
|
|
|
/**
|
|
* __ioremap_at - Low level function to establish the page tables
|
|
* for an IO mapping
|
|
*/
|
|
void __iomem * __ioremap_at(phys_addr_t pa, void *ea, unsigned long size,
|
|
unsigned long flags)
|
|
{
|
|
unsigned long i;
|
|
|
|
/* Make sure we have the base flags */
|
|
if ((flags & _PAGE_PRESENT) == 0)
|
|
flags |= pgprot_val(PAGE_KERNEL);
|
|
|
|
/* We don't support the 4K PFN hack with ioremap */
|
|
if (flags & H_PAGE_4K_PFN)
|
|
return NULL;
|
|
|
|
WARN_ON(pa & ~PAGE_MASK);
|
|
WARN_ON(((unsigned long)ea) & ~PAGE_MASK);
|
|
WARN_ON(size & ~PAGE_MASK);
|
|
|
|
for (i = 0; i < size; i += PAGE_SIZE)
|
|
if (map_kernel_page((unsigned long)ea+i, pa+i, flags))
|
|
return NULL;
|
|
|
|
return (void __iomem *)ea;
|
|
}
|
|
|
|
/**
|
|
* __iounmap_from - Low level function to tear down the page tables
|
|
* for an IO mapping. This is used for mappings that
|
|
* are manipulated manually, like partial unmapping of
|
|
* PCI IOs or ISA space.
|
|
*/
|
|
void __iounmap_at(void *ea, unsigned long size)
|
|
{
|
|
WARN_ON(((unsigned long)ea) & ~PAGE_MASK);
|
|
WARN_ON(size & ~PAGE_MASK);
|
|
|
|
unmap_kernel_range((unsigned long)ea, size);
|
|
}
|
|
|
|
void __iomem * __ioremap_caller(phys_addr_t addr, unsigned long size,
|
|
unsigned long flags, void *caller)
|
|
{
|
|
phys_addr_t paligned;
|
|
void __iomem *ret;
|
|
|
|
/*
|
|
* Choose an address to map it to.
|
|
* Once the imalloc system is running, we use it.
|
|
* Before that, we map using addresses going
|
|
* up from ioremap_bot. imalloc will use
|
|
* the addresses from ioremap_bot through
|
|
* IMALLOC_END
|
|
*
|
|
*/
|
|
paligned = addr & PAGE_MASK;
|
|
size = PAGE_ALIGN(addr + size) - paligned;
|
|
|
|
if ((size == 0) || (paligned == 0))
|
|
return NULL;
|
|
|
|
if (slab_is_available()) {
|
|
struct vm_struct *area;
|
|
|
|
area = __get_vm_area_caller(size, VM_IOREMAP,
|
|
ioremap_bot, IOREMAP_END,
|
|
caller);
|
|
if (area == NULL)
|
|
return NULL;
|
|
|
|
area->phys_addr = paligned;
|
|
ret = __ioremap_at(paligned, area->addr, size, flags);
|
|
if (!ret)
|
|
vunmap(area->addr);
|
|
} else {
|
|
ret = __ioremap_at(paligned, (void *)ioremap_bot, size, flags);
|
|
if (ret)
|
|
ioremap_bot += size;
|
|
}
|
|
|
|
if (ret)
|
|
ret += addr & ~PAGE_MASK;
|
|
return ret;
|
|
}
|
|
|
|
void __iomem * __ioremap(phys_addr_t addr, unsigned long size,
|
|
unsigned long flags)
|
|
{
|
|
return __ioremap_caller(addr, size, flags, __builtin_return_address(0));
|
|
}
|
|
|
|
void __iomem * ioremap(phys_addr_t addr, unsigned long size)
|
|
{
|
|
unsigned long flags = pgprot_val(pgprot_noncached(__pgprot(0)));
|
|
void *caller = __builtin_return_address(0);
|
|
|
|
if (ppc_md.ioremap)
|
|
return ppc_md.ioremap(addr, size, flags, caller);
|
|
return __ioremap_caller(addr, size, flags, caller);
|
|
}
|
|
|
|
void __iomem * ioremap_wc(phys_addr_t addr, unsigned long size)
|
|
{
|
|
unsigned long flags = pgprot_val(pgprot_noncached_wc(__pgprot(0)));
|
|
void *caller = __builtin_return_address(0);
|
|
|
|
if (ppc_md.ioremap)
|
|
return ppc_md.ioremap(addr, size, flags, caller);
|
|
return __ioremap_caller(addr, size, flags, caller);
|
|
}
|
|
|
|
void __iomem * ioremap_prot(phys_addr_t addr, unsigned long size,
|
|
unsigned long flags)
|
|
{
|
|
void *caller = __builtin_return_address(0);
|
|
|
|
/* writeable implies dirty for kernel addresses */
|
|
if (flags & _PAGE_WRITE)
|
|
flags |= _PAGE_DIRTY;
|
|
|
|
/* we don't want to let _PAGE_EXEC leak out */
|
|
flags &= ~_PAGE_EXEC;
|
|
/*
|
|
* Force kernel mapping.
|
|
*/
|
|
#if defined(CONFIG_PPC_BOOK3S_64)
|
|
flags |= _PAGE_PRIVILEGED;
|
|
#else
|
|
flags &= ~_PAGE_USER;
|
|
#endif
|
|
|
|
|
|
#ifdef _PAGE_BAP_SR
|
|
/* _PAGE_USER contains _PAGE_BAP_SR on BookE using the new PTE format
|
|
* which means that we just cleared supervisor access... oops ;-) This
|
|
* restores it
|
|
*/
|
|
flags |= _PAGE_BAP_SR;
|
|
#endif
|
|
|
|
if (ppc_md.ioremap)
|
|
return ppc_md.ioremap(addr, size, flags, caller);
|
|
return __ioremap_caller(addr, size, flags, caller);
|
|
}
|
|
|
|
|
|
/*
|
|
* Unmap an IO region and remove it from imalloc'd list.
|
|
* Access to IO memory should be serialized by driver.
|
|
*/
|
|
void __iounmap(volatile void __iomem *token)
|
|
{
|
|
void *addr;
|
|
|
|
if (!slab_is_available())
|
|
return;
|
|
|
|
addr = (void *) ((unsigned long __force)
|
|
PCI_FIX_ADDR(token) & PAGE_MASK);
|
|
if ((unsigned long)addr < ioremap_bot) {
|
|
printk(KERN_WARNING "Attempt to iounmap early bolted mapping"
|
|
" at 0x%p\n", addr);
|
|
return;
|
|
}
|
|
vunmap(addr);
|
|
}
|
|
|
|
void iounmap(volatile void __iomem *token)
|
|
{
|
|
if (ppc_md.iounmap)
|
|
ppc_md.iounmap(token);
|
|
else
|
|
__iounmap(token);
|
|
}
|
|
|
|
EXPORT_SYMBOL(ioremap);
|
|
EXPORT_SYMBOL(ioremap_wc);
|
|
EXPORT_SYMBOL(ioremap_prot);
|
|
EXPORT_SYMBOL(__ioremap);
|
|
EXPORT_SYMBOL(__ioremap_at);
|
|
EXPORT_SYMBOL(iounmap);
|
|
EXPORT_SYMBOL(__iounmap);
|
|
EXPORT_SYMBOL(__iounmap_at);
|
|
|
|
#ifndef __PAGETABLE_PUD_FOLDED
|
|
/* 4 level page table */
|
|
struct page *pgd_page(pgd_t pgd)
|
|
{
|
|
if (pgd_huge(pgd))
|
|
return pte_page(pgd_pte(pgd));
|
|
return virt_to_page(pgd_page_vaddr(pgd));
|
|
}
|
|
#endif
|
|
|
|
struct page *pud_page(pud_t pud)
|
|
{
|
|
if (pud_huge(pud))
|
|
return pte_page(pud_pte(pud));
|
|
return virt_to_page(pud_page_vaddr(pud));
|
|
}
|
|
|
|
/*
|
|
* For hugepage we have pfn in the pmd, we use PTE_RPN_SHIFT bits for flags
|
|
* For PTE page, we have a PTE_FRAG_SIZE (4K) aligned virtual address.
|
|
*/
|
|
struct page *pmd_page(pmd_t pmd)
|
|
{
|
|
if (pmd_trans_huge(pmd) || pmd_huge(pmd))
|
|
return pte_page(pmd_pte(pmd));
|
|
return virt_to_page(pmd_page_vaddr(pmd));
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_64K_PAGES
|
|
static pte_t *get_from_cache(struct mm_struct *mm)
|
|
{
|
|
void *pte_frag, *ret;
|
|
|
|
spin_lock(&mm->page_table_lock);
|
|
ret = mm->context.pte_frag;
|
|
if (ret) {
|
|
pte_frag = ret + PTE_FRAG_SIZE;
|
|
/*
|
|
* If we have taken up all the fragments mark PTE page NULL
|
|
*/
|
|
if (((unsigned long)pte_frag & ~PAGE_MASK) == 0)
|
|
pte_frag = NULL;
|
|
mm->context.pte_frag = pte_frag;
|
|
}
|
|
spin_unlock(&mm->page_table_lock);
|
|
return (pte_t *)ret;
|
|
}
|
|
|
|
static pte_t *__alloc_for_cache(struct mm_struct *mm, int kernel)
|
|
{
|
|
void *ret = NULL;
|
|
struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
|
|
if (!page)
|
|
return NULL;
|
|
if (!kernel && !pgtable_page_ctor(page)) {
|
|
__free_page(page);
|
|
return NULL;
|
|
}
|
|
|
|
ret = page_address(page);
|
|
spin_lock(&mm->page_table_lock);
|
|
/*
|
|
* If we find pgtable_page set, we return
|
|
* the allocated page with single fragement
|
|
* count.
|
|
*/
|
|
if (likely(!mm->context.pte_frag)) {
|
|
set_page_count(page, PTE_FRAG_NR);
|
|
mm->context.pte_frag = ret + PTE_FRAG_SIZE;
|
|
}
|
|
spin_unlock(&mm->page_table_lock);
|
|
|
|
return (pte_t *)ret;
|
|
}
|
|
|
|
pte_t *pte_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr, int kernel)
|
|
{
|
|
pte_t *pte;
|
|
|
|
pte = get_from_cache(mm);
|
|
if (pte)
|
|
return pte;
|
|
|
|
return __alloc_for_cache(mm, kernel);
|
|
}
|
|
#endif /* CONFIG_PPC_64K_PAGES */
|
|
|
|
void pte_fragment_free(unsigned long *table, int kernel)
|
|
{
|
|
struct page *page = virt_to_page(table);
|
|
if (put_page_testzero(page)) {
|
|
if (!kernel)
|
|
pgtable_page_dtor(page);
|
|
free_hot_cold_page(page, 0);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift)
|
|
{
|
|
unsigned long pgf = (unsigned long)table;
|
|
|
|
BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
|
|
pgf |= shift;
|
|
tlb_remove_table(tlb, (void *)pgf);
|
|
}
|
|
|
|
void __tlb_remove_table(void *_table)
|
|
{
|
|
void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
|
|
unsigned shift = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
|
|
|
|
if (!shift)
|
|
/* PTE page needs special handling */
|
|
pte_fragment_free(table, 0);
|
|
else {
|
|
BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
|
|
kmem_cache_free(PGT_CACHE(shift), table);
|
|
}
|
|
}
|
|
#else
|
|
void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift)
|
|
{
|
|
if (!shift) {
|
|
/* PTE page needs special handling */
|
|
pte_fragment_free(table, 0);
|
|
} else {
|
|
BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
|
|
kmem_cache_free(PGT_CACHE(shift), table);
|
|
}
|
|
}
|
|
#endif
|