mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-10 07:44:23 +08:00
2259233110
In commit 8caab75fd2
("spi: Generalize SPI "master" to "controller"")
some functions and struct members were renamed. To not break all drivers
compatibility macros were provided.
To be able to remove these compatibility macros push the renaming into
the SPI bitbang controller drivers.
Acked-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Link: https://lore.kernel.org/r/f7f949feb803acb8bea75798f41371a13287f4e8.1707324794.git.u.kleine-koenig@pengutronix.de
Signed-off-by: Mark Brown <broonie@kernel.org>
324 lines
7.7 KiB
C
324 lines
7.7 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* parport-to-butterfly adapter
|
|
*
|
|
* Copyright (C) 2005 David Brownell
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/module.h>
|
|
#include <linux/device.h>
|
|
#include <linux/parport.h>
|
|
|
|
#include <linux/sched.h>
|
|
#include <linux/spi/spi.h>
|
|
#include <linux/spi/spi_bitbang.h>
|
|
#include <linux/spi/flash.h>
|
|
|
|
#include <linux/mtd/partitions.h>
|
|
|
|
/*
|
|
* This uses SPI to talk with an "AVR Butterfly", which is a $US20 card
|
|
* with a battery powered AVR microcontroller and lots of goodies. You
|
|
* can use GCC to develop firmware for this.
|
|
*
|
|
* See Documentation/spi/butterfly.rst for information about how to build
|
|
* and use this custom parallel port cable.
|
|
*/
|
|
|
|
/* DATA output bits (pins 2..9 == D0..D7) */
|
|
#define butterfly_nreset (1 << 1) /* pin 3 */
|
|
|
|
#define spi_sck_bit (1 << 0) /* pin 2 */
|
|
#define spi_mosi_bit (1 << 7) /* pin 9 */
|
|
|
|
#define vcc_bits ((1 << 6) | (1 << 5)) /* pins 7, 8 */
|
|
|
|
/* STATUS input bits */
|
|
#define spi_miso_bit PARPORT_STATUS_BUSY /* pin 11 */
|
|
|
|
/* CONTROL output bits */
|
|
#define spi_cs_bit PARPORT_CONTROL_SELECT /* pin 17 */
|
|
|
|
static inline struct butterfly *spidev_to_pp(struct spi_device *spi)
|
|
{
|
|
return spi->controller_data;
|
|
}
|
|
|
|
struct butterfly {
|
|
/* REVISIT ... for now, this must be first */
|
|
struct spi_bitbang bitbang;
|
|
|
|
struct parport *port;
|
|
struct pardevice *pd;
|
|
|
|
u8 lastbyte;
|
|
|
|
struct spi_device *dataflash;
|
|
struct spi_device *butterfly;
|
|
struct spi_board_info info[2];
|
|
|
|
};
|
|
|
|
/*----------------------------------------------------------------------*/
|
|
|
|
static inline void
|
|
setsck(struct spi_device *spi, int is_on)
|
|
{
|
|
struct butterfly *pp = spidev_to_pp(spi);
|
|
u8 bit, byte = pp->lastbyte;
|
|
|
|
bit = spi_sck_bit;
|
|
|
|
if (is_on)
|
|
byte |= bit;
|
|
else
|
|
byte &= ~bit;
|
|
parport_write_data(pp->port, byte);
|
|
pp->lastbyte = byte;
|
|
}
|
|
|
|
static inline void
|
|
setmosi(struct spi_device *spi, int is_on)
|
|
{
|
|
struct butterfly *pp = spidev_to_pp(spi);
|
|
u8 bit, byte = pp->lastbyte;
|
|
|
|
bit = spi_mosi_bit;
|
|
|
|
if (is_on)
|
|
byte |= bit;
|
|
else
|
|
byte &= ~bit;
|
|
parport_write_data(pp->port, byte);
|
|
pp->lastbyte = byte;
|
|
}
|
|
|
|
static inline int getmiso(struct spi_device *spi)
|
|
{
|
|
struct butterfly *pp = spidev_to_pp(spi);
|
|
int value;
|
|
u8 bit;
|
|
|
|
bit = spi_miso_bit;
|
|
|
|
/* only STATUS_BUSY is NOT negated */
|
|
value = !(parport_read_status(pp->port) & bit);
|
|
return (bit == PARPORT_STATUS_BUSY) ? value : !value;
|
|
}
|
|
|
|
static void butterfly_chipselect(struct spi_device *spi, int value)
|
|
{
|
|
struct butterfly *pp = spidev_to_pp(spi);
|
|
|
|
/* set default clock polarity */
|
|
if (value != BITBANG_CS_INACTIVE)
|
|
setsck(spi, spi->mode & SPI_CPOL);
|
|
|
|
/* here, value == "activate or not";
|
|
* most PARPORT_CONTROL_* bits are negated, so we must
|
|
* morph it to value == "bit value to write in control register"
|
|
*/
|
|
if (spi_cs_bit == PARPORT_CONTROL_INIT)
|
|
value = !value;
|
|
|
|
parport_frob_control(pp->port, spi_cs_bit, value ? spi_cs_bit : 0);
|
|
}
|
|
|
|
/* we only needed to implement one mode here, and choose SPI_MODE_0 */
|
|
|
|
#define spidelay(X) do { } while (0)
|
|
/* #define spidelay ndelay */
|
|
|
|
#include "spi-bitbang-txrx.h"
|
|
|
|
static u32
|
|
butterfly_txrx_word_mode0(struct spi_device *spi, unsigned nsecs, u32 word,
|
|
u8 bits, unsigned flags)
|
|
{
|
|
return bitbang_txrx_be_cpha0(spi, nsecs, 0, flags, word, bits);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------*/
|
|
|
|
/* override default partitioning with cmdlinepart */
|
|
static struct mtd_partition partitions[] = { {
|
|
/* JFFS2 wants partitions of 4*N blocks for this device,
|
|
* so sectors 0 and 1 can't be partitions by themselves.
|
|
*/
|
|
|
|
/* sector 0 = 8 pages * 264 bytes/page (1 block)
|
|
* sector 1 = 248 pages * 264 bytes/page
|
|
*/
|
|
.name = "bookkeeping", /* 66 KB */
|
|
.offset = 0,
|
|
.size = (8 + 248) * 264,
|
|
/* .mask_flags = MTD_WRITEABLE, */
|
|
}, {
|
|
/* sector 2 = 256 pages * 264 bytes/page
|
|
* sectors 3-5 = 512 pages * 264 bytes/page
|
|
*/
|
|
.name = "filesystem", /* 462 KB */
|
|
.offset = MTDPART_OFS_APPEND,
|
|
.size = MTDPART_SIZ_FULL,
|
|
} };
|
|
|
|
static struct flash_platform_data flash = {
|
|
.name = "butterflash",
|
|
.parts = partitions,
|
|
.nr_parts = ARRAY_SIZE(partitions),
|
|
};
|
|
|
|
/* REVISIT remove this ugly global and its "only one" limitation */
|
|
static struct butterfly *butterfly;
|
|
|
|
static void butterfly_attach(struct parport *p)
|
|
{
|
|
struct pardevice *pd;
|
|
int status;
|
|
struct butterfly *pp;
|
|
struct spi_controller *host;
|
|
struct device *dev = p->physport->dev;
|
|
struct pardev_cb butterfly_cb;
|
|
|
|
if (butterfly || !dev)
|
|
return;
|
|
|
|
/* REVISIT: this just _assumes_ a butterfly is there ... no probe,
|
|
* and no way to be selective about what it binds to.
|
|
*/
|
|
|
|
host = spi_alloc_host(dev, sizeof(*pp));
|
|
if (!host) {
|
|
status = -ENOMEM;
|
|
goto done;
|
|
}
|
|
pp = spi_controller_get_devdata(host);
|
|
|
|
/*
|
|
* SPI and bitbang hookup
|
|
*
|
|
* use default setup(), cleanup(), and transfer() methods; and
|
|
* only bother implementing mode 0. Start it later.
|
|
*/
|
|
host->bus_num = 42;
|
|
host->num_chipselect = 2;
|
|
|
|
pp->bitbang.ctlr = host;
|
|
pp->bitbang.chipselect = butterfly_chipselect;
|
|
pp->bitbang.txrx_word[SPI_MODE_0] = butterfly_txrx_word_mode0;
|
|
|
|
/*
|
|
* parport hookup
|
|
*/
|
|
pp->port = p;
|
|
memset(&butterfly_cb, 0, sizeof(butterfly_cb));
|
|
butterfly_cb.private = pp;
|
|
pd = parport_register_dev_model(p, "spi_butterfly", &butterfly_cb, 0);
|
|
if (!pd) {
|
|
status = -ENOMEM;
|
|
goto clean0;
|
|
}
|
|
pp->pd = pd;
|
|
|
|
status = parport_claim(pd);
|
|
if (status < 0)
|
|
goto clean1;
|
|
|
|
/*
|
|
* Butterfly reset, powerup, run firmware
|
|
*/
|
|
pr_debug("%s: powerup/reset Butterfly\n", p->name);
|
|
|
|
/* nCS for dataflash (this bit is inverted on output) */
|
|
parport_frob_control(pp->port, spi_cs_bit, 0);
|
|
|
|
/* stabilize power with chip in reset (nRESET), and
|
|
* spi_sck_bit clear (CPOL=0)
|
|
*/
|
|
pp->lastbyte |= vcc_bits;
|
|
parport_write_data(pp->port, pp->lastbyte);
|
|
msleep(5);
|
|
|
|
/* take it out of reset; assume long reset delay */
|
|
pp->lastbyte |= butterfly_nreset;
|
|
parport_write_data(pp->port, pp->lastbyte);
|
|
msleep(100);
|
|
|
|
/*
|
|
* Start SPI ... for now, hide that we're two physical busses.
|
|
*/
|
|
status = spi_bitbang_start(&pp->bitbang);
|
|
if (status < 0)
|
|
goto clean2;
|
|
|
|
/* Bus 1 lets us talk to at45db041b (firmware disables AVR SPI), AVR
|
|
* (firmware resets at45, acts as spi slave) or neither (we ignore
|
|
* both, AVR uses AT45). Here we expect firmware for the first option.
|
|
*/
|
|
|
|
pp->info[0].max_speed_hz = 15 * 1000 * 1000;
|
|
strcpy(pp->info[0].modalias, "mtd_dataflash");
|
|
pp->info[0].platform_data = &flash;
|
|
pp->info[0].chip_select = 1;
|
|
pp->info[0].controller_data = pp;
|
|
pp->dataflash = spi_new_device(pp->bitbang.ctlr, &pp->info[0]);
|
|
if (pp->dataflash)
|
|
pr_debug("%s: dataflash at %s\n", p->name,
|
|
dev_name(&pp->dataflash->dev));
|
|
|
|
pr_info("%s: AVR Butterfly\n", p->name);
|
|
butterfly = pp;
|
|
return;
|
|
|
|
clean2:
|
|
/* turn off VCC */
|
|
parport_write_data(pp->port, 0);
|
|
|
|
parport_release(pp->pd);
|
|
clean1:
|
|
parport_unregister_device(pd);
|
|
clean0:
|
|
spi_controller_put(host);
|
|
done:
|
|
pr_debug("%s: butterfly probe, fail %d\n", p->name, status);
|
|
}
|
|
|
|
static void butterfly_detach(struct parport *p)
|
|
{
|
|
struct butterfly *pp;
|
|
|
|
/* FIXME this global is ugly ... but, how to quickly get from
|
|
* the parport to the "struct butterfly" associated with it?
|
|
* "old school" driver-internal device lists?
|
|
*/
|
|
if (!butterfly || butterfly->port != p)
|
|
return;
|
|
pp = butterfly;
|
|
butterfly = NULL;
|
|
|
|
/* stop() unregisters child devices too */
|
|
spi_bitbang_stop(&pp->bitbang);
|
|
|
|
/* turn off VCC */
|
|
parport_write_data(pp->port, 0);
|
|
msleep(10);
|
|
|
|
parport_release(pp->pd);
|
|
parport_unregister_device(pp->pd);
|
|
|
|
spi_controller_put(pp->bitbang.ctlr);
|
|
}
|
|
|
|
static struct parport_driver butterfly_driver = {
|
|
.name = "spi_butterfly",
|
|
.match_port = butterfly_attach,
|
|
.detach = butterfly_detach,
|
|
.devmodel = true,
|
|
};
|
|
module_parport_driver(butterfly_driver);
|
|
|
|
MODULE_DESCRIPTION("Parport Adapter driver for AVR Butterfly");
|
|
MODULE_LICENSE("GPL");
|