linux/sound/soc/atmel/mchp-spdifrx.c
Nathan Chancellor 218674a459
ASoC: mchp-spdifrx: Fix uninitialized use of mr in mchp_spdifrx_hw_params()
Clang warns:

  ../sound/soc/atmel/mchp-spdifrx.c:455:3: error: variable 'mr' is uninitialized when used here [-Werror,-Wuninitialized]
                  mr |= SPDIFRX_MR_ENDIAN_BIG;
                  ^~
  ../sound/soc/atmel/mchp-spdifrx.c:432:8: note: initialize the variable 'mr' to silence this warning
          u32 mr;
                ^
                 = 0
  1 error generated.

Zero initialize mr so that these bitwise OR and assignment operation
works unconditionally.

Fixes: fa09fa6038 ("ASoC: mchp-spdifrx: fix controls which rely on rsr register")
Link: https://github.com/ClangBuiltLinux/linux/issues/1797
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Reviewed-by: Claudiu Beznea <claudiu.beznea@microchip.com>
Link: https://lore.kernel.org/r/20230202-mchp-spdifrx-fix-uninit-mr-v1-1-629a045d7a2f@kernel.org
Signed-off-by: Mark Brown <broonie@kernel.org>
2023-02-02 17:36:53 +00:00

1212 lines
32 KiB
C

// SPDX-License-Identifier: GPL-2.0
//
// Driver for Microchip S/PDIF RX Controller
//
// Copyright (C) 2020 Microchip Technology Inc. and its subsidiaries
//
// Author: Codrin Ciubotariu <codrin.ciubotariu@microchip.com>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/spinlock.h>
#include <sound/dmaengine_pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
/*
* ---- S/PDIF Receiver Controller Register map ----
*/
#define SPDIFRX_CR 0x00 /* Control Register */
#define SPDIFRX_MR 0x04 /* Mode Register */
#define SPDIFRX_IER 0x10 /* Interrupt Enable Register */
#define SPDIFRX_IDR 0x14 /* Interrupt Disable Register */
#define SPDIFRX_IMR 0x18 /* Interrupt Mask Register */
#define SPDIFRX_ISR 0x1c /* Interrupt Status Register */
#define SPDIFRX_RSR 0x20 /* Status Register */
#define SPDIFRX_RHR 0x24 /* Holding Register */
#define SPDIFRX_CHSR(channel, reg) \
(0x30 + (channel) * 0x30 + (reg) * 4) /* Channel x Status Registers */
#define SPDIFRX_CHUD(channel, reg) \
(0x48 + (channel) * 0x30 + (reg) * 4) /* Channel x User Data Registers */
#define SPDIFRX_WPMR 0xE4 /* Write Protection Mode Register */
#define SPDIFRX_WPSR 0xE8 /* Write Protection Status Register */
#define SPDIFRX_VERSION 0xFC /* Version Register */
/*
* ---- Control Register (Write-only) ----
*/
#define SPDIFRX_CR_SWRST BIT(0) /* Software Reset */
/*
* ---- Mode Register (Read/Write) ----
*/
/* Receive Enable */
#define SPDIFRX_MR_RXEN_MASK GENMASK(0, 0)
#define SPDIFRX_MR_RXEN_DISABLE (0 << 0) /* SPDIF Receiver Disabled */
#define SPDIFRX_MR_RXEN_ENABLE (1 << 0) /* SPDIF Receiver Enabled */
/* Validity Bit Mode */
#define SPDIFRX_MR_VBMODE_MASK GENAMSK(1, 1)
#define SPDIFRX_MR_VBMODE_ALWAYS_LOAD \
(0 << 1) /* Load sample regardless of validity bit value */
#define SPDIFRX_MR_VBMODE_DISCARD_IF_VB1 \
(1 << 1) /* Load sample only if validity bit is 0 */
/* Data Word Endian Mode */
#define SPDIFRX_MR_ENDIAN_MASK GENMASK(2, 2)
#define SPDIFRX_MR_ENDIAN_LITTLE (0 << 2) /* Little Endian Mode */
#define SPDIFRX_MR_ENDIAN_BIG (1 << 2) /* Big Endian Mode */
/* Parity Bit Mode */
#define SPDIFRX_MR_PBMODE_MASK GENMASK(3, 3)
#define SPDIFRX_MR_PBMODE_PARCHECK (0 << 3) /* Parity Check Enabled */
#define SPDIFRX_MR_PBMODE_NOPARCHECK (1 << 3) /* Parity Check Disabled */
/* Sample Data Width */
#define SPDIFRX_MR_DATAWIDTH_MASK GENMASK(5, 4)
#define SPDIFRX_MR_DATAWIDTH(width) \
(((6 - (width) / 4) << 4) & SPDIFRX_MR_DATAWIDTH_MASK)
/* Packed Data Mode in Receive Holding Register */
#define SPDIFRX_MR_PACK_MASK GENMASK(7, 7)
#define SPDIFRX_MR_PACK_DISABLED (0 << 7)
#define SPDIFRX_MR_PACK_ENABLED (1 << 7)
/* Start of Block Bit Mode */
#define SPDIFRX_MR_SBMODE_MASK GENMASK(8, 8)
#define SPDIFRX_MR_SBMODE_ALWAYS_LOAD (0 << 8)
#define SPDIFRX_MR_SBMODE_DISCARD (1 << 8)
/* Consecutive Preamble Error Threshold Automatic Restart */
#define SPDIFRX_MR_AUTORST_MASK GENMASK(24, 24)
#define SPDIFRX_MR_AUTORST_NOACTION (0 << 24)
#define SPDIFRX_MR_AUTORST_UNLOCK_ON_PRE_ERR (1 << 24)
/*
* ---- Interrupt Enable/Disable/Mask/Status Register (Write/Read-only) ----
*/
#define SPDIFRX_IR_RXRDY BIT(0)
#define SPDIFRX_IR_LOCKED BIT(1)
#define SPDIFRX_IR_LOSS BIT(2)
#define SPDIFRX_IR_BLOCKEND BIT(3)
#define SPDIFRX_IR_SFE BIT(4)
#define SPDIFRX_IR_PAR_ERR BIT(5)
#define SPDIFRX_IR_OVERRUN BIT(6)
#define SPDIFRX_IR_RXFULL BIT(7)
#define SPDIFRX_IR_CSC(ch) BIT((ch) + 8)
#define SPDIFRX_IR_SECE BIT(10)
#define SPDIFRX_IR_BLOCKST BIT(11)
#define SPDIFRX_IR_NRZ_ERR BIT(12)
#define SPDIFRX_IR_PRE_ERR BIT(13)
#define SPDIFRX_IR_CP_ERR BIT(14)
/*
* ---- Receiver Status Register (Read/Write) ----
*/
/* Enable Status */
#define SPDIFRX_RSR_ULOCK BIT(0)
#define SPDIFRX_RSR_BADF BIT(1)
#define SPDIFRX_RSR_LOWF BIT(2)
#define SPDIFRX_RSR_NOSIGNAL BIT(3)
#define SPDIFRX_RSR_IFS_MASK GENMASK(27, 16)
#define SPDIFRX_RSR_IFS(reg) \
(((reg) & SPDIFRX_RSR_IFS_MASK) >> 16)
/*
* ---- Version Register (Read-only) ----
*/
#define SPDIFRX_VERSION_MASK GENMASK(11, 0)
#define SPDIFRX_VERSION_MFN_MASK GENMASK(18, 16)
#define SPDIFRX_VERSION_MFN(reg) (((reg) & SPDIFRX_VERSION_MFN_MASK) >> 16)
static bool mchp_spdifrx_readable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case SPDIFRX_MR:
case SPDIFRX_IMR:
case SPDIFRX_ISR:
case SPDIFRX_RSR:
case SPDIFRX_CHSR(0, 0):
case SPDIFRX_CHSR(0, 1):
case SPDIFRX_CHSR(0, 2):
case SPDIFRX_CHSR(0, 3):
case SPDIFRX_CHSR(0, 4):
case SPDIFRX_CHSR(0, 5):
case SPDIFRX_CHUD(0, 0):
case SPDIFRX_CHUD(0, 1):
case SPDIFRX_CHUD(0, 2):
case SPDIFRX_CHUD(0, 3):
case SPDIFRX_CHUD(0, 4):
case SPDIFRX_CHUD(0, 5):
case SPDIFRX_CHSR(1, 0):
case SPDIFRX_CHSR(1, 1):
case SPDIFRX_CHSR(1, 2):
case SPDIFRX_CHSR(1, 3):
case SPDIFRX_CHSR(1, 4):
case SPDIFRX_CHSR(1, 5):
case SPDIFRX_CHUD(1, 0):
case SPDIFRX_CHUD(1, 1):
case SPDIFRX_CHUD(1, 2):
case SPDIFRX_CHUD(1, 3):
case SPDIFRX_CHUD(1, 4):
case SPDIFRX_CHUD(1, 5):
case SPDIFRX_WPMR:
case SPDIFRX_WPSR:
case SPDIFRX_VERSION:
return true;
default:
return false;
}
}
static bool mchp_spdifrx_writeable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case SPDIFRX_CR:
case SPDIFRX_MR:
case SPDIFRX_IER:
case SPDIFRX_IDR:
case SPDIFRX_WPMR:
return true;
default:
return false;
}
}
static bool mchp_spdifrx_precious_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case SPDIFRX_ISR:
case SPDIFRX_RHR:
return true;
default:
return false;
}
}
static bool mchp_spdifrx_volatile_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case SPDIFRX_IMR:
case SPDIFRX_ISR:
case SPDIFRX_RSR:
case SPDIFRX_CHSR(0, 0):
case SPDIFRX_CHSR(0, 1):
case SPDIFRX_CHSR(0, 2):
case SPDIFRX_CHSR(0, 3):
case SPDIFRX_CHSR(0, 4):
case SPDIFRX_CHSR(0, 5):
case SPDIFRX_CHUD(0, 0):
case SPDIFRX_CHUD(0, 1):
case SPDIFRX_CHUD(0, 2):
case SPDIFRX_CHUD(0, 3):
case SPDIFRX_CHUD(0, 4):
case SPDIFRX_CHUD(0, 5):
case SPDIFRX_CHSR(1, 0):
case SPDIFRX_CHSR(1, 1):
case SPDIFRX_CHSR(1, 2):
case SPDIFRX_CHSR(1, 3):
case SPDIFRX_CHSR(1, 4):
case SPDIFRX_CHSR(1, 5):
case SPDIFRX_CHUD(1, 0):
case SPDIFRX_CHUD(1, 1):
case SPDIFRX_CHUD(1, 2):
case SPDIFRX_CHUD(1, 3):
case SPDIFRX_CHUD(1, 4):
case SPDIFRX_CHUD(1, 5):
case SPDIFRX_VERSION:
return true;
default:
return false;
}
}
static const struct regmap_config mchp_spdifrx_regmap_config = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.max_register = SPDIFRX_VERSION,
.readable_reg = mchp_spdifrx_readable_reg,
.writeable_reg = mchp_spdifrx_writeable_reg,
.precious_reg = mchp_spdifrx_precious_reg,
.volatile_reg = mchp_spdifrx_volatile_reg,
.cache_type = REGCACHE_FLAT,
};
#define SPDIFRX_GCLK_RATIO_MIN (12 * 64)
#define SPDIFRX_CS_BITS 192
#define SPDIFRX_UD_BITS 192
#define SPDIFRX_CHANNELS 2
/**
* struct mchp_spdifrx_ch_stat: MCHP SPDIFRX channel status
* @data: channel status bits
* @done: completion to signal channel status bits acquisition done
*/
struct mchp_spdifrx_ch_stat {
unsigned char data[SPDIFRX_CS_BITS / 8];
struct completion done;
};
/**
* struct mchp_spdifrx_user_data: MCHP SPDIFRX user data
* @data: user data bits
* @done: completion to signal user data bits acquisition done
*/
struct mchp_spdifrx_user_data {
unsigned char data[SPDIFRX_UD_BITS / 8];
struct completion done;
};
/**
* struct mchp_spdifrx_mixer_control: MCHP SPDIFRX mixer control data structure
* @ch_stat: array of channel statuses
* @user_data: array of user data
* @ulock: ulock bit status
* @badf: badf bit status
* @signal: signal bit status
*/
struct mchp_spdifrx_mixer_control {
struct mchp_spdifrx_ch_stat ch_stat[SPDIFRX_CHANNELS];
struct mchp_spdifrx_user_data user_data[SPDIFRX_CHANNELS];
bool ulock;
bool badf;
bool signal;
};
/**
* struct mchp_spdifrx_dev: MCHP SPDIFRX device data structure
* @capture: DAI DMA configuration data
* @control: mixer controls
* @mlock: mutex to protect concurency b/w configuration and control APIs
* @dev: struct device
* @regmap: regmap for this device
* @pclk: peripheral clock
* @gclk: generic clock
* @trigger_enabled: true if enabled though trigger() ops
*/
struct mchp_spdifrx_dev {
struct snd_dmaengine_dai_dma_data capture;
struct mchp_spdifrx_mixer_control control;
struct mutex mlock;
struct device *dev;
struct regmap *regmap;
struct clk *pclk;
struct clk *gclk;
unsigned int trigger_enabled;
};
static void mchp_spdifrx_channel_status_read(struct mchp_spdifrx_dev *dev,
int channel)
{
struct mchp_spdifrx_mixer_control *ctrl = &dev->control;
u8 *ch_stat = &ctrl->ch_stat[channel].data[0];
u32 val;
int i;
for (i = 0; i < ARRAY_SIZE(ctrl->ch_stat[channel].data) / 4; i++) {
regmap_read(dev->regmap, SPDIFRX_CHSR(channel, i), &val);
*ch_stat++ = val & 0xFF;
*ch_stat++ = (val >> 8) & 0xFF;
*ch_stat++ = (val >> 16) & 0xFF;
*ch_stat++ = (val >> 24) & 0xFF;
}
}
static void mchp_spdifrx_channel_user_data_read(struct mchp_spdifrx_dev *dev,
int channel)
{
struct mchp_spdifrx_mixer_control *ctrl = &dev->control;
u8 *user_data = &ctrl->user_data[channel].data[0];
u32 val;
int i;
for (i = 0; i < ARRAY_SIZE(ctrl->user_data[channel].data) / 4; i++) {
regmap_read(dev->regmap, SPDIFRX_CHUD(channel, i), &val);
*user_data++ = val & 0xFF;
*user_data++ = (val >> 8) & 0xFF;
*user_data++ = (val >> 16) & 0xFF;
*user_data++ = (val >> 24) & 0xFF;
}
}
static irqreturn_t mchp_spdif_interrupt(int irq, void *dev_id)
{
struct mchp_spdifrx_dev *dev = dev_id;
struct mchp_spdifrx_mixer_control *ctrl = &dev->control;
u32 sr, imr, pending;
irqreturn_t ret = IRQ_NONE;
int ch;
regmap_read(dev->regmap, SPDIFRX_ISR, &sr);
regmap_read(dev->regmap, SPDIFRX_IMR, &imr);
pending = sr & imr;
dev_dbg(dev->dev, "ISR: %#x, IMR: %#x, pending: %#x\n", sr, imr,
pending);
if (!pending)
return IRQ_NONE;
if (pending & SPDIFRX_IR_BLOCKEND) {
for (ch = 0; ch < SPDIFRX_CHANNELS; ch++) {
mchp_spdifrx_channel_user_data_read(dev, ch);
complete(&ctrl->user_data[ch].done);
}
regmap_write(dev->regmap, SPDIFRX_IDR, SPDIFRX_IR_BLOCKEND);
ret = IRQ_HANDLED;
}
for (ch = 0; ch < SPDIFRX_CHANNELS; ch++) {
if (pending & SPDIFRX_IR_CSC(ch)) {
mchp_spdifrx_channel_status_read(dev, ch);
complete(&ctrl->ch_stat[ch].done);
regmap_write(dev->regmap, SPDIFRX_IDR, SPDIFRX_IR_CSC(ch));
ret = IRQ_HANDLED;
}
}
if (pending & SPDIFRX_IR_OVERRUN) {
dev_warn(dev->dev, "Overrun detected\n");
ret = IRQ_HANDLED;
}
return ret;
}
static int mchp_spdifrx_trigger(struct snd_pcm_substream *substream, int cmd,
struct snd_soc_dai *dai)
{
struct mchp_spdifrx_dev *dev = snd_soc_dai_get_drvdata(dai);
int ret = 0;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
mutex_lock(&dev->mlock);
/* Enable overrun interrupts */
regmap_write(dev->regmap, SPDIFRX_IER, SPDIFRX_IR_OVERRUN);
/* Enable receiver. */
regmap_update_bits(dev->regmap, SPDIFRX_MR, SPDIFRX_MR_RXEN_MASK,
SPDIFRX_MR_RXEN_ENABLE);
dev->trigger_enabled = true;
mutex_unlock(&dev->mlock);
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
mutex_lock(&dev->mlock);
/* Disable overrun interrupts */
regmap_write(dev->regmap, SPDIFRX_IDR, SPDIFRX_IR_OVERRUN);
/* Disable receiver. */
regmap_update_bits(dev->regmap, SPDIFRX_MR, SPDIFRX_MR_RXEN_MASK,
SPDIFRX_MR_RXEN_DISABLE);
dev->trigger_enabled = false;
mutex_unlock(&dev->mlock);
break;
default:
ret = -EINVAL;
}
return ret;
}
static int mchp_spdifrx_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct mchp_spdifrx_dev *dev = snd_soc_dai_get_drvdata(dai);
u32 mr = 0;
int ret;
dev_dbg(dev->dev, "%s() rate=%u format=%#x width=%u channels=%u\n",
__func__, params_rate(params), params_format(params),
params_width(params), params_channels(params));
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
dev_err(dev->dev, "Playback is not supported\n");
return -EINVAL;
}
if (params_channels(params) != SPDIFRX_CHANNELS) {
dev_err(dev->dev, "unsupported number of channels: %d\n",
params_channels(params));
return -EINVAL;
}
switch (params_format(params)) {
case SNDRV_PCM_FORMAT_S16_BE:
case SNDRV_PCM_FORMAT_S20_3BE:
case SNDRV_PCM_FORMAT_S24_3BE:
case SNDRV_PCM_FORMAT_S24_BE:
mr |= SPDIFRX_MR_ENDIAN_BIG;
fallthrough;
case SNDRV_PCM_FORMAT_S16_LE:
case SNDRV_PCM_FORMAT_S20_3LE:
case SNDRV_PCM_FORMAT_S24_3LE:
case SNDRV_PCM_FORMAT_S24_LE:
mr |= SPDIFRX_MR_DATAWIDTH(params_width(params));
break;
default:
dev_err(dev->dev, "unsupported PCM format: %d\n",
params_format(params));
return -EINVAL;
}
mutex_lock(&dev->mlock);
if (dev->trigger_enabled) {
dev_err(dev->dev, "PCM already running\n");
ret = -EBUSY;
goto unlock;
}
/* GCLK is enabled by runtime PM. */
clk_disable_unprepare(dev->gclk);
ret = clk_set_min_rate(dev->gclk, params_rate(params) *
SPDIFRX_GCLK_RATIO_MIN + 1);
if (ret) {
dev_err(dev->dev,
"unable to set gclk min rate: rate %u * ratio %u + 1\n",
params_rate(params), SPDIFRX_GCLK_RATIO_MIN);
/* Restore runtime PM state. */
clk_prepare_enable(dev->gclk);
goto unlock;
}
ret = clk_prepare_enable(dev->gclk);
if (ret) {
dev_err(dev->dev, "unable to enable gclk: %d\n", ret);
goto unlock;
}
dev_dbg(dev->dev, "GCLK range min set to %d\n",
params_rate(params) * SPDIFRX_GCLK_RATIO_MIN + 1);
ret = regmap_write(dev->regmap, SPDIFRX_MR, mr);
unlock:
mutex_unlock(&dev->mlock);
return ret;
}
static const struct snd_soc_dai_ops mchp_spdifrx_dai_ops = {
.trigger = mchp_spdifrx_trigger,
.hw_params = mchp_spdifrx_hw_params,
};
#define MCHP_SPDIF_RATES SNDRV_PCM_RATE_8000_192000
#define MCHP_SPDIF_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | \
SNDRV_PCM_FMTBIT_U16_BE | \
SNDRV_PCM_FMTBIT_S20_3LE | \
SNDRV_PCM_FMTBIT_S20_3BE | \
SNDRV_PCM_FMTBIT_S24_3LE | \
SNDRV_PCM_FMTBIT_S24_3BE | \
SNDRV_PCM_FMTBIT_S24_LE | \
SNDRV_PCM_FMTBIT_S24_BE \
)
static int mchp_spdifrx_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int mchp_spdifrx_cs_get(struct mchp_spdifrx_dev *dev,
int channel,
struct snd_ctl_elem_value *uvalue)
{
struct mchp_spdifrx_mixer_control *ctrl = &dev->control;
struct mchp_spdifrx_ch_stat *ch_stat = &ctrl->ch_stat[channel];
int ret = 0;
mutex_lock(&dev->mlock);
ret = pm_runtime_resume_and_get(dev->dev);
if (ret < 0)
goto unlock;
/*
* We may reach this point with both clocks enabled but the receiver
* still disabled. To void waiting for completion and return with
* timeout check the dev->trigger_enabled.
*
* To retrieve data:
* - if the receiver is enabled CSC IRQ will update the data in software
* caches (ch_stat->data)
* - otherwise we just update it here the software caches with latest
* available information and return it; in this case we don't need
* spin locking as the IRQ is disabled and will not be raised from
* anywhere else.
*/
if (dev->trigger_enabled) {
reinit_completion(&ch_stat->done);
regmap_write(dev->regmap, SPDIFRX_IER, SPDIFRX_IR_CSC(channel));
/* Check for new data available */
ret = wait_for_completion_interruptible_timeout(&ch_stat->done,
msecs_to_jiffies(100));
/* Valid stream might not be present */
if (ret <= 0) {
dev_dbg(dev->dev, "channel status for channel %d timeout\n",
channel);
regmap_write(dev->regmap, SPDIFRX_IDR, SPDIFRX_IR_CSC(channel));
ret = ret ? : -ETIMEDOUT;
goto pm_runtime_put;
} else {
ret = 0;
}
} else {
/* Update software cache with latest channel status. */
mchp_spdifrx_channel_status_read(dev, channel);
}
memcpy(uvalue->value.iec958.status, ch_stat->data,
sizeof(ch_stat->data));
pm_runtime_put:
pm_runtime_mark_last_busy(dev->dev);
pm_runtime_put_autosuspend(dev->dev);
unlock:
mutex_unlock(&dev->mlock);
return ret;
}
static int mchp_spdifrx_cs1_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *uvalue)
{
struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol);
struct mchp_spdifrx_dev *dev = snd_soc_dai_get_drvdata(dai);
return mchp_spdifrx_cs_get(dev, 0, uvalue);
}
static int mchp_spdifrx_cs2_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *uvalue)
{
struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol);
struct mchp_spdifrx_dev *dev = snd_soc_dai_get_drvdata(dai);
return mchp_spdifrx_cs_get(dev, 1, uvalue);
}
static int mchp_spdifrx_cs_mask(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *uvalue)
{
memset(uvalue->value.iec958.status, 0xff,
sizeof(uvalue->value.iec958.status));
return 0;
}
static int mchp_spdifrx_subcode_ch_get(struct mchp_spdifrx_dev *dev,
int channel,
struct snd_ctl_elem_value *uvalue)
{
struct mchp_spdifrx_mixer_control *ctrl = &dev->control;
struct mchp_spdifrx_user_data *user_data = &ctrl->user_data[channel];
int ret = 0;
mutex_lock(&dev->mlock);
ret = pm_runtime_resume_and_get(dev->dev);
if (ret < 0)
goto unlock;
/*
* We may reach this point with both clocks enabled but the receiver
* still disabled. To void waiting for completion to just timeout we
* check here the dev->trigger_enabled flag.
*
* To retrieve data:
* - if the receiver is enabled we need to wait for blockend IRQ to read
* data to and update it for us in software caches
* - otherwise reading the SPDIFRX_CHUD() registers is enough.
*/
if (dev->trigger_enabled) {
reinit_completion(&user_data->done);
regmap_write(dev->regmap, SPDIFRX_IER, SPDIFRX_IR_BLOCKEND);
ret = wait_for_completion_interruptible_timeout(&user_data->done,
msecs_to_jiffies(100));
/* Valid stream might not be present. */
if (ret <= 0) {
dev_dbg(dev->dev, "user data for channel %d timeout\n",
channel);
regmap_write(dev->regmap, SPDIFRX_IDR, SPDIFRX_IR_BLOCKEND);
ret = ret ? : -ETIMEDOUT;
goto pm_runtime_put;
} else {
ret = 0;
}
} else {
/* Update software cache with last available data. */
mchp_spdifrx_channel_user_data_read(dev, channel);
}
memcpy(uvalue->value.iec958.subcode, user_data->data,
sizeof(user_data->data));
pm_runtime_put:
pm_runtime_mark_last_busy(dev->dev);
pm_runtime_put_autosuspend(dev->dev);
unlock:
mutex_unlock(&dev->mlock);
return ret;
}
static int mchp_spdifrx_subcode_ch1_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *uvalue)
{
struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol);
struct mchp_spdifrx_dev *dev = snd_soc_dai_get_drvdata(dai);
return mchp_spdifrx_subcode_ch_get(dev, 0, uvalue);
}
static int mchp_spdifrx_subcode_ch2_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *uvalue)
{
struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol);
struct mchp_spdifrx_dev *dev = snd_soc_dai_get_drvdata(dai);
return mchp_spdifrx_subcode_ch_get(dev, 1, uvalue);
}
static int mchp_spdifrx_boolean_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 1;
return 0;
}
static int mchp_spdifrx_ulock_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *uvalue)
{
struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol);
struct mchp_spdifrx_dev *dev = snd_soc_dai_get_drvdata(dai);
struct mchp_spdifrx_mixer_control *ctrl = &dev->control;
u32 val;
int ret;
bool ulock_old = ctrl->ulock;
mutex_lock(&dev->mlock);
ret = pm_runtime_resume_and_get(dev->dev);
if (ret < 0)
goto unlock;
/*
* The RSR.ULOCK has wrong value if both pclk and gclk are enabled
* and the receiver is disabled. Thus we take into account the
* dev->trigger_enabled here to return a real status.
*/
if (dev->trigger_enabled) {
regmap_read(dev->regmap, SPDIFRX_RSR, &val);
ctrl->ulock = !(val & SPDIFRX_RSR_ULOCK);
} else {
ctrl->ulock = 0;
}
uvalue->value.integer.value[0] = ctrl->ulock;
pm_runtime_mark_last_busy(dev->dev);
pm_runtime_put_autosuspend(dev->dev);
unlock:
mutex_unlock(&dev->mlock);
return ulock_old != ctrl->ulock;
}
static int mchp_spdifrx_badf_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *uvalue)
{
struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol);
struct mchp_spdifrx_dev *dev = snd_soc_dai_get_drvdata(dai);
struct mchp_spdifrx_mixer_control *ctrl = &dev->control;
u32 val;
int ret;
bool badf_old = ctrl->badf;
mutex_lock(&dev->mlock);
ret = pm_runtime_resume_and_get(dev->dev);
if (ret < 0)
goto unlock;
/*
* The RSR.ULOCK has wrong value if both pclk and gclk are enabled
* and the receiver is disabled. Thus we take into account the
* dev->trigger_enabled here to return a real status.
*/
if (dev->trigger_enabled) {
regmap_read(dev->regmap, SPDIFRX_RSR, &val);
ctrl->badf = !!(val & SPDIFRX_RSR_BADF);
} else {
ctrl->badf = 0;
}
pm_runtime_mark_last_busy(dev->dev);
pm_runtime_put_autosuspend(dev->dev);
unlock:
mutex_unlock(&dev->mlock);
uvalue->value.integer.value[0] = ctrl->badf;
return badf_old != ctrl->badf;
}
static int mchp_spdifrx_signal_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *uvalue)
{
struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol);
struct mchp_spdifrx_dev *dev = snd_soc_dai_get_drvdata(dai);
struct mchp_spdifrx_mixer_control *ctrl = &dev->control;
u32 val = ~0U, loops = 10;
int ret;
bool signal_old = ctrl->signal;
mutex_lock(&dev->mlock);
ret = pm_runtime_resume_and_get(dev->dev);
if (ret < 0)
goto unlock;
/*
* To get the signal we need to have receiver enabled. This
* could be enabled also from trigger() function thus we need to
* take care of not disabling the receiver when it runs.
*/
if (!dev->trigger_enabled) {
regmap_update_bits(dev->regmap, SPDIFRX_MR, SPDIFRX_MR_RXEN_MASK,
SPDIFRX_MR_RXEN_ENABLE);
/* Wait for RSR.ULOCK bit. */
while (--loops) {
regmap_read(dev->regmap, SPDIFRX_RSR, &val);
if (!(val & SPDIFRX_RSR_ULOCK))
break;
usleep_range(100, 150);
}
regmap_update_bits(dev->regmap, SPDIFRX_MR, SPDIFRX_MR_RXEN_MASK,
SPDIFRX_MR_RXEN_DISABLE);
} else {
regmap_read(dev->regmap, SPDIFRX_RSR, &val);
}
pm_runtime_mark_last_busy(dev->dev);
pm_runtime_put_autosuspend(dev->dev);
unlock:
mutex_unlock(&dev->mlock);
if (!(val & SPDIFRX_RSR_ULOCK))
ctrl->signal = !(val & SPDIFRX_RSR_NOSIGNAL);
else
ctrl->signal = 0;
uvalue->value.integer.value[0] = ctrl->signal;
return signal_old != ctrl->signal;
}
static int mchp_spdifrx_rate_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 192000;
return 0;
}
static int mchp_spdifrx_rate_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol);
struct mchp_spdifrx_dev *dev = snd_soc_dai_get_drvdata(dai);
unsigned long rate;
u32 val;
int ret;
mutex_lock(&dev->mlock);
ret = pm_runtime_resume_and_get(dev->dev);
if (ret < 0)
goto unlock;
/*
* The RSR.ULOCK has wrong value if both pclk and gclk are enabled
* and the receiver is disabled. Thus we take into account the
* dev->trigger_enabled here to return a real status.
*/
if (dev->trigger_enabled) {
regmap_read(dev->regmap, SPDIFRX_RSR, &val);
/* If the receiver is not locked, ISF data is invalid. */
if (val & SPDIFRX_RSR_ULOCK || !(val & SPDIFRX_RSR_IFS_MASK)) {
ucontrol->value.integer.value[0] = 0;
goto pm_runtime_put;
}
} else {
/* Reveicer is not locked, IFS data is invalid. */
ucontrol->value.integer.value[0] = 0;
goto pm_runtime_put;
}
rate = clk_get_rate(dev->gclk);
ucontrol->value.integer.value[0] = rate / (32 * SPDIFRX_RSR_IFS(val));
pm_runtime_put:
pm_runtime_mark_last_busy(dev->dev);
pm_runtime_put_autosuspend(dev->dev);
unlock:
mutex_unlock(&dev->mlock);
return ret;
}
static struct snd_kcontrol_new mchp_spdifrx_ctrls[] = {
/* Channel status controller */
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT)
" Channel 1",
.access = SNDRV_CTL_ELEM_ACCESS_READ |
SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = mchp_spdifrx_info,
.get = mchp_spdifrx_cs1_get,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT)
" Channel 2",
.access = SNDRV_CTL_ELEM_ACCESS_READ |
SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = mchp_spdifrx_info,
.get = mchp_spdifrx_cs2_get,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("", CAPTURE, MASK),
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.info = mchp_spdifrx_info,
.get = mchp_spdifrx_cs_mask,
},
/* User bits controller */
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = "IEC958 Subcode Capture Default Channel 1",
.access = SNDRV_CTL_ELEM_ACCESS_READ |
SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = mchp_spdifrx_info,
.get = mchp_spdifrx_subcode_ch1_get,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = "IEC958 Subcode Capture Default Channel 2",
.access = SNDRV_CTL_ELEM_ACCESS_READ |
SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = mchp_spdifrx_info,
.get = mchp_spdifrx_subcode_ch2_get,
},
/* Lock status */
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("", CAPTURE, NONE) "Unlocked",
.access = SNDRV_CTL_ELEM_ACCESS_READ |
SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = mchp_spdifrx_boolean_info,
.get = mchp_spdifrx_ulock_get,
},
/* Bad format */
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("", CAPTURE, NONE)"Bad Format",
.access = SNDRV_CTL_ELEM_ACCESS_READ |
SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = mchp_spdifrx_boolean_info,
.get = mchp_spdifrx_badf_get,
},
/* Signal */
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("", CAPTURE, NONE) "Signal",
.access = SNDRV_CTL_ELEM_ACCESS_READ |
SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = mchp_spdifrx_boolean_info,
.get = mchp_spdifrx_signal_get,
},
/* Sampling rate */
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("", CAPTURE, NONE) "Rate",
.access = SNDRV_CTL_ELEM_ACCESS_READ |
SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = mchp_spdifrx_rate_info,
.get = mchp_spdifrx_rate_get,
},
};
static int mchp_spdifrx_dai_probe(struct snd_soc_dai *dai)
{
struct mchp_spdifrx_dev *dev = snd_soc_dai_get_drvdata(dai);
struct mchp_spdifrx_mixer_control *ctrl = &dev->control;
int ch;
snd_soc_dai_init_dma_data(dai, NULL, &dev->capture);
/* Software reset the IP */
regmap_write(dev->regmap, SPDIFRX_CR, SPDIFRX_CR_SWRST);
/* Default configuration */
regmap_write(dev->regmap, SPDIFRX_MR,
SPDIFRX_MR_VBMODE_DISCARD_IF_VB1 |
SPDIFRX_MR_SBMODE_DISCARD |
SPDIFRX_MR_AUTORST_NOACTION |
SPDIFRX_MR_PACK_DISABLED);
for (ch = 0; ch < SPDIFRX_CHANNELS; ch++) {
init_completion(&ctrl->ch_stat[ch].done);
init_completion(&ctrl->user_data[ch].done);
}
/* Add controls */
snd_soc_add_dai_controls(dai, mchp_spdifrx_ctrls,
ARRAY_SIZE(mchp_spdifrx_ctrls));
return 0;
}
static int mchp_spdifrx_dai_remove(struct snd_soc_dai *dai)
{
struct mchp_spdifrx_dev *dev = snd_soc_dai_get_drvdata(dai);
/* Disable interrupts */
regmap_write(dev->regmap, SPDIFRX_IDR, GENMASK(14, 0));
return 0;
}
static struct snd_soc_dai_driver mchp_spdifrx_dai = {
.name = "mchp-spdifrx",
.probe = mchp_spdifrx_dai_probe,
.remove = mchp_spdifrx_dai_remove,
.capture = {
.stream_name = "S/PDIF Capture",
.channels_min = SPDIFRX_CHANNELS,
.channels_max = SPDIFRX_CHANNELS,
.rates = MCHP_SPDIF_RATES,
.formats = MCHP_SPDIF_FORMATS,
},
.ops = &mchp_spdifrx_dai_ops,
};
static const struct snd_soc_component_driver mchp_spdifrx_component = {
.name = "mchp-spdifrx",
.legacy_dai_naming = 1,
};
static const struct of_device_id mchp_spdifrx_dt_ids[] = {
{
.compatible = "microchip,sama7g5-spdifrx",
},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, mchp_spdifrx_dt_ids);
static int mchp_spdifrx_runtime_suspend(struct device *dev)
{
struct mchp_spdifrx_dev *spdifrx = dev_get_drvdata(dev);
regcache_cache_only(spdifrx->regmap, true);
clk_disable_unprepare(spdifrx->gclk);
clk_disable_unprepare(spdifrx->pclk);
return 0;
}
static int mchp_spdifrx_runtime_resume(struct device *dev)
{
struct mchp_spdifrx_dev *spdifrx = dev_get_drvdata(dev);
int ret;
ret = clk_prepare_enable(spdifrx->pclk);
if (ret)
return ret;
ret = clk_prepare_enable(spdifrx->gclk);
if (ret)
goto disable_pclk;
regcache_cache_only(spdifrx->regmap, false);
regcache_mark_dirty(spdifrx->regmap);
ret = regcache_sync(spdifrx->regmap);
if (ret) {
regcache_cache_only(spdifrx->regmap, true);
clk_disable_unprepare(spdifrx->gclk);
disable_pclk:
clk_disable_unprepare(spdifrx->pclk);
}
return ret;
}
static const struct dev_pm_ops mchp_spdifrx_pm_ops = {
RUNTIME_PM_OPS(mchp_spdifrx_runtime_suspend, mchp_spdifrx_runtime_resume,
NULL)
};
static int mchp_spdifrx_probe(struct platform_device *pdev)
{
struct mchp_spdifrx_dev *dev;
struct resource *mem;
struct regmap *regmap;
void __iomem *base;
int irq;
int err;
u32 vers;
/* Get memory for driver data. */
dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
if (!dev)
return -ENOMEM;
/* Map I/O registers. */
base = devm_platform_get_and_ioremap_resource(pdev, 0, &mem);
if (IS_ERR(base))
return PTR_ERR(base);
regmap = devm_regmap_init_mmio(&pdev->dev, base,
&mchp_spdifrx_regmap_config);
if (IS_ERR(regmap))
return PTR_ERR(regmap);
/* Request IRQ. */
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
err = devm_request_irq(&pdev->dev, irq, mchp_spdif_interrupt, 0,
dev_name(&pdev->dev), dev);
if (err)
return err;
/* Get the peripheral clock */
dev->pclk = devm_clk_get(&pdev->dev, "pclk");
if (IS_ERR(dev->pclk)) {
err = PTR_ERR(dev->pclk);
dev_err(&pdev->dev, "failed to get the peripheral clock: %d\n",
err);
return err;
}
/* Get the generated clock */
dev->gclk = devm_clk_get(&pdev->dev, "gclk");
if (IS_ERR(dev->gclk)) {
err = PTR_ERR(dev->gclk);
dev_err(&pdev->dev,
"failed to get the PMC generated clock: %d\n", err);
return err;
}
/*
* Signal control need a valid rate on gclk. hw_params() configures
* it propertly but requesting signal before any hw_params() has been
* called lead to invalid value returned for signal. Thus, configure
* gclk at a valid rate, here, in initialization, to simplify the
* control path.
*/
clk_set_min_rate(dev->gclk, 48000 * SPDIFRX_GCLK_RATIO_MIN + 1);
mutex_init(&dev->mlock);
dev->dev = &pdev->dev;
dev->regmap = regmap;
platform_set_drvdata(pdev, dev);
pm_runtime_enable(dev->dev);
if (!pm_runtime_enabled(dev->dev)) {
err = mchp_spdifrx_runtime_resume(dev->dev);
if (err)
goto pm_runtime_disable;
}
dev->capture.addr = (dma_addr_t)mem->start + SPDIFRX_RHR;
dev->capture.maxburst = 1;
err = devm_snd_dmaengine_pcm_register(&pdev->dev, NULL, 0);
if (err) {
dev_err(&pdev->dev, "failed to register PCM: %d\n", err);
goto pm_runtime_suspend;
}
err = devm_snd_soc_register_component(&pdev->dev,
&mchp_spdifrx_component,
&mchp_spdifrx_dai, 1);
if (err) {
dev_err(&pdev->dev, "fail to register dai\n");
goto pm_runtime_suspend;
}
regmap_read(regmap, SPDIFRX_VERSION, &vers);
dev_info(&pdev->dev, "hw version: %#lx\n", vers & SPDIFRX_VERSION_MASK);
return 0;
pm_runtime_suspend:
if (!pm_runtime_status_suspended(dev->dev))
mchp_spdifrx_runtime_suspend(dev->dev);
pm_runtime_disable:
pm_runtime_disable(dev->dev);
return err;
}
static int mchp_spdifrx_remove(struct platform_device *pdev)
{
struct mchp_spdifrx_dev *dev = platform_get_drvdata(pdev);
pm_runtime_disable(dev->dev);
if (!pm_runtime_status_suspended(dev->dev))
mchp_spdifrx_runtime_suspend(dev->dev);
return 0;
}
static struct platform_driver mchp_spdifrx_driver = {
.probe = mchp_spdifrx_probe,
.remove = mchp_spdifrx_remove,
.driver = {
.name = "mchp_spdifrx",
.of_match_table = of_match_ptr(mchp_spdifrx_dt_ids),
.pm = pm_ptr(&mchp_spdifrx_pm_ops),
},
};
module_platform_driver(mchp_spdifrx_driver);
MODULE_AUTHOR("Codrin Ciubotariu <codrin.ciubotariu@microchip.com>");
MODULE_DESCRIPTION("Microchip S/PDIF RX Controller Driver");
MODULE_LICENSE("GPL v2");