linux/arch/arm/mach-msm/timer.c
Paul Gortmaker 8bd26e3a7e arm: delete __cpuinit/__CPUINIT usage from all ARM users
The __cpuinit type of throwaway sections might have made sense
some time ago when RAM was more constrained, but now the savings
do not offset the cost and complications.  For example, the fix in
commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time")
is a good example of the nasty type of bugs that can be created
with improper use of the various __init prefixes.

After a discussion on LKML[1] it was decided that cpuinit should go
the way of devinit and be phased out.  Once all the users are gone,
we can then finally remove the macros themselves from linux/init.h.

Note that some harmless section mismatch warnings may result, since
notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c)
and are flagged as __cpuinit  -- so if we remove the __cpuinit from
the arch specific callers, we will also get section mismatch warnings.
As an intermediate step, we intend to turn the linux/init.h cpuinit
related content into no-ops as early as possible, since that will get
rid of these warnings.  In any case, they are temporary and harmless.

This removes all the ARM uses of the __cpuinit macros from C code,
and all __CPUINIT from assembly code.  It also had two ".previous"
section statements that were paired off against __CPUINIT
(aka .section ".cpuinit.text") that also get removed here.

[1] https://lkml.org/lkml/2013/5/20/589

Cc: Russell King <linux@arm.linux.org.uk>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-07-14 19:36:52 -04:00

332 lines
8.0 KiB
C

/*
*
* Copyright (C) 2007 Google, Inc.
* Copyright (c) 2009-2012, The Linux Foundation. All rights reserved.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/sched_clock.h>
#include <asm/mach/time.h>
#include <asm/localtimer.h>
#include "common.h"
#define TIMER_MATCH_VAL 0x0000
#define TIMER_COUNT_VAL 0x0004
#define TIMER_ENABLE 0x0008
#define TIMER_ENABLE_CLR_ON_MATCH_EN BIT(1)
#define TIMER_ENABLE_EN BIT(0)
#define TIMER_CLEAR 0x000C
#define DGT_CLK_CTL 0x10
#define DGT_CLK_CTL_DIV_4 0x3
#define TIMER_STS_GPT0_CLR_PEND BIT(10)
#define GPT_HZ 32768
#define MSM_DGT_SHIFT 5
static void __iomem *event_base;
static void __iomem *sts_base;
static irqreturn_t msm_timer_interrupt(int irq, void *dev_id)
{
struct clock_event_device *evt = *(struct clock_event_device **)dev_id;
/* Stop the timer tick */
if (evt->mode == CLOCK_EVT_MODE_ONESHOT) {
u32 ctrl = readl_relaxed(event_base + TIMER_ENABLE);
ctrl &= ~TIMER_ENABLE_EN;
writel_relaxed(ctrl, event_base + TIMER_ENABLE);
}
evt->event_handler(evt);
return IRQ_HANDLED;
}
static int msm_timer_set_next_event(unsigned long cycles,
struct clock_event_device *evt)
{
u32 ctrl = readl_relaxed(event_base + TIMER_ENABLE);
ctrl &= ~TIMER_ENABLE_EN;
writel_relaxed(ctrl, event_base + TIMER_ENABLE);
writel_relaxed(ctrl, event_base + TIMER_CLEAR);
writel_relaxed(cycles, event_base + TIMER_MATCH_VAL);
if (sts_base)
while (readl_relaxed(sts_base) & TIMER_STS_GPT0_CLR_PEND)
cpu_relax();
writel_relaxed(ctrl | TIMER_ENABLE_EN, event_base + TIMER_ENABLE);
return 0;
}
static void msm_timer_set_mode(enum clock_event_mode mode,
struct clock_event_device *evt)
{
u32 ctrl;
ctrl = readl_relaxed(event_base + TIMER_ENABLE);
ctrl &= ~(TIMER_ENABLE_EN | TIMER_ENABLE_CLR_ON_MATCH_EN);
switch (mode) {
case CLOCK_EVT_MODE_RESUME:
case CLOCK_EVT_MODE_PERIODIC:
break;
case CLOCK_EVT_MODE_ONESHOT:
/* Timer is enabled in set_next_event */
break;
case CLOCK_EVT_MODE_UNUSED:
case CLOCK_EVT_MODE_SHUTDOWN:
break;
}
writel_relaxed(ctrl, event_base + TIMER_ENABLE);
}
static struct clock_event_device msm_clockevent = {
.name = "gp_timer",
.features = CLOCK_EVT_FEAT_ONESHOT,
.rating = 200,
.set_next_event = msm_timer_set_next_event,
.set_mode = msm_timer_set_mode,
};
static union {
struct clock_event_device *evt;
struct clock_event_device * __percpu *percpu_evt;
} msm_evt;
static void __iomem *source_base;
static notrace cycle_t msm_read_timer_count(struct clocksource *cs)
{
return readl_relaxed(source_base + TIMER_COUNT_VAL);
}
static notrace cycle_t msm_read_timer_count_shift(struct clocksource *cs)
{
/*
* Shift timer count down by a constant due to unreliable lower bits
* on some targets.
*/
return msm_read_timer_count(cs) >> MSM_DGT_SHIFT;
}
static struct clocksource msm_clocksource = {
.name = "dg_timer",
.rating = 300,
.read = msm_read_timer_count,
.mask = CLOCKSOURCE_MASK(32),
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
#ifdef CONFIG_LOCAL_TIMERS
static int msm_local_timer_setup(struct clock_event_device *evt)
{
/* Use existing clock_event for cpu 0 */
if (!smp_processor_id())
return 0;
evt->irq = msm_clockevent.irq;
evt->name = "local_timer";
evt->features = msm_clockevent.features;
evt->rating = msm_clockevent.rating;
evt->set_mode = msm_timer_set_mode;
evt->set_next_event = msm_timer_set_next_event;
*__this_cpu_ptr(msm_evt.percpu_evt) = evt;
clockevents_config_and_register(evt, GPT_HZ, 4, 0xf0000000);
enable_percpu_irq(evt->irq, IRQ_TYPE_EDGE_RISING);
return 0;
}
static void msm_local_timer_stop(struct clock_event_device *evt)
{
evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
disable_percpu_irq(evt->irq);
}
static struct local_timer_ops msm_local_timer_ops = {
.setup = msm_local_timer_setup,
.stop = msm_local_timer_stop,
};
#endif /* CONFIG_LOCAL_TIMERS */
static notrace u32 msm_sched_clock_read(void)
{
return msm_clocksource.read(&msm_clocksource);
}
static void __init msm_timer_init(u32 dgt_hz, int sched_bits, int irq,
bool percpu)
{
struct clock_event_device *ce = &msm_clockevent;
struct clocksource *cs = &msm_clocksource;
int res;
ce->cpumask = cpumask_of(0);
ce->irq = irq;
clockevents_config_and_register(ce, GPT_HZ, 4, 0xffffffff);
if (percpu) {
msm_evt.percpu_evt = alloc_percpu(struct clock_event_device *);
if (!msm_evt.percpu_evt) {
pr_err("memory allocation failed for %s\n", ce->name);
goto err;
}
*__this_cpu_ptr(msm_evt.percpu_evt) = ce;
res = request_percpu_irq(ce->irq, msm_timer_interrupt,
ce->name, msm_evt.percpu_evt);
if (!res) {
enable_percpu_irq(ce->irq, IRQ_TYPE_EDGE_RISING);
#ifdef CONFIG_LOCAL_TIMERS
local_timer_register(&msm_local_timer_ops);
#endif
}
} else {
msm_evt.evt = ce;
res = request_irq(ce->irq, msm_timer_interrupt,
IRQF_TIMER | IRQF_NOBALANCING |
IRQF_TRIGGER_RISING, ce->name, &msm_evt.evt);
}
if (res)
pr_err("request_irq failed for %s\n", ce->name);
err:
writel_relaxed(TIMER_ENABLE_EN, source_base + TIMER_ENABLE);
res = clocksource_register_hz(cs, dgt_hz);
if (res)
pr_err("clocksource_register failed\n");
setup_sched_clock(msm_sched_clock_read, sched_bits, dgt_hz);
}
#ifdef CONFIG_OF
static const struct of_device_id msm_timer_match[] __initconst = {
{ .compatible = "qcom,kpss-timer" },
{ .compatible = "qcom,scss-timer" },
{ },
};
void __init msm_dt_timer_init(void)
{
struct device_node *np;
u32 freq;
int irq;
struct resource res;
u32 percpu_offset;
void __iomem *base;
void __iomem *cpu0_base;
np = of_find_matching_node(NULL, msm_timer_match);
if (!np) {
pr_err("Can't find msm timer DT node\n");
return;
}
base = of_iomap(np, 0);
if (!base) {
pr_err("Failed to map event base\n");
return;
}
/* We use GPT0 for the clockevent */
irq = irq_of_parse_and_map(np, 1);
if (irq <= 0) {
pr_err("Can't get irq\n");
return;
}
/* We use CPU0's DGT for the clocksource */
if (of_property_read_u32(np, "cpu-offset", &percpu_offset))
percpu_offset = 0;
if (of_address_to_resource(np, 0, &res)) {
pr_err("Failed to parse DGT resource\n");
return;
}
cpu0_base = ioremap(res.start + percpu_offset, resource_size(&res));
if (!cpu0_base) {
pr_err("Failed to map source base\n");
return;
}
if (of_property_read_u32(np, "clock-frequency", &freq)) {
pr_err("Unknown frequency\n");
return;
}
of_node_put(np);
event_base = base + 0x4;
sts_base = base + 0x88;
source_base = cpu0_base + 0x24;
freq /= 4;
writel_relaxed(DGT_CLK_CTL_DIV_4, source_base + DGT_CLK_CTL);
msm_timer_init(freq, 32, irq, !!percpu_offset);
}
#endif
static int __init msm_timer_map(phys_addr_t addr, u32 event, u32 source,
u32 sts)
{
void __iomem *base;
base = ioremap(addr, SZ_256);
if (!base) {
pr_err("Failed to map timer base\n");
return -ENOMEM;
}
event_base = base + event;
source_base = base + source;
if (sts)
sts_base = base + sts;
return 0;
}
void __init msm7x01_timer_init(void)
{
struct clocksource *cs = &msm_clocksource;
if (msm_timer_map(0xc0100000, 0x0, 0x10, 0x0))
return;
cs->read = msm_read_timer_count_shift;
cs->mask = CLOCKSOURCE_MASK((32 - MSM_DGT_SHIFT));
/* 600 KHz */
msm_timer_init(19200000 >> MSM_DGT_SHIFT, 32 - MSM_DGT_SHIFT, 7,
false);
}
void __init msm7x30_timer_init(void)
{
if (msm_timer_map(0xc0100000, 0x4, 0x24, 0x80))
return;
msm_timer_init(24576000 / 4, 32, 1, false);
}
void __init qsd8x50_timer_init(void)
{
if (msm_timer_map(0xAC100000, 0x0, 0x10, 0x34))
return;
msm_timer_init(19200000 / 4, 32, 7, false);
}