linux/drivers/video/fbdev/asiliantfb.c
Jani Nikula 8a48ac3393 video: constify fb ops across all drivers
Now that the fbops member of struct fb_info is const, we can start
making the ops const as well.

This does not cover all drivers; some actually modify the fbops struct,
for example to adjust for different configurations, and others do more
involved things that I'd rather not touch in practically obsolete
drivers. Mostly this is the low hanging fruit where we can add "const"
and be done with it.

v3:
- un-constify atyfb, mb862xx, nvidia and uvesabf (0day)

v2:
- fix typo (Christophe de Dinechin)
- use "static const" instead of "const static" in mx3fb.c
- also constify smscufx.c

Cc: linux-fbdev@vger.kernel.org
Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Signed-off-by: Jani Nikula <jani.nikula@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/ce67f14435f3af498f2e8bf35ce4be11f7504132.1575390740.git.jani.nikula@intel.com
2019-12-05 10:57:53 +02:00

625 lines
16 KiB
C

/*
* drivers/video/asiliantfb.c
* frame buffer driver for Asiliant 69000 chip
* Copyright (C) 2001-2003 Saito.K & Jeanne
*
* from driver/video/chipsfb.c and,
*
* drivers/video/asiliantfb.c -- frame buffer device for
* Asiliant 69030 chip (formerly Intel, formerly Chips & Technologies)
* Author: apc@agelectronics.co.uk
* Copyright (C) 2000 AG Electronics
* Note: the data sheets don't seem to be available from Asiliant.
* They are available by searching developer.intel.com, but are not otherwise
* linked to.
*
* This driver should be portable with minimal effort to the 69000 display
* chip, and to the twin-display mode of the 69030.
* Contains code from Thomas Hhenleitner <th@visuelle-maschinen.de> (thanks)
*
* Derived from the CT65550 driver chipsfb.c:
* Copyright (C) 1998 Paul Mackerras
* ...which was derived from the Powermac "chips" driver:
* Copyright (C) 1997 Fabio Riccardi.
* And from the frame buffer device for Open Firmware-initialized devices:
* Copyright (C) 1997 Geert Uytterhoeven.
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of this archive for
* more details.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/vmalloc.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/fb.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <asm/io.h>
/* Built in clock of the 69030 */
static const unsigned Fref = 14318180;
#define mmio_base (p->screen_base + 0x400000)
#define mm_write_ind(num, val, ap, dp) do { \
writeb((num), mmio_base + (ap)); writeb((val), mmio_base + (dp)); \
} while (0)
static void mm_write_xr(struct fb_info *p, u8 reg, u8 data)
{
mm_write_ind(reg, data, 0x7ac, 0x7ad);
}
#define write_xr(num, val) mm_write_xr(p, num, val)
static void mm_write_fr(struct fb_info *p, u8 reg, u8 data)
{
mm_write_ind(reg, data, 0x7a0, 0x7a1);
}
#define write_fr(num, val) mm_write_fr(p, num, val)
static void mm_write_cr(struct fb_info *p, u8 reg, u8 data)
{
mm_write_ind(reg, data, 0x7a8, 0x7a9);
}
#define write_cr(num, val) mm_write_cr(p, num, val)
static void mm_write_gr(struct fb_info *p, u8 reg, u8 data)
{
mm_write_ind(reg, data, 0x79c, 0x79d);
}
#define write_gr(num, val) mm_write_gr(p, num, val)
static void mm_write_sr(struct fb_info *p, u8 reg, u8 data)
{
mm_write_ind(reg, data, 0x788, 0x789);
}
#define write_sr(num, val) mm_write_sr(p, num, val)
static void mm_write_ar(struct fb_info *p, u8 reg, u8 data)
{
readb(mmio_base + 0x7b4);
mm_write_ind(reg, data, 0x780, 0x780);
}
#define write_ar(num, val) mm_write_ar(p, num, val)
static int asiliantfb_pci_init(struct pci_dev *dp, const struct pci_device_id *);
static int asiliantfb_check_var(struct fb_var_screeninfo *var,
struct fb_info *info);
static int asiliantfb_set_par(struct fb_info *info);
static int asiliantfb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
u_int transp, struct fb_info *info);
static const struct fb_ops asiliantfb_ops = {
.owner = THIS_MODULE,
.fb_check_var = asiliantfb_check_var,
.fb_set_par = asiliantfb_set_par,
.fb_setcolreg = asiliantfb_setcolreg,
.fb_fillrect = cfb_fillrect,
.fb_copyarea = cfb_copyarea,
.fb_imageblit = cfb_imageblit,
};
/* Calculate the ratios for the dot clocks without using a single long long
* value */
static void asiliant_calc_dclk2(u32 *ppixclock, u8 *dclk2_m, u8 *dclk2_n, u8 *dclk2_div)
{
unsigned pixclock = *ppixclock;
unsigned Ftarget = 1000000 * (1000000 / pixclock);
unsigned n;
unsigned best_error = 0xffffffff;
unsigned best_m = 0xffffffff,
best_n = 0xffffffff;
unsigned ratio;
unsigned remainder;
unsigned char divisor = 0;
/* Calculate the frequency required. This is hard enough. */
ratio = 1000000 / pixclock;
remainder = 1000000 % pixclock;
Ftarget = 1000000 * ratio + (1000000 * remainder) / pixclock;
while (Ftarget < 100000000) {
divisor += 0x10;
Ftarget <<= 1;
}
ratio = Ftarget / Fref;
remainder = Ftarget % Fref;
/* This expresses the constraint that 150kHz <= Fref/n <= 5Mhz,
* together with 3 <= n <= 257. */
for (n = 3; n <= 257; n++) {
unsigned m = n * ratio + (n * remainder) / Fref;
/* 3 <= m <= 257 */
if (m >= 3 && m <= 257) {
unsigned new_error = Ftarget * n >= Fref * m ?
((Ftarget * n) - (Fref * m)) : ((Fref * m) - (Ftarget * n));
if (new_error < best_error) {
best_n = n;
best_m = m;
best_error = new_error;
}
}
/* But if VLD = 4, then 4m <= 1028 */
else if (m <= 1028) {
/* remember there are still only 8-bits of precision in m, so
* avoid over-optimistic error calculations */
unsigned new_error = Ftarget * n >= Fref * (m & ~3) ?
((Ftarget * n) - (Fref * (m & ~3))) : ((Fref * (m & ~3)) - (Ftarget * n));
if (new_error < best_error) {
best_n = n;
best_m = m;
best_error = new_error;
}
}
}
if (best_m > 257)
best_m >>= 2; /* divide m by 4, and leave VCO loop divide at 4 */
else
divisor |= 4; /* or set VCO loop divide to 1 */
*dclk2_m = best_m - 2;
*dclk2_n = best_n - 2;
*dclk2_div = divisor;
*ppixclock = pixclock;
return;
}
static void asiliant_set_timing(struct fb_info *p)
{
unsigned hd = p->var.xres / 8;
unsigned hs = (p->var.xres + p->var.right_margin) / 8;
unsigned he = (p->var.xres + p->var.right_margin + p->var.hsync_len) / 8;
unsigned ht = (p->var.left_margin + p->var.xres + p->var.right_margin + p->var.hsync_len) / 8;
unsigned vd = p->var.yres;
unsigned vs = p->var.yres + p->var.lower_margin;
unsigned ve = p->var.yres + p->var.lower_margin + p->var.vsync_len;
unsigned vt = p->var.upper_margin + p->var.yres + p->var.lower_margin + p->var.vsync_len;
unsigned wd = (p->var.xres_virtual * ((p->var.bits_per_pixel+7)/8)) / 8;
if ((p->var.xres == 640) && (p->var.yres == 480) && (p->var.pixclock == 39722)) {
write_fr(0x01, 0x02); /* LCD */
} else {
write_fr(0x01, 0x01); /* CRT */
}
write_cr(0x11, (ve - 1) & 0x0f);
write_cr(0x00, (ht - 5) & 0xff);
write_cr(0x01, hd - 1);
write_cr(0x02, hd);
write_cr(0x03, ((ht - 1) & 0x1f) | 0x80);
write_cr(0x04, hs);
write_cr(0x05, (((ht - 1) & 0x20) <<2) | (he & 0x1f));
write_cr(0x3c, (ht - 1) & 0xc0);
write_cr(0x06, (vt - 2) & 0xff);
write_cr(0x30, (vt - 2) >> 8);
write_cr(0x07, 0x00);
write_cr(0x08, 0x00);
write_cr(0x09, 0x00);
write_cr(0x10, (vs - 1) & 0xff);
write_cr(0x32, ((vs - 1) >> 8) & 0xf);
write_cr(0x11, ((ve - 1) & 0x0f) | 0x80);
write_cr(0x12, (vd - 1) & 0xff);
write_cr(0x31, ((vd - 1) & 0xf00) >> 8);
write_cr(0x13, wd & 0xff);
write_cr(0x41, (wd & 0xf00) >> 8);
write_cr(0x15, (vs - 1) & 0xff);
write_cr(0x33, ((vs - 1) >> 8) & 0xf);
write_cr(0x38, ((ht - 5) & 0x100) >> 8);
write_cr(0x16, (vt - 1) & 0xff);
write_cr(0x18, 0x00);
if (p->var.xres == 640) {
writeb(0xc7, mmio_base + 0x784); /* set misc output reg */
} else {
writeb(0x07, mmio_base + 0x784); /* set misc output reg */
}
}
static int asiliantfb_check_var(struct fb_var_screeninfo *var,
struct fb_info *p)
{
unsigned long Ftarget, ratio, remainder;
ratio = 1000000 / var->pixclock;
remainder = 1000000 % var->pixclock;
Ftarget = 1000000 * ratio + (1000000 * remainder) / var->pixclock;
/* First check the constraint that the maximum post-VCO divisor is 32,
* and the maximum Fvco is 220MHz */
if (Ftarget > 220000000 || Ftarget < 3125000) {
printk(KERN_ERR "asiliantfb dotclock must be between 3.125 and 220MHz\n");
return -ENXIO;
}
var->xres_virtual = var->xres;
var->yres_virtual = var->yres;
if (var->bits_per_pixel == 24) {
var->red.offset = 16;
var->green.offset = 8;
var->blue.offset = 0;
var->red.length = var->blue.length = var->green.length = 8;
} else if (var->bits_per_pixel == 16) {
switch (var->red.offset) {
case 11:
var->green.length = 6;
break;
case 10:
var->green.length = 5;
break;
default:
return -EINVAL;
}
var->green.offset = 5;
var->blue.offset = 0;
var->red.length = var->blue.length = 5;
} else if (var->bits_per_pixel == 8) {
var->red.offset = var->green.offset = var->blue.offset = 0;
var->red.length = var->green.length = var->blue.length = 8;
}
return 0;
}
static int asiliantfb_set_par(struct fb_info *p)
{
u8 dclk2_m; /* Holds m-2 value for register */
u8 dclk2_n; /* Holds n-2 value for register */
u8 dclk2_div; /* Holds divisor bitmask */
/* Set pixclock */
asiliant_calc_dclk2(&p->var.pixclock, &dclk2_m, &dclk2_n, &dclk2_div);
/* Set color depth */
if (p->var.bits_per_pixel == 24) {
write_xr(0x81, 0x16); /* 24 bit packed color mode */
write_xr(0x82, 0x00); /* Disable palettes */
write_xr(0x20, 0x20); /* 24 bit blitter mode */
} else if (p->var.bits_per_pixel == 16) {
if (p->var.red.offset == 11)
write_xr(0x81, 0x15); /* 16 bit color mode */
else
write_xr(0x81, 0x14); /* 15 bit color mode */
write_xr(0x82, 0x00); /* Disable palettes */
write_xr(0x20, 0x10); /* 16 bit blitter mode */
} else if (p->var.bits_per_pixel == 8) {
write_xr(0x0a, 0x02); /* Linear */
write_xr(0x81, 0x12); /* 8 bit color mode */
write_xr(0x82, 0x00); /* Graphics gamma enable */
write_xr(0x20, 0x00); /* 8 bit blitter mode */
}
p->fix.line_length = p->var.xres * (p->var.bits_per_pixel >> 3);
p->fix.visual = (p->var.bits_per_pixel == 8) ? FB_VISUAL_PSEUDOCOLOR : FB_VISUAL_TRUECOLOR;
write_xr(0xc4, dclk2_m);
write_xr(0xc5, dclk2_n);
write_xr(0xc7, dclk2_div);
/* Set up the CR registers */
asiliant_set_timing(p);
return 0;
}
static int asiliantfb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
u_int transp, struct fb_info *p)
{
if (regno > 255)
return 1;
red >>= 8;
green >>= 8;
blue >>= 8;
/* Set hardware palete */
writeb(regno, mmio_base + 0x790);
udelay(1);
writeb(red, mmio_base + 0x791);
writeb(green, mmio_base + 0x791);
writeb(blue, mmio_base + 0x791);
if (regno < 16) {
switch(p->var.red.offset) {
case 10: /* RGB 555 */
((u32 *)(p->pseudo_palette))[regno] =
((red & 0xf8) << 7) |
((green & 0xf8) << 2) |
((blue & 0xf8) >> 3);
break;
case 11: /* RGB 565 */
((u32 *)(p->pseudo_palette))[regno] =
((red & 0xf8) << 8) |
((green & 0xfc) << 3) |
((blue & 0xf8) >> 3);
break;
case 16: /* RGB 888 */
((u32 *)(p->pseudo_palette))[regno] =
(red << 16) |
(green << 8) |
(blue);
break;
}
}
return 0;
}
struct chips_init_reg {
unsigned char addr;
unsigned char data;
};
static struct chips_init_reg chips_init_sr[] =
{
{0x00, 0x03}, /* Reset register */
{0x01, 0x01}, /* Clocking mode */
{0x02, 0x0f}, /* Plane mask */
{0x04, 0x0e} /* Memory mode */
};
static struct chips_init_reg chips_init_gr[] =
{
{0x03, 0x00}, /* Data rotate */
{0x05, 0x00}, /* Graphics mode */
{0x06, 0x01}, /* Miscellaneous */
{0x08, 0x00} /* Bit mask */
};
static struct chips_init_reg chips_init_ar[] =
{
{0x10, 0x01}, /* Mode control */
{0x11, 0x00}, /* Overscan */
{0x12, 0x0f}, /* Memory plane enable */
{0x13, 0x00} /* Horizontal pixel panning */
};
static struct chips_init_reg chips_init_cr[] =
{
{0x0c, 0x00}, /* Start address high */
{0x0d, 0x00}, /* Start address low */
{0x40, 0x00}, /* Extended Start Address */
{0x41, 0x00}, /* Extended Start Address */
{0x14, 0x00}, /* Underline location */
{0x17, 0xe3}, /* CRT mode control */
{0x70, 0x00} /* Interlace control */
};
static struct chips_init_reg chips_init_fr[] =
{
{0x01, 0x02},
{0x03, 0x08},
{0x08, 0xcc},
{0x0a, 0x08},
{0x18, 0x00},
{0x1e, 0x80},
{0x40, 0x83},
{0x41, 0x00},
{0x48, 0x13},
{0x4d, 0x60},
{0x4e, 0x0f},
{0x0b, 0x01},
{0x21, 0x51},
{0x22, 0x1d},
{0x23, 0x5f},
{0x20, 0x4f},
{0x34, 0x00},
{0x24, 0x51},
{0x25, 0x00},
{0x27, 0x0b},
{0x26, 0x00},
{0x37, 0x80},
{0x33, 0x0b},
{0x35, 0x11},
{0x36, 0x02},
{0x31, 0xea},
{0x32, 0x0c},
{0x30, 0xdf},
{0x10, 0x0c},
{0x11, 0xe0},
{0x12, 0x50},
{0x13, 0x00},
{0x16, 0x03},
{0x17, 0xbd},
{0x1a, 0x00},
};
static struct chips_init_reg chips_init_xr[] =
{
{0xce, 0x00}, /* set default memory clock */
{0xcc, 200 }, /* MCLK ratio M */
{0xcd, 18 }, /* MCLK ratio N */
{0xce, 0x90}, /* MCLK divisor = 2 */
{0xc4, 209 },
{0xc5, 118 },
{0xc7, 32 },
{0xcf, 0x06},
{0x09, 0x01}, /* IO Control - CRT controller extensions */
{0x0a, 0x02}, /* Frame buffer mapping */
{0x0b, 0x01}, /* PCI burst write */
{0x40, 0x03}, /* Memory access control */
{0x80, 0x82}, /* Pixel pipeline configuration 0 */
{0x81, 0x12}, /* Pixel pipeline configuration 1 */
{0x82, 0x08}, /* Pixel pipeline configuration 2 */
{0xd0, 0x0f},
{0xd1, 0x01},
};
static void chips_hw_init(struct fb_info *p)
{
int i;
for (i = 0; i < ARRAY_SIZE(chips_init_xr); ++i)
write_xr(chips_init_xr[i].addr, chips_init_xr[i].data);
write_xr(0x81, 0x12);
write_xr(0x82, 0x08);
write_xr(0x20, 0x00);
for (i = 0; i < ARRAY_SIZE(chips_init_sr); ++i)
write_sr(chips_init_sr[i].addr, chips_init_sr[i].data);
for (i = 0; i < ARRAY_SIZE(chips_init_gr); ++i)
write_gr(chips_init_gr[i].addr, chips_init_gr[i].data);
for (i = 0; i < ARRAY_SIZE(chips_init_ar); ++i)
write_ar(chips_init_ar[i].addr, chips_init_ar[i].data);
/* Enable video output in attribute index register */
writeb(0x20, mmio_base + 0x780);
for (i = 0; i < ARRAY_SIZE(chips_init_cr); ++i)
write_cr(chips_init_cr[i].addr, chips_init_cr[i].data);
for (i = 0; i < ARRAY_SIZE(chips_init_fr); ++i)
write_fr(chips_init_fr[i].addr, chips_init_fr[i].data);
}
static const struct fb_fix_screeninfo asiliantfb_fix = {
.id = "Asiliant 69000",
.type = FB_TYPE_PACKED_PIXELS,
.visual = FB_VISUAL_PSEUDOCOLOR,
.accel = FB_ACCEL_NONE,
.line_length = 640,
.smem_len = 0x200000, /* 2MB */
};
static const struct fb_var_screeninfo asiliantfb_var = {
.xres = 640,
.yres = 480,
.xres_virtual = 640,
.yres_virtual = 480,
.bits_per_pixel = 8,
.red = { .length = 8 },
.green = { .length = 8 },
.blue = { .length = 8 },
.height = -1,
.width = -1,
.vmode = FB_VMODE_NONINTERLACED,
.pixclock = 39722,
.left_margin = 48,
.right_margin = 16,
.upper_margin = 33,
.lower_margin = 10,
.hsync_len = 96,
.vsync_len = 2,
};
static int init_asiliant(struct fb_info *p, unsigned long addr)
{
int err;
p->fix = asiliantfb_fix;
p->fix.smem_start = addr;
p->var = asiliantfb_var;
p->fbops = &asiliantfb_ops;
p->flags = FBINFO_DEFAULT;
err = fb_alloc_cmap(&p->cmap, 256, 0);
if (err) {
printk(KERN_ERR "C&T 69000 fb failed to alloc cmap memory\n");
return err;
}
err = register_framebuffer(p);
if (err < 0) {
printk(KERN_ERR "C&T 69000 framebuffer failed to register\n");
fb_dealloc_cmap(&p->cmap);
return err;
}
fb_info(p, "Asiliant 69000 frame buffer (%dK RAM detected)\n",
p->fix.smem_len / 1024);
writeb(0xff, mmio_base + 0x78c);
chips_hw_init(p);
return 0;
}
static int asiliantfb_pci_init(struct pci_dev *dp,
const struct pci_device_id *ent)
{
unsigned long addr, size;
struct fb_info *p;
int err;
if ((dp->resource[0].flags & IORESOURCE_MEM) == 0)
return -ENODEV;
addr = pci_resource_start(dp, 0);
size = pci_resource_len(dp, 0);
if (addr == 0)
return -ENODEV;
if (!request_mem_region(addr, size, "asiliantfb"))
return -EBUSY;
p = framebuffer_alloc(sizeof(u32) * 16, &dp->dev);
if (!p) {
release_mem_region(addr, size);
return -ENOMEM;
}
p->pseudo_palette = p->par;
p->par = NULL;
p->screen_base = ioremap(addr, 0x800000);
if (p->screen_base == NULL) {
release_mem_region(addr, size);
framebuffer_release(p);
return -ENOMEM;
}
pci_write_config_dword(dp, 4, 0x02800083);
writeb(3, p->screen_base + 0x400784);
err = init_asiliant(p, addr);
if (err) {
iounmap(p->screen_base);
release_mem_region(addr, size);
framebuffer_release(p);
return err;
}
pci_set_drvdata(dp, p);
return 0;
}
static void asiliantfb_remove(struct pci_dev *dp)
{
struct fb_info *p = pci_get_drvdata(dp);
unregister_framebuffer(p);
fb_dealloc_cmap(&p->cmap);
iounmap(p->screen_base);
release_mem_region(pci_resource_start(dp, 0), pci_resource_len(dp, 0));
framebuffer_release(p);
}
static const struct pci_device_id asiliantfb_pci_tbl[] = {
{ PCI_VENDOR_ID_CT, PCI_DEVICE_ID_CT_69000, PCI_ANY_ID, PCI_ANY_ID },
{ 0 }
};
MODULE_DEVICE_TABLE(pci, asiliantfb_pci_tbl);
static struct pci_driver asiliantfb_driver = {
.name = "asiliantfb",
.id_table = asiliantfb_pci_tbl,
.probe = asiliantfb_pci_init,
.remove = asiliantfb_remove,
};
static int __init asiliantfb_init(void)
{
if (fb_get_options("asiliantfb", NULL))
return -ENODEV;
return pci_register_driver(&asiliantfb_driver);
}
module_init(asiliantfb_init);
static void __exit asiliantfb_exit(void)
{
pci_unregister_driver(&asiliantfb_driver);
}
MODULE_LICENSE("GPL");