linux/drivers/clk/mvebu/armada-37xx-periph.c
Gregory CLEMENT 61c40f35f5 clk: mvebu: armada-37xx-periph: Fix switching CPU rate from 300Mhz to 1.2GHz
Switching the CPU from the L2 or L3 frequencies (300 and 200 Mhz
respectively) to L0 frequency (1.2 Ghz) requires a significant amount
of time to let VDD stabilize to the appropriate voltage. This amount of
time is large enough that it cannot be covered by the hardware
countdown register. Due to this, the CPU might start operating at L0
before the voltage is stabilized, leading to CPU stalls.

To work around this problem, we prevent switching directly from the
L2/L3 frequencies to the L0 frequency, and instead switch to the L1
frequency in-between. The sequence therefore becomes:

1. First switch from L2/L3(200/300MHz) to L1(600MHZ)
2. Sleep 20ms for stabling VDD voltage
3. Then switch from L1(600MHZ) to L0(1200Mhz).

It is based on the work done by Ken Ma <make@marvell.com>

Cc: stable@vger.kernel.org
Fixes: 2089dc33ea ("clk: mvebu: armada-37xx-periph: add DVFS support for cpu clocks")
Signed-off-by: Gregory CLEMENT <gregory.clement@bootlin.com>
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2018-07-09 09:44:06 -07:00

763 lines
21 KiB
C

/*
* Marvell Armada 37xx SoC Peripheral clocks
*
* Copyright (C) 2016 Marvell
*
* Gregory CLEMENT <gregory.clement@free-electrons.com>
*
* This file is licensed under the terms of the GNU General Public
* License version 2 or later. This program is licensed "as is"
* without any warranty of any kind, whether express or implied.
*
* Most of the peripheral clocks can be modelled like this:
* _____ _______ _______
* TBG-A-P --| | | | | | ______
* TBG-B-P --| Mux |--| /div1 |--| /div2 |--| Gate |--> perip_clk
* TBG-A-S --| | | | | | |______|
* TBG-B-S --|_____| |_______| |_______|
*
* However some clocks may use only one or two block or and use the
* xtal clock as parent.
*/
#include <linux/clk-provider.h>
#include <linux/mfd/syscon.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#define TBG_SEL 0x0
#define DIV_SEL0 0x4
#define DIV_SEL1 0x8
#define DIV_SEL2 0xC
#define CLK_SEL 0x10
#define CLK_DIS 0x14
#define ARMADA_37XX_DVFS_LOAD_1 1
#define LOAD_LEVEL_NR 4
#define ARMADA_37XX_NB_L0L1 0x18
#define ARMADA_37XX_NB_L2L3 0x1C
#define ARMADA_37XX_NB_TBG_DIV_OFF 13
#define ARMADA_37XX_NB_TBG_DIV_MASK 0x7
#define ARMADA_37XX_NB_CLK_SEL_OFF 11
#define ARMADA_37XX_NB_CLK_SEL_MASK 0x1
#define ARMADA_37XX_NB_TBG_SEL_OFF 9
#define ARMADA_37XX_NB_TBG_SEL_MASK 0x3
#define ARMADA_37XX_NB_CONFIG_SHIFT 16
#define ARMADA_37XX_NB_DYN_MOD 0x24
#define ARMADA_37XX_NB_DFS_EN 31
#define ARMADA_37XX_NB_CPU_LOAD 0x30
#define ARMADA_37XX_NB_CPU_LOAD_MASK 0x3
#define ARMADA_37XX_DVFS_LOAD_0 0
#define ARMADA_37XX_DVFS_LOAD_1 1
#define ARMADA_37XX_DVFS_LOAD_2 2
#define ARMADA_37XX_DVFS_LOAD_3 3
struct clk_periph_driver_data {
struct clk_hw_onecell_data *hw_data;
spinlock_t lock;
};
struct clk_double_div {
struct clk_hw hw;
void __iomem *reg1;
u8 shift1;
void __iomem *reg2;
u8 shift2;
};
struct clk_pm_cpu {
struct clk_hw hw;
void __iomem *reg_mux;
u8 shift_mux;
u32 mask_mux;
void __iomem *reg_div;
u8 shift_div;
struct regmap *nb_pm_base;
};
#define to_clk_double_div(_hw) container_of(_hw, struct clk_double_div, hw)
#define to_clk_pm_cpu(_hw) container_of(_hw, struct clk_pm_cpu, hw)
struct clk_periph_data {
const char *name;
const char * const *parent_names;
int num_parents;
struct clk_hw *mux_hw;
struct clk_hw *rate_hw;
struct clk_hw *gate_hw;
struct clk_hw *muxrate_hw;
bool is_double_div;
};
static const struct clk_div_table clk_table6[] = {
{ .val = 1, .div = 1, },
{ .val = 2, .div = 2, },
{ .val = 3, .div = 3, },
{ .val = 4, .div = 4, },
{ .val = 5, .div = 5, },
{ .val = 6, .div = 6, },
{ .val = 0, .div = 0, }, /* last entry */
};
static const struct clk_div_table clk_table1[] = {
{ .val = 0, .div = 1, },
{ .val = 1, .div = 2, },
{ .val = 0, .div = 0, }, /* last entry */
};
static const struct clk_div_table clk_table2[] = {
{ .val = 0, .div = 2, },
{ .val = 1, .div = 4, },
{ .val = 0, .div = 0, }, /* last entry */
};
static const struct clk_ops clk_double_div_ops;
static const struct clk_ops clk_pm_cpu_ops;
#define PERIPH_GATE(_name, _bit) \
struct clk_gate gate_##_name = { \
.reg = (void *)CLK_DIS, \
.bit_idx = _bit, \
.hw.init = &(struct clk_init_data){ \
.ops = &clk_gate_ops, \
} \
};
#define PERIPH_MUX(_name, _shift) \
struct clk_mux mux_##_name = { \
.reg = (void *)TBG_SEL, \
.shift = _shift, \
.mask = 3, \
.hw.init = &(struct clk_init_data){ \
.ops = &clk_mux_ro_ops, \
} \
};
#define PERIPH_DOUBLEDIV(_name, _reg1, _reg2, _shift1, _shift2) \
struct clk_double_div rate_##_name = { \
.reg1 = (void *)_reg1, \
.reg2 = (void *)_reg2, \
.shift1 = _shift1, \
.shift2 = _shift2, \
.hw.init = &(struct clk_init_data){ \
.ops = &clk_double_div_ops, \
} \
};
#define PERIPH_DIV(_name, _reg, _shift, _table) \
struct clk_divider rate_##_name = { \
.reg = (void *)_reg, \
.table = _table, \
.shift = _shift, \
.hw.init = &(struct clk_init_data){ \
.ops = &clk_divider_ro_ops, \
} \
};
#define PERIPH_PM_CPU(_name, _shift1, _reg, _shift2) \
struct clk_pm_cpu muxrate_##_name = { \
.reg_mux = (void *)TBG_SEL, \
.mask_mux = 3, \
.shift_mux = _shift1, \
.reg_div = (void *)_reg, \
.shift_div = _shift2, \
.hw.init = &(struct clk_init_data){ \
.ops = &clk_pm_cpu_ops, \
} \
};
#define PERIPH_CLK_FULL_DD(_name, _bit, _shift, _reg1, _reg2, _shift1, _shift2)\
static PERIPH_GATE(_name, _bit); \
static PERIPH_MUX(_name, _shift); \
static PERIPH_DOUBLEDIV(_name, _reg1, _reg2, _shift1, _shift2);
#define PERIPH_CLK_FULL(_name, _bit, _shift, _reg, _shift1, _table) \
static PERIPH_GATE(_name, _bit); \
static PERIPH_MUX(_name, _shift); \
static PERIPH_DIV(_name, _reg, _shift1, _table);
#define PERIPH_CLK_GATE_DIV(_name, _bit, _reg, _shift, _table) \
static PERIPH_GATE(_name, _bit); \
static PERIPH_DIV(_name, _reg, _shift, _table);
#define PERIPH_CLK_MUX_DD(_name, _shift, _reg1, _reg2, _shift1, _shift2)\
static PERIPH_MUX(_name, _shift); \
static PERIPH_DOUBLEDIV(_name, _reg1, _reg2, _shift1, _shift2);
#define REF_CLK_FULL(_name) \
{ .name = #_name, \
.parent_names = (const char *[]){ "TBG-A-P", \
"TBG-B-P", "TBG-A-S", "TBG-B-S"}, \
.num_parents = 4, \
.mux_hw = &mux_##_name.hw, \
.gate_hw = &gate_##_name.hw, \
.rate_hw = &rate_##_name.hw, \
}
#define REF_CLK_FULL_DD(_name) \
{ .name = #_name, \
.parent_names = (const char *[]){ "TBG-A-P", \
"TBG-B-P", "TBG-A-S", "TBG-B-S"}, \
.num_parents = 4, \
.mux_hw = &mux_##_name.hw, \
.gate_hw = &gate_##_name.hw, \
.rate_hw = &rate_##_name.hw, \
.is_double_div = true, \
}
#define REF_CLK_GATE(_name, _parent_name) \
{ .name = #_name, \
.parent_names = (const char *[]){ _parent_name}, \
.num_parents = 1, \
.gate_hw = &gate_##_name.hw, \
}
#define REF_CLK_GATE_DIV(_name, _parent_name) \
{ .name = #_name, \
.parent_names = (const char *[]){ _parent_name}, \
.num_parents = 1, \
.gate_hw = &gate_##_name.hw, \
.rate_hw = &rate_##_name.hw, \
}
#define REF_CLK_PM_CPU(_name) \
{ .name = #_name, \
.parent_names = (const char *[]){ "TBG-A-P", \
"TBG-B-P", "TBG-A-S", "TBG-B-S"}, \
.num_parents = 4, \
.muxrate_hw = &muxrate_##_name.hw, \
}
#define REF_CLK_MUX_DD(_name) \
{ .name = #_name, \
.parent_names = (const char *[]){ "TBG-A-P", \
"TBG-B-P", "TBG-A-S", "TBG-B-S"}, \
.num_parents = 4, \
.mux_hw = &mux_##_name.hw, \
.rate_hw = &rate_##_name.hw, \
.is_double_div = true, \
}
/* NB periph clocks */
PERIPH_CLK_FULL_DD(mmc, 2, 0, DIV_SEL2, DIV_SEL2, 16, 13);
PERIPH_CLK_FULL_DD(sata_host, 3, 2, DIV_SEL2, DIV_SEL2, 10, 7);
PERIPH_CLK_FULL_DD(sec_at, 6, 4, DIV_SEL1, DIV_SEL1, 3, 0);
PERIPH_CLK_FULL_DD(sec_dap, 7, 6, DIV_SEL1, DIV_SEL1, 9, 6);
PERIPH_CLK_FULL_DD(tscem, 8, 8, DIV_SEL1, DIV_SEL1, 15, 12);
PERIPH_CLK_FULL(tscem_tmx, 10, 10, DIV_SEL1, 18, clk_table6);
static PERIPH_GATE(avs, 11);
PERIPH_CLK_FULL_DD(pwm, 13, 14, DIV_SEL0, DIV_SEL0, 3, 0);
PERIPH_CLK_FULL_DD(sqf, 12, 12, DIV_SEL1, DIV_SEL1, 27, 24);
static PERIPH_GATE(i2c_2, 16);
static PERIPH_GATE(i2c_1, 17);
PERIPH_CLK_GATE_DIV(ddr_phy, 19, DIV_SEL0, 18, clk_table2);
PERIPH_CLK_FULL_DD(ddr_fclk, 21, 16, DIV_SEL0, DIV_SEL0, 15, 12);
PERIPH_CLK_FULL(trace, 22, 18, DIV_SEL0, 20, clk_table6);
PERIPH_CLK_FULL(counter, 23, 20, DIV_SEL0, 23, clk_table6);
PERIPH_CLK_FULL_DD(eip97, 24, 24, DIV_SEL2, DIV_SEL2, 22, 19);
static PERIPH_PM_CPU(cpu, 22, DIV_SEL0, 28);
static struct clk_periph_data data_nb[] = {
REF_CLK_FULL_DD(mmc),
REF_CLK_FULL_DD(sata_host),
REF_CLK_FULL_DD(sec_at),
REF_CLK_FULL_DD(sec_dap),
REF_CLK_FULL_DD(tscem),
REF_CLK_FULL(tscem_tmx),
REF_CLK_GATE(avs, "xtal"),
REF_CLK_FULL_DD(sqf),
REF_CLK_FULL_DD(pwm),
REF_CLK_GATE(i2c_2, "xtal"),
REF_CLK_GATE(i2c_1, "xtal"),
REF_CLK_GATE_DIV(ddr_phy, "TBG-A-S"),
REF_CLK_FULL_DD(ddr_fclk),
REF_CLK_FULL(trace),
REF_CLK_FULL(counter),
REF_CLK_FULL_DD(eip97),
REF_CLK_PM_CPU(cpu),
{ },
};
/* SB periph clocks */
PERIPH_CLK_MUX_DD(gbe_50, 6, DIV_SEL2, DIV_SEL2, 6, 9);
PERIPH_CLK_MUX_DD(gbe_core, 8, DIV_SEL1, DIV_SEL1, 18, 21);
PERIPH_CLK_MUX_DD(gbe_125, 10, DIV_SEL1, DIV_SEL1, 6, 9);
static PERIPH_GATE(gbe1_50, 0);
static PERIPH_GATE(gbe0_50, 1);
static PERIPH_GATE(gbe1_125, 2);
static PERIPH_GATE(gbe0_125, 3);
PERIPH_CLK_GATE_DIV(gbe1_core, 4, DIV_SEL1, 13, clk_table1);
PERIPH_CLK_GATE_DIV(gbe0_core, 5, DIV_SEL1, 14, clk_table1);
PERIPH_CLK_GATE_DIV(gbe_bm, 12, DIV_SEL1, 0, clk_table1);
PERIPH_CLK_FULL_DD(sdio, 11, 14, DIV_SEL0, DIV_SEL0, 3, 6);
PERIPH_CLK_FULL_DD(usb32_usb2_sys, 16, 16, DIV_SEL0, DIV_SEL0, 9, 12);
PERIPH_CLK_FULL_DD(usb32_ss_sys, 17, 18, DIV_SEL0, DIV_SEL0, 15, 18);
static struct clk_periph_data data_sb[] = {
REF_CLK_MUX_DD(gbe_50),
REF_CLK_MUX_DD(gbe_core),
REF_CLK_MUX_DD(gbe_125),
REF_CLK_GATE(gbe1_50, "gbe_50"),
REF_CLK_GATE(gbe0_50, "gbe_50"),
REF_CLK_GATE(gbe1_125, "gbe_125"),
REF_CLK_GATE(gbe0_125, "gbe_125"),
REF_CLK_GATE_DIV(gbe1_core, "gbe_core"),
REF_CLK_GATE_DIV(gbe0_core, "gbe_core"),
REF_CLK_GATE_DIV(gbe_bm, "gbe_core"),
REF_CLK_FULL_DD(sdio),
REF_CLK_FULL_DD(usb32_usb2_sys),
REF_CLK_FULL_DD(usb32_ss_sys),
{ },
};
static unsigned int get_div(void __iomem *reg, int shift)
{
u32 val;
val = (readl(reg) >> shift) & 0x7;
if (val > 6)
return 0;
return val;
}
static unsigned long clk_double_div_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_double_div *double_div = to_clk_double_div(hw);
unsigned int div;
div = get_div(double_div->reg1, double_div->shift1);
div *= get_div(double_div->reg2, double_div->shift2);
return DIV_ROUND_UP_ULL((u64)parent_rate, div);
}
static const struct clk_ops clk_double_div_ops = {
.recalc_rate = clk_double_div_recalc_rate,
};
static void armada_3700_pm_dvfs_update_regs(unsigned int load_level,
unsigned int *reg,
unsigned int *offset)
{
if (load_level <= ARMADA_37XX_DVFS_LOAD_1)
*reg = ARMADA_37XX_NB_L0L1;
else
*reg = ARMADA_37XX_NB_L2L3;
if (load_level == ARMADA_37XX_DVFS_LOAD_0 ||
load_level == ARMADA_37XX_DVFS_LOAD_2)
*offset += ARMADA_37XX_NB_CONFIG_SHIFT;
}
static bool armada_3700_pm_dvfs_is_enabled(struct regmap *base)
{
unsigned int val, reg = ARMADA_37XX_NB_DYN_MOD;
if (IS_ERR(base))
return false;
regmap_read(base, reg, &val);
return !!(val & BIT(ARMADA_37XX_NB_DFS_EN));
}
static unsigned int armada_3700_pm_dvfs_get_cpu_div(struct regmap *base)
{
unsigned int reg = ARMADA_37XX_NB_CPU_LOAD;
unsigned int offset = ARMADA_37XX_NB_TBG_DIV_OFF;
unsigned int load_level, div;
/*
* This function is always called after the function
* armada_3700_pm_dvfs_is_enabled, so no need to check again
* if the base is valid.
*/
regmap_read(base, reg, &load_level);
/*
* The register and the offset inside this register accessed to
* read the current divider depend on the load level
*/
load_level &= ARMADA_37XX_NB_CPU_LOAD_MASK;
armada_3700_pm_dvfs_update_regs(load_level, &reg, &offset);
regmap_read(base, reg, &div);
return (div >> offset) & ARMADA_37XX_NB_TBG_DIV_MASK;
}
static unsigned int armada_3700_pm_dvfs_get_cpu_parent(struct regmap *base)
{
unsigned int reg = ARMADA_37XX_NB_CPU_LOAD;
unsigned int offset = ARMADA_37XX_NB_TBG_SEL_OFF;
unsigned int load_level, sel;
/*
* This function is always called after the function
* armada_3700_pm_dvfs_is_enabled, so no need to check again
* if the base is valid
*/
regmap_read(base, reg, &load_level);
/*
* The register and the offset inside this register accessed to
* read the current divider depend on the load level
*/
load_level &= ARMADA_37XX_NB_CPU_LOAD_MASK;
armada_3700_pm_dvfs_update_regs(load_level, &reg, &offset);
regmap_read(base, reg, &sel);
return (sel >> offset) & ARMADA_37XX_NB_TBG_SEL_MASK;
}
static u8 clk_pm_cpu_get_parent(struct clk_hw *hw)
{
struct clk_pm_cpu *pm_cpu = to_clk_pm_cpu(hw);
int num_parents = clk_hw_get_num_parents(hw);
u32 val;
if (armada_3700_pm_dvfs_is_enabled(pm_cpu->nb_pm_base)) {
val = armada_3700_pm_dvfs_get_cpu_parent(pm_cpu->nb_pm_base);
} else {
val = readl(pm_cpu->reg_mux) >> pm_cpu->shift_mux;
val &= pm_cpu->mask_mux;
}
if (val >= num_parents)
return -EINVAL;
return val;
}
static int clk_pm_cpu_set_parent(struct clk_hw *hw, u8 index)
{
struct clk_pm_cpu *pm_cpu = to_clk_pm_cpu(hw);
struct regmap *base = pm_cpu->nb_pm_base;
int load_level;
/*
* We set the clock parent only if the DVFS is available but
* not enabled.
*/
if (IS_ERR(base) || armada_3700_pm_dvfs_is_enabled(base))
return -EINVAL;
/* Set the parent clock for all the load level */
for (load_level = 0; load_level < LOAD_LEVEL_NR; load_level++) {
unsigned int reg, mask, val,
offset = ARMADA_37XX_NB_TBG_SEL_OFF;
armada_3700_pm_dvfs_update_regs(load_level, &reg, &offset);
val = index << offset;
mask = ARMADA_37XX_NB_TBG_SEL_MASK << offset;
regmap_update_bits(base, reg, mask, val);
}
return 0;
}
static unsigned long clk_pm_cpu_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_pm_cpu *pm_cpu = to_clk_pm_cpu(hw);
unsigned int div;
if (armada_3700_pm_dvfs_is_enabled(pm_cpu->nb_pm_base))
div = armada_3700_pm_dvfs_get_cpu_div(pm_cpu->nb_pm_base);
else
div = get_div(pm_cpu->reg_div, pm_cpu->shift_div);
return DIV_ROUND_UP_ULL((u64)parent_rate, div);
}
static long clk_pm_cpu_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *parent_rate)
{
struct clk_pm_cpu *pm_cpu = to_clk_pm_cpu(hw);
struct regmap *base = pm_cpu->nb_pm_base;
unsigned int div = *parent_rate / rate;
unsigned int load_level;
/* only available when DVFS is enabled */
if (!armada_3700_pm_dvfs_is_enabled(base))
return -EINVAL;
for (load_level = 0; load_level < LOAD_LEVEL_NR; load_level++) {
unsigned int reg, val, offset = ARMADA_37XX_NB_TBG_DIV_OFF;
armada_3700_pm_dvfs_update_regs(load_level, &reg, &offset);
regmap_read(base, reg, &val);
val >>= offset;
val &= ARMADA_37XX_NB_TBG_DIV_MASK;
if (val == div)
/*
* We found a load level matching the target
* divider, switch to this load level and
* return.
*/
return *parent_rate / div;
}
/* We didn't find any valid divider */
return -EINVAL;
}
/*
* Switching the CPU from the L2 or L3 frequencies (300 and 200 Mhz
* respectively) to L0 frequency (1.2 Ghz) requires a significant
* amount of time to let VDD stabilize to the appropriate
* voltage. This amount of time is large enough that it cannot be
* covered by the hardware countdown register. Due to this, the CPU
* might start operating at L0 before the voltage is stabilized,
* leading to CPU stalls.
*
* To work around this problem, we prevent switching directly from the
* L2/L3 frequencies to the L0 frequency, and instead switch to the L1
* frequency in-between. The sequence therefore becomes:
* 1. First switch from L2/L3(200/300MHz) to L1(600MHZ)
* 2. Sleep 20ms for stabling VDD voltage
* 3. Then switch from L1(600MHZ) to L0(1200Mhz).
*/
static void clk_pm_cpu_set_rate_wa(unsigned long rate, struct regmap *base)
{
unsigned int cur_level;
if (rate != 1200 * 1000 * 1000)
return;
regmap_read(base, ARMADA_37XX_NB_CPU_LOAD, &cur_level);
cur_level &= ARMADA_37XX_NB_CPU_LOAD_MASK;
if (cur_level <= ARMADA_37XX_DVFS_LOAD_1)
return;
regmap_update_bits(base, ARMADA_37XX_NB_CPU_LOAD,
ARMADA_37XX_NB_CPU_LOAD_MASK,
ARMADA_37XX_DVFS_LOAD_1);
msleep(20);
}
static int clk_pm_cpu_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_pm_cpu *pm_cpu = to_clk_pm_cpu(hw);
struct regmap *base = pm_cpu->nb_pm_base;
unsigned int div = parent_rate / rate;
unsigned int load_level;
/* only available when DVFS is enabled */
if (!armada_3700_pm_dvfs_is_enabled(base))
return -EINVAL;
for (load_level = 0; load_level < LOAD_LEVEL_NR; load_level++) {
unsigned int reg, mask, val,
offset = ARMADA_37XX_NB_TBG_DIV_OFF;
armada_3700_pm_dvfs_update_regs(load_level, &reg, &offset);
regmap_read(base, reg, &val);
val >>= offset;
val &= ARMADA_37XX_NB_TBG_DIV_MASK;
if (val == div) {
/*
* We found a load level matching the target
* divider, switch to this load level and
* return.
*/
reg = ARMADA_37XX_NB_CPU_LOAD;
mask = ARMADA_37XX_NB_CPU_LOAD_MASK;
clk_pm_cpu_set_rate_wa(rate, base);
regmap_update_bits(base, reg, mask, load_level);
return rate;
}
}
/* We didn't find any valid divider */
return -EINVAL;
}
static const struct clk_ops clk_pm_cpu_ops = {
.get_parent = clk_pm_cpu_get_parent,
.set_parent = clk_pm_cpu_set_parent,
.round_rate = clk_pm_cpu_round_rate,
.set_rate = clk_pm_cpu_set_rate,
.recalc_rate = clk_pm_cpu_recalc_rate,
};
static const struct of_device_id armada_3700_periph_clock_of_match[] = {
{ .compatible = "marvell,armada-3700-periph-clock-nb",
.data = data_nb, },
{ .compatible = "marvell,armada-3700-periph-clock-sb",
.data = data_sb, },
{ }
};
static int armada_3700_add_composite_clk(const struct clk_periph_data *data,
void __iomem *reg, spinlock_t *lock,
struct device *dev, struct clk_hw **hw)
{
const struct clk_ops *mux_ops = NULL, *gate_ops = NULL,
*rate_ops = NULL;
struct clk_hw *mux_hw = NULL, *gate_hw = NULL, *rate_hw = NULL;
if (data->mux_hw) {
struct clk_mux *mux;
mux_hw = data->mux_hw;
mux = to_clk_mux(mux_hw);
mux->lock = lock;
mux_ops = mux_hw->init->ops;
mux->reg = reg + (u64)mux->reg;
}
if (data->gate_hw) {
struct clk_gate *gate;
gate_hw = data->gate_hw;
gate = to_clk_gate(gate_hw);
gate->lock = lock;
gate_ops = gate_hw->init->ops;
gate->reg = reg + (u64)gate->reg;
gate->flags = CLK_GATE_SET_TO_DISABLE;
}
if (data->rate_hw) {
rate_hw = data->rate_hw;
rate_ops = rate_hw->init->ops;
if (data->is_double_div) {
struct clk_double_div *rate;
rate = to_clk_double_div(rate_hw);
rate->reg1 = reg + (u64)rate->reg1;
rate->reg2 = reg + (u64)rate->reg2;
} else {
struct clk_divider *rate = to_clk_divider(rate_hw);
const struct clk_div_table *clkt;
int table_size = 0;
rate->reg = reg + (u64)rate->reg;
for (clkt = rate->table; clkt->div; clkt++)
table_size++;
rate->width = order_base_2(table_size);
rate->lock = lock;
}
}
if (data->muxrate_hw) {
struct clk_pm_cpu *pmcpu_clk;
struct clk_hw *muxrate_hw = data->muxrate_hw;
struct regmap *map;
pmcpu_clk = to_clk_pm_cpu(muxrate_hw);
pmcpu_clk->reg_mux = reg + (u64)pmcpu_clk->reg_mux;
pmcpu_clk->reg_div = reg + (u64)pmcpu_clk->reg_div;
mux_hw = muxrate_hw;
rate_hw = muxrate_hw;
mux_ops = muxrate_hw->init->ops;
rate_ops = muxrate_hw->init->ops;
map = syscon_regmap_lookup_by_compatible(
"marvell,armada-3700-nb-pm");
pmcpu_clk->nb_pm_base = map;
}
*hw = clk_hw_register_composite(dev, data->name, data->parent_names,
data->num_parents, mux_hw,
mux_ops, rate_hw, rate_ops,
gate_hw, gate_ops, CLK_IGNORE_UNUSED);
return PTR_ERR_OR_ZERO(*hw);
}
static int armada_3700_periph_clock_probe(struct platform_device *pdev)
{
struct clk_periph_driver_data *driver_data;
struct device_node *np = pdev->dev.of_node;
const struct clk_periph_data *data;
struct device *dev = &pdev->dev;
int num_periph = 0, i, ret;
struct resource *res;
void __iomem *reg;
data = of_device_get_match_data(dev);
if (!data)
return -ENODEV;
while (data[num_periph].name)
num_periph++;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
reg = devm_ioremap_resource(dev, res);
if (IS_ERR(reg))
return PTR_ERR(reg);
driver_data = devm_kzalloc(dev, sizeof(*driver_data), GFP_KERNEL);
if (!driver_data)
return -ENOMEM;
driver_data->hw_data = devm_kzalloc(dev,
struct_size(driver_data->hw_data,
hws, num_periph),
GFP_KERNEL);
if (!driver_data->hw_data)
return -ENOMEM;
driver_data->hw_data->num = num_periph;
spin_lock_init(&driver_data->lock);
for (i = 0; i < num_periph; i++) {
struct clk_hw **hw = &driver_data->hw_data->hws[i];
if (armada_3700_add_composite_clk(&data[i], reg,
&driver_data->lock, dev, hw))
dev_err(dev, "Can't register periph clock %s\n",
data[i].name);
}
ret = of_clk_add_hw_provider(np, of_clk_hw_onecell_get,
driver_data->hw_data);
if (ret) {
for (i = 0; i < num_periph; i++)
clk_hw_unregister(driver_data->hw_data->hws[i]);
return ret;
}
platform_set_drvdata(pdev, driver_data);
return 0;
}
static int armada_3700_periph_clock_remove(struct platform_device *pdev)
{
struct clk_periph_driver_data *data = platform_get_drvdata(pdev);
struct clk_hw_onecell_data *hw_data = data->hw_data;
int i;
of_clk_del_provider(pdev->dev.of_node);
for (i = 0; i < hw_data->num; i++)
clk_hw_unregister(hw_data->hws[i]);
return 0;
}
static struct platform_driver armada_3700_periph_clock_driver = {
.probe = armada_3700_periph_clock_probe,
.remove = armada_3700_periph_clock_remove,
.driver = {
.name = "marvell-armada-3700-periph-clock",
.of_match_table = armada_3700_periph_clock_of_match,
},
};
builtin_platform_driver(armada_3700_periph_clock_driver);