mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-16 15:34:48 +08:00
ec403e2ae0
Each task can request own LDT and force the kernel to allocate up to 64Kb memory per-mm. There are legitimate workloads with hundreds of processes and there can be hundreds of workloads running on large machines. The unaccounted memory can cause isolation issues between the workloads particularly on highly utilized machines. It makes sense to account for this objects to restrict the host's memory consumption from inside the memcg-limited container. Link: https://lkml.kernel.org/r/38010594-50fe-c06d-7cb0-d1f77ca422f3@virtuozzo.com Signed-off-by: Vasily Averin <vvs@virtuozzo.com> Acked-by: Borislav Petkov <bp@suse.de> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrei Vagin <avagin@gmail.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Christian Brauner <christian.brauner@ubuntu.com> Cc: Dmitry Safonov <0x7f454c46@gmail.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: "J. Bruce Fields" <bfields@fieldses.org> Cc: Jeff Layton <jlayton@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jiri Slaby <jirislaby@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Roman Gushchin <guro@fb.com> Cc: Serge Hallyn <serge@hallyn.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Yutian Yang <nglaive@gmail.com> Cc: Zefan Li <lizefan.x@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
695 lines
17 KiB
C
695 lines
17 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 1992 Krishna Balasubramanian and Linus Torvalds
|
|
* Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
|
|
* Copyright (C) 2002 Andi Kleen
|
|
*
|
|
* This handles calls from both 32bit and 64bit mode.
|
|
*
|
|
* Lock order:
|
|
* contex.ldt_usr_sem
|
|
* mmap_lock
|
|
* context.lock
|
|
*/
|
|
|
|
#include <linux/errno.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/string.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/uaccess.h>
|
|
|
|
#include <asm/ldt.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/desc.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/pgtable_areas.h>
|
|
|
|
#include <xen/xen.h>
|
|
|
|
/* This is a multiple of PAGE_SIZE. */
|
|
#define LDT_SLOT_STRIDE (LDT_ENTRIES * LDT_ENTRY_SIZE)
|
|
|
|
static inline void *ldt_slot_va(int slot)
|
|
{
|
|
return (void *)(LDT_BASE_ADDR + LDT_SLOT_STRIDE * slot);
|
|
}
|
|
|
|
void load_mm_ldt(struct mm_struct *mm)
|
|
{
|
|
struct ldt_struct *ldt;
|
|
|
|
/* READ_ONCE synchronizes with smp_store_release */
|
|
ldt = READ_ONCE(mm->context.ldt);
|
|
|
|
/*
|
|
* Any change to mm->context.ldt is followed by an IPI to all
|
|
* CPUs with the mm active. The LDT will not be freed until
|
|
* after the IPI is handled by all such CPUs. This means that,
|
|
* if the ldt_struct changes before we return, the values we see
|
|
* will be safe, and the new values will be loaded before we run
|
|
* any user code.
|
|
*
|
|
* NB: don't try to convert this to use RCU without extreme care.
|
|
* We would still need IRQs off, because we don't want to change
|
|
* the local LDT after an IPI loaded a newer value than the one
|
|
* that we can see.
|
|
*/
|
|
|
|
if (unlikely(ldt)) {
|
|
if (static_cpu_has(X86_FEATURE_PTI)) {
|
|
if (WARN_ON_ONCE((unsigned long)ldt->slot > 1)) {
|
|
/*
|
|
* Whoops -- either the new LDT isn't mapped
|
|
* (if slot == -1) or is mapped into a bogus
|
|
* slot (if slot > 1).
|
|
*/
|
|
clear_LDT();
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If page table isolation is enabled, ldt->entries
|
|
* will not be mapped in the userspace pagetables.
|
|
* Tell the CPU to access the LDT through the alias
|
|
* at ldt_slot_va(ldt->slot).
|
|
*/
|
|
set_ldt(ldt_slot_va(ldt->slot), ldt->nr_entries);
|
|
} else {
|
|
set_ldt(ldt->entries, ldt->nr_entries);
|
|
}
|
|
} else {
|
|
clear_LDT();
|
|
}
|
|
}
|
|
|
|
void switch_ldt(struct mm_struct *prev, struct mm_struct *next)
|
|
{
|
|
/*
|
|
* Load the LDT if either the old or new mm had an LDT.
|
|
*
|
|
* An mm will never go from having an LDT to not having an LDT. Two
|
|
* mms never share an LDT, so we don't gain anything by checking to
|
|
* see whether the LDT changed. There's also no guarantee that
|
|
* prev->context.ldt actually matches LDTR, but, if LDTR is non-NULL,
|
|
* then prev->context.ldt will also be non-NULL.
|
|
*
|
|
* If we really cared, we could optimize the case where prev == next
|
|
* and we're exiting lazy mode. Most of the time, if this happens,
|
|
* we don't actually need to reload LDTR, but modify_ldt() is mostly
|
|
* used by legacy code and emulators where we don't need this level of
|
|
* performance.
|
|
*
|
|
* This uses | instead of || because it generates better code.
|
|
*/
|
|
if (unlikely((unsigned long)prev->context.ldt |
|
|
(unsigned long)next->context.ldt))
|
|
load_mm_ldt(next);
|
|
|
|
DEBUG_LOCKS_WARN_ON(preemptible());
|
|
}
|
|
|
|
static void refresh_ldt_segments(void)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
unsigned short sel;
|
|
|
|
/*
|
|
* Make sure that the cached DS and ES descriptors match the updated
|
|
* LDT.
|
|
*/
|
|
savesegment(ds, sel);
|
|
if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT)
|
|
loadsegment(ds, sel);
|
|
|
|
savesegment(es, sel);
|
|
if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT)
|
|
loadsegment(es, sel);
|
|
#endif
|
|
}
|
|
|
|
/* context.lock is held by the task which issued the smp function call */
|
|
static void flush_ldt(void *__mm)
|
|
{
|
|
struct mm_struct *mm = __mm;
|
|
|
|
if (this_cpu_read(cpu_tlbstate.loaded_mm) != mm)
|
|
return;
|
|
|
|
load_mm_ldt(mm);
|
|
|
|
refresh_ldt_segments();
|
|
}
|
|
|
|
/* The caller must call finalize_ldt_struct on the result. LDT starts zeroed. */
|
|
static struct ldt_struct *alloc_ldt_struct(unsigned int num_entries)
|
|
{
|
|
struct ldt_struct *new_ldt;
|
|
unsigned int alloc_size;
|
|
|
|
if (num_entries > LDT_ENTRIES)
|
|
return NULL;
|
|
|
|
new_ldt = kmalloc(sizeof(struct ldt_struct), GFP_KERNEL_ACCOUNT);
|
|
if (!new_ldt)
|
|
return NULL;
|
|
|
|
BUILD_BUG_ON(LDT_ENTRY_SIZE != sizeof(struct desc_struct));
|
|
alloc_size = num_entries * LDT_ENTRY_SIZE;
|
|
|
|
/*
|
|
* Xen is very picky: it requires a page-aligned LDT that has no
|
|
* trailing nonzero bytes in any page that contains LDT descriptors.
|
|
* Keep it simple: zero the whole allocation and never allocate less
|
|
* than PAGE_SIZE.
|
|
*/
|
|
if (alloc_size > PAGE_SIZE)
|
|
new_ldt->entries = __vmalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
|
|
else
|
|
new_ldt->entries = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
|
|
|
|
if (!new_ldt->entries) {
|
|
kfree(new_ldt);
|
|
return NULL;
|
|
}
|
|
|
|
/* The new LDT isn't aliased for PTI yet. */
|
|
new_ldt->slot = -1;
|
|
|
|
new_ldt->nr_entries = num_entries;
|
|
return new_ldt;
|
|
}
|
|
|
|
#ifdef CONFIG_PAGE_TABLE_ISOLATION
|
|
|
|
static void do_sanity_check(struct mm_struct *mm,
|
|
bool had_kernel_mapping,
|
|
bool had_user_mapping)
|
|
{
|
|
if (mm->context.ldt) {
|
|
/*
|
|
* We already had an LDT. The top-level entry should already
|
|
* have been allocated and synchronized with the usermode
|
|
* tables.
|
|
*/
|
|
WARN_ON(!had_kernel_mapping);
|
|
if (boot_cpu_has(X86_FEATURE_PTI))
|
|
WARN_ON(!had_user_mapping);
|
|
} else {
|
|
/*
|
|
* This is the first time we're mapping an LDT for this process.
|
|
* Sync the pgd to the usermode tables.
|
|
*/
|
|
WARN_ON(had_kernel_mapping);
|
|
if (boot_cpu_has(X86_FEATURE_PTI))
|
|
WARN_ON(had_user_mapping);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_X86_PAE
|
|
|
|
static pmd_t *pgd_to_pmd_walk(pgd_t *pgd, unsigned long va)
|
|
{
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
|
|
if (pgd->pgd == 0)
|
|
return NULL;
|
|
|
|
p4d = p4d_offset(pgd, va);
|
|
if (p4d_none(*p4d))
|
|
return NULL;
|
|
|
|
pud = pud_offset(p4d, va);
|
|
if (pud_none(*pud))
|
|
return NULL;
|
|
|
|
return pmd_offset(pud, va);
|
|
}
|
|
|
|
static void map_ldt_struct_to_user(struct mm_struct *mm)
|
|
{
|
|
pgd_t *k_pgd = pgd_offset(mm, LDT_BASE_ADDR);
|
|
pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd);
|
|
pmd_t *k_pmd, *u_pmd;
|
|
|
|
k_pmd = pgd_to_pmd_walk(k_pgd, LDT_BASE_ADDR);
|
|
u_pmd = pgd_to_pmd_walk(u_pgd, LDT_BASE_ADDR);
|
|
|
|
if (boot_cpu_has(X86_FEATURE_PTI) && !mm->context.ldt)
|
|
set_pmd(u_pmd, *k_pmd);
|
|
}
|
|
|
|
static void sanity_check_ldt_mapping(struct mm_struct *mm)
|
|
{
|
|
pgd_t *k_pgd = pgd_offset(mm, LDT_BASE_ADDR);
|
|
pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd);
|
|
bool had_kernel, had_user;
|
|
pmd_t *k_pmd, *u_pmd;
|
|
|
|
k_pmd = pgd_to_pmd_walk(k_pgd, LDT_BASE_ADDR);
|
|
u_pmd = pgd_to_pmd_walk(u_pgd, LDT_BASE_ADDR);
|
|
had_kernel = (k_pmd->pmd != 0);
|
|
had_user = (u_pmd->pmd != 0);
|
|
|
|
do_sanity_check(mm, had_kernel, had_user);
|
|
}
|
|
|
|
#else /* !CONFIG_X86_PAE */
|
|
|
|
static void map_ldt_struct_to_user(struct mm_struct *mm)
|
|
{
|
|
pgd_t *pgd = pgd_offset(mm, LDT_BASE_ADDR);
|
|
|
|
if (boot_cpu_has(X86_FEATURE_PTI) && !mm->context.ldt)
|
|
set_pgd(kernel_to_user_pgdp(pgd), *pgd);
|
|
}
|
|
|
|
static void sanity_check_ldt_mapping(struct mm_struct *mm)
|
|
{
|
|
pgd_t *pgd = pgd_offset(mm, LDT_BASE_ADDR);
|
|
bool had_kernel = (pgd->pgd != 0);
|
|
bool had_user = (kernel_to_user_pgdp(pgd)->pgd != 0);
|
|
|
|
do_sanity_check(mm, had_kernel, had_user);
|
|
}
|
|
|
|
#endif /* CONFIG_X86_PAE */
|
|
|
|
/*
|
|
* If PTI is enabled, this maps the LDT into the kernelmode and
|
|
* usermode tables for the given mm.
|
|
*/
|
|
static int
|
|
map_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt, int slot)
|
|
{
|
|
unsigned long va;
|
|
bool is_vmalloc;
|
|
spinlock_t *ptl;
|
|
int i, nr_pages;
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_PTI))
|
|
return 0;
|
|
|
|
/*
|
|
* Any given ldt_struct should have map_ldt_struct() called at most
|
|
* once.
|
|
*/
|
|
WARN_ON(ldt->slot != -1);
|
|
|
|
/* Check if the current mappings are sane */
|
|
sanity_check_ldt_mapping(mm);
|
|
|
|
is_vmalloc = is_vmalloc_addr(ldt->entries);
|
|
|
|
nr_pages = DIV_ROUND_UP(ldt->nr_entries * LDT_ENTRY_SIZE, PAGE_SIZE);
|
|
|
|
for (i = 0; i < nr_pages; i++) {
|
|
unsigned long offset = i << PAGE_SHIFT;
|
|
const void *src = (char *)ldt->entries + offset;
|
|
unsigned long pfn;
|
|
pgprot_t pte_prot;
|
|
pte_t pte, *ptep;
|
|
|
|
va = (unsigned long)ldt_slot_va(slot) + offset;
|
|
pfn = is_vmalloc ? vmalloc_to_pfn(src) :
|
|
page_to_pfn(virt_to_page(src));
|
|
/*
|
|
* Treat the PTI LDT range as a *userspace* range.
|
|
* get_locked_pte() will allocate all needed pagetables
|
|
* and account for them in this mm.
|
|
*/
|
|
ptep = get_locked_pte(mm, va, &ptl);
|
|
if (!ptep)
|
|
return -ENOMEM;
|
|
/*
|
|
* Map it RO so the easy to find address is not a primary
|
|
* target via some kernel interface which misses a
|
|
* permission check.
|
|
*/
|
|
pte_prot = __pgprot(__PAGE_KERNEL_RO & ~_PAGE_GLOBAL);
|
|
/* Filter out unsuppored __PAGE_KERNEL* bits: */
|
|
pgprot_val(pte_prot) &= __supported_pte_mask;
|
|
pte = pfn_pte(pfn, pte_prot);
|
|
set_pte_at(mm, va, ptep, pte);
|
|
pte_unmap_unlock(ptep, ptl);
|
|
}
|
|
|
|
/* Propagate LDT mapping to the user page-table */
|
|
map_ldt_struct_to_user(mm);
|
|
|
|
ldt->slot = slot;
|
|
return 0;
|
|
}
|
|
|
|
static void unmap_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt)
|
|
{
|
|
unsigned long va;
|
|
int i, nr_pages;
|
|
|
|
if (!ldt)
|
|
return;
|
|
|
|
/* LDT map/unmap is only required for PTI */
|
|
if (!boot_cpu_has(X86_FEATURE_PTI))
|
|
return;
|
|
|
|
nr_pages = DIV_ROUND_UP(ldt->nr_entries * LDT_ENTRY_SIZE, PAGE_SIZE);
|
|
|
|
for (i = 0; i < nr_pages; i++) {
|
|
unsigned long offset = i << PAGE_SHIFT;
|
|
spinlock_t *ptl;
|
|
pte_t *ptep;
|
|
|
|
va = (unsigned long)ldt_slot_va(ldt->slot) + offset;
|
|
ptep = get_locked_pte(mm, va, &ptl);
|
|
pte_clear(mm, va, ptep);
|
|
pte_unmap_unlock(ptep, ptl);
|
|
}
|
|
|
|
va = (unsigned long)ldt_slot_va(ldt->slot);
|
|
flush_tlb_mm_range(mm, va, va + nr_pages * PAGE_SIZE, PAGE_SHIFT, false);
|
|
}
|
|
|
|
#else /* !CONFIG_PAGE_TABLE_ISOLATION */
|
|
|
|
static int
|
|
map_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt, int slot)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void unmap_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt)
|
|
{
|
|
}
|
|
#endif /* CONFIG_PAGE_TABLE_ISOLATION */
|
|
|
|
static void free_ldt_pgtables(struct mm_struct *mm)
|
|
{
|
|
#ifdef CONFIG_PAGE_TABLE_ISOLATION
|
|
struct mmu_gather tlb;
|
|
unsigned long start = LDT_BASE_ADDR;
|
|
unsigned long end = LDT_END_ADDR;
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_PTI))
|
|
return;
|
|
|
|
/*
|
|
* Although free_pgd_range() is intended for freeing user
|
|
* page-tables, it also works out for kernel mappings on x86.
|
|
* We use tlb_gather_mmu_fullmm() to avoid confusing the
|
|
* range-tracking logic in __tlb_adjust_range().
|
|
*/
|
|
tlb_gather_mmu_fullmm(&tlb, mm);
|
|
free_pgd_range(&tlb, start, end, start, end);
|
|
tlb_finish_mmu(&tlb);
|
|
#endif
|
|
}
|
|
|
|
/* After calling this, the LDT is immutable. */
|
|
static void finalize_ldt_struct(struct ldt_struct *ldt)
|
|
{
|
|
paravirt_alloc_ldt(ldt->entries, ldt->nr_entries);
|
|
}
|
|
|
|
static void install_ldt(struct mm_struct *mm, struct ldt_struct *ldt)
|
|
{
|
|
mutex_lock(&mm->context.lock);
|
|
|
|
/* Synchronizes with READ_ONCE in load_mm_ldt. */
|
|
smp_store_release(&mm->context.ldt, ldt);
|
|
|
|
/* Activate the LDT for all CPUs using currents mm. */
|
|
on_each_cpu_mask(mm_cpumask(mm), flush_ldt, mm, true);
|
|
|
|
mutex_unlock(&mm->context.lock);
|
|
}
|
|
|
|
static void free_ldt_struct(struct ldt_struct *ldt)
|
|
{
|
|
if (likely(!ldt))
|
|
return;
|
|
|
|
paravirt_free_ldt(ldt->entries, ldt->nr_entries);
|
|
if (ldt->nr_entries * LDT_ENTRY_SIZE > PAGE_SIZE)
|
|
vfree_atomic(ldt->entries);
|
|
else
|
|
free_page((unsigned long)ldt->entries);
|
|
kfree(ldt);
|
|
}
|
|
|
|
/*
|
|
* Called on fork from arch_dup_mmap(). Just copy the current LDT state,
|
|
* the new task is not running, so nothing can be installed.
|
|
*/
|
|
int ldt_dup_context(struct mm_struct *old_mm, struct mm_struct *mm)
|
|
{
|
|
struct ldt_struct *new_ldt;
|
|
int retval = 0;
|
|
|
|
if (!old_mm)
|
|
return 0;
|
|
|
|
mutex_lock(&old_mm->context.lock);
|
|
if (!old_mm->context.ldt)
|
|
goto out_unlock;
|
|
|
|
new_ldt = alloc_ldt_struct(old_mm->context.ldt->nr_entries);
|
|
if (!new_ldt) {
|
|
retval = -ENOMEM;
|
|
goto out_unlock;
|
|
}
|
|
|
|
memcpy(new_ldt->entries, old_mm->context.ldt->entries,
|
|
new_ldt->nr_entries * LDT_ENTRY_SIZE);
|
|
finalize_ldt_struct(new_ldt);
|
|
|
|
retval = map_ldt_struct(mm, new_ldt, 0);
|
|
if (retval) {
|
|
free_ldt_pgtables(mm);
|
|
free_ldt_struct(new_ldt);
|
|
goto out_unlock;
|
|
}
|
|
mm->context.ldt = new_ldt;
|
|
|
|
out_unlock:
|
|
mutex_unlock(&old_mm->context.lock);
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* No need to lock the MM as we are the last user
|
|
*
|
|
* 64bit: Don't touch the LDT register - we're already in the next thread.
|
|
*/
|
|
void destroy_context_ldt(struct mm_struct *mm)
|
|
{
|
|
free_ldt_struct(mm->context.ldt);
|
|
mm->context.ldt = NULL;
|
|
}
|
|
|
|
void ldt_arch_exit_mmap(struct mm_struct *mm)
|
|
{
|
|
free_ldt_pgtables(mm);
|
|
}
|
|
|
|
static int read_ldt(void __user *ptr, unsigned long bytecount)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
unsigned long entries_size;
|
|
int retval;
|
|
|
|
down_read(&mm->context.ldt_usr_sem);
|
|
|
|
if (!mm->context.ldt) {
|
|
retval = 0;
|
|
goto out_unlock;
|
|
}
|
|
|
|
if (bytecount > LDT_ENTRY_SIZE * LDT_ENTRIES)
|
|
bytecount = LDT_ENTRY_SIZE * LDT_ENTRIES;
|
|
|
|
entries_size = mm->context.ldt->nr_entries * LDT_ENTRY_SIZE;
|
|
if (entries_size > bytecount)
|
|
entries_size = bytecount;
|
|
|
|
if (copy_to_user(ptr, mm->context.ldt->entries, entries_size)) {
|
|
retval = -EFAULT;
|
|
goto out_unlock;
|
|
}
|
|
|
|
if (entries_size != bytecount) {
|
|
/* Zero-fill the rest and pretend we read bytecount bytes. */
|
|
if (clear_user(ptr + entries_size, bytecount - entries_size)) {
|
|
retval = -EFAULT;
|
|
goto out_unlock;
|
|
}
|
|
}
|
|
retval = bytecount;
|
|
|
|
out_unlock:
|
|
up_read(&mm->context.ldt_usr_sem);
|
|
return retval;
|
|
}
|
|
|
|
static int read_default_ldt(void __user *ptr, unsigned long bytecount)
|
|
{
|
|
/* CHECKME: Can we use _one_ random number ? */
|
|
#ifdef CONFIG_X86_32
|
|
unsigned long size = 5 * sizeof(struct desc_struct);
|
|
#else
|
|
unsigned long size = 128;
|
|
#endif
|
|
if (bytecount > size)
|
|
bytecount = size;
|
|
if (clear_user(ptr, bytecount))
|
|
return -EFAULT;
|
|
return bytecount;
|
|
}
|
|
|
|
static bool allow_16bit_segments(void)
|
|
{
|
|
if (!IS_ENABLED(CONFIG_X86_16BIT))
|
|
return false;
|
|
|
|
#ifdef CONFIG_XEN_PV
|
|
/*
|
|
* Xen PV does not implement ESPFIX64, which means that 16-bit
|
|
* segments will not work correctly. Until either Xen PV implements
|
|
* ESPFIX64 and can signal this fact to the guest or unless someone
|
|
* provides compelling evidence that allowing broken 16-bit segments
|
|
* is worthwhile, disallow 16-bit segments under Xen PV.
|
|
*/
|
|
if (xen_pv_domain()) {
|
|
pr_info_once("Warning: 16-bit segments do not work correctly in a Xen PV guest\n");
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
return true;
|
|
}
|
|
|
|
static int write_ldt(void __user *ptr, unsigned long bytecount, int oldmode)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
struct ldt_struct *new_ldt, *old_ldt;
|
|
unsigned int old_nr_entries, new_nr_entries;
|
|
struct user_desc ldt_info;
|
|
struct desc_struct ldt;
|
|
int error;
|
|
|
|
error = -EINVAL;
|
|
if (bytecount != sizeof(ldt_info))
|
|
goto out;
|
|
error = -EFAULT;
|
|
if (copy_from_user(&ldt_info, ptr, sizeof(ldt_info)))
|
|
goto out;
|
|
|
|
error = -EINVAL;
|
|
if (ldt_info.entry_number >= LDT_ENTRIES)
|
|
goto out;
|
|
if (ldt_info.contents == 3) {
|
|
if (oldmode)
|
|
goto out;
|
|
if (ldt_info.seg_not_present == 0)
|
|
goto out;
|
|
}
|
|
|
|
if ((oldmode && !ldt_info.base_addr && !ldt_info.limit) ||
|
|
LDT_empty(&ldt_info)) {
|
|
/* The user wants to clear the entry. */
|
|
memset(&ldt, 0, sizeof(ldt));
|
|
} else {
|
|
if (!ldt_info.seg_32bit && !allow_16bit_segments()) {
|
|
error = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
fill_ldt(&ldt, &ldt_info);
|
|
if (oldmode)
|
|
ldt.avl = 0;
|
|
}
|
|
|
|
if (down_write_killable(&mm->context.ldt_usr_sem))
|
|
return -EINTR;
|
|
|
|
old_ldt = mm->context.ldt;
|
|
old_nr_entries = old_ldt ? old_ldt->nr_entries : 0;
|
|
new_nr_entries = max(ldt_info.entry_number + 1, old_nr_entries);
|
|
|
|
error = -ENOMEM;
|
|
new_ldt = alloc_ldt_struct(new_nr_entries);
|
|
if (!new_ldt)
|
|
goto out_unlock;
|
|
|
|
if (old_ldt)
|
|
memcpy(new_ldt->entries, old_ldt->entries, old_nr_entries * LDT_ENTRY_SIZE);
|
|
|
|
new_ldt->entries[ldt_info.entry_number] = ldt;
|
|
finalize_ldt_struct(new_ldt);
|
|
|
|
/*
|
|
* If we are using PTI, map the new LDT into the userspace pagetables.
|
|
* If there is already an LDT, use the other slot so that other CPUs
|
|
* will continue to use the old LDT until install_ldt() switches
|
|
* them over to the new LDT.
|
|
*/
|
|
error = map_ldt_struct(mm, new_ldt, old_ldt ? !old_ldt->slot : 0);
|
|
if (error) {
|
|
/*
|
|
* This only can fail for the first LDT setup. If an LDT is
|
|
* already installed then the PTE page is already
|
|
* populated. Mop up a half populated page table.
|
|
*/
|
|
if (!WARN_ON_ONCE(old_ldt))
|
|
free_ldt_pgtables(mm);
|
|
free_ldt_struct(new_ldt);
|
|
goto out_unlock;
|
|
}
|
|
|
|
install_ldt(mm, new_ldt);
|
|
unmap_ldt_struct(mm, old_ldt);
|
|
free_ldt_struct(old_ldt);
|
|
error = 0;
|
|
|
|
out_unlock:
|
|
up_write(&mm->context.ldt_usr_sem);
|
|
out:
|
|
return error;
|
|
}
|
|
|
|
SYSCALL_DEFINE3(modify_ldt, int , func , void __user * , ptr ,
|
|
unsigned long , bytecount)
|
|
{
|
|
int ret = -ENOSYS;
|
|
|
|
switch (func) {
|
|
case 0:
|
|
ret = read_ldt(ptr, bytecount);
|
|
break;
|
|
case 1:
|
|
ret = write_ldt(ptr, bytecount, 1);
|
|
break;
|
|
case 2:
|
|
ret = read_default_ldt(ptr, bytecount);
|
|
break;
|
|
case 0x11:
|
|
ret = write_ldt(ptr, bytecount, 0);
|
|
break;
|
|
}
|
|
/*
|
|
* The SYSCALL_DEFINE() macros give us an 'unsigned long'
|
|
* return type, but tht ABI for sys_modify_ldt() expects
|
|
* 'int'. This cast gives us an int-sized value in %rax
|
|
* for the return code. The 'unsigned' is necessary so
|
|
* the compiler does not try to sign-extend the negative
|
|
* return codes into the high half of the register when
|
|
* taking the value from int->long.
|
|
*/
|
|
return (unsigned int)ret;
|
|
}
|