mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-18 00:24:58 +08:00
65b97fb730
Pull powerpc updates from Ben Herrenschmidt: "This is the powerpc changes for the 3.11 merge window. In addition to the usual bug fixes and small updates, the main highlights are: - Support for transparent huge pages by Aneesh Kumar for 64-bit server processors. This allows the use of 16M pages as transparent huge pages on kernels compiled with a 64K base page size. - Base VFIO support for KVM on power by Alexey Kardashevskiy - Wiring up of our nvram to the pstore infrastructure, including putting compressed oopses in there by Aruna Balakrishnaiah - Move, rework and improve our "EEH" (basically PCI error handling and recovery) infrastructure. It is no longer specific to pseries but is now usable by the new "powernv" platform as well (no hypervisor) by Gavin Shan. - I fixed some bugs in our math-emu instruction decoding and made it usable to emulate some optional FP instructions on processors with hard FP that lack them (such as fsqrt on Freescale embedded processors). - Support for Power8 "Event Based Branch" facility by Michael Ellerman. This facility allows what is basically "userspace interrupts" for performance monitor events. - A bunch of Transactional Memory vs. Signals bug fixes and HW breakpoint/watchpoint fixes by Michael Neuling. And more ... I appologize in advance if I've failed to highlight something that somebody deemed worth it." * 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc: (156 commits) pstore: Add hsize argument in write_buf call of pstore_ftrace_call powerpc/fsl: add MPIC timer wakeup support powerpc/mpic: create mpic subsystem object powerpc/mpic: add global timer support powerpc/mpic: add irq_set_wake support powerpc/85xx: enable coreint for all the 64bit boards powerpc/8xx: Erroneous double irq_eoi() on CPM IRQ in MPC8xx powerpc/fsl: Enable CONFIG_E1000E in mpc85xx_smp_defconfig powerpc/mpic: Add get_version API both for internal and external use powerpc: Handle both new style and old style reserve maps powerpc/hw_brk: Fix off by one error when validating DAWR region end powerpc/pseries: Support compression of oops text via pstore powerpc/pseries: Re-organise the oops compression code pstore: Pass header size in the pstore write callback powerpc/powernv: Fix iommu initialization again powerpc/pseries: Inform the hypervisor we are using EBB regs powerpc/perf: Add power8 EBB support powerpc/perf: Core EBB support for 64-bit book3s powerpc/perf: Drop MMCRA from thread_struct powerpc/perf: Don't enable if we have zero events ...
254 lines
7.6 KiB
C
254 lines
7.6 KiB
C
/*
|
|
* This file contains the routines for flushing entries from the
|
|
* TLB and MMU hash table.
|
|
*
|
|
* Derived from arch/ppc64/mm/init.c:
|
|
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
|
|
*
|
|
* Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
|
|
* and Cort Dougan (PReP) (cort@cs.nmt.edu)
|
|
* Copyright (C) 1996 Paul Mackerras
|
|
*
|
|
* Derived from "arch/i386/mm/init.c"
|
|
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
|
|
*
|
|
* Dave Engebretsen <engebret@us.ibm.com>
|
|
* Rework for PPC64 port.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/init.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/hardirq.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/bug.h>
|
|
|
|
DEFINE_PER_CPU(struct ppc64_tlb_batch, ppc64_tlb_batch);
|
|
|
|
/*
|
|
* A linux PTE was changed and the corresponding hash table entry
|
|
* neesd to be flushed. This function will either perform the flush
|
|
* immediately or will batch it up if the current CPU has an active
|
|
* batch on it.
|
|
*/
|
|
void hpte_need_flush(struct mm_struct *mm, unsigned long addr,
|
|
pte_t *ptep, unsigned long pte, int huge)
|
|
{
|
|
unsigned long vpn;
|
|
struct ppc64_tlb_batch *batch = &get_cpu_var(ppc64_tlb_batch);
|
|
unsigned long vsid;
|
|
unsigned int psize;
|
|
int ssize;
|
|
real_pte_t rpte;
|
|
int i;
|
|
|
|
i = batch->index;
|
|
|
|
/* Get page size (maybe move back to caller).
|
|
*
|
|
* NOTE: when using special 64K mappings in 4K environment like
|
|
* for SPEs, we obtain the page size from the slice, which thus
|
|
* must still exist (and thus the VMA not reused) at the time
|
|
* of this call
|
|
*/
|
|
if (huge) {
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
psize = get_slice_psize(mm, addr);
|
|
/* Mask the address for the correct page size */
|
|
addr &= ~((1UL << mmu_psize_defs[psize].shift) - 1);
|
|
#else
|
|
BUG();
|
|
psize = pte_pagesize_index(mm, addr, pte); /* shutup gcc */
|
|
#endif
|
|
} else {
|
|
psize = pte_pagesize_index(mm, addr, pte);
|
|
/* Mask the address for the standard page size. If we
|
|
* have a 64k page kernel, but the hardware does not
|
|
* support 64k pages, this might be different from the
|
|
* hardware page size encoded in the slice table. */
|
|
addr &= PAGE_MASK;
|
|
}
|
|
|
|
|
|
/* Build full vaddr */
|
|
if (!is_kernel_addr(addr)) {
|
|
ssize = user_segment_size(addr);
|
|
vsid = get_vsid(mm->context.id, addr, ssize);
|
|
} else {
|
|
vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
|
|
ssize = mmu_kernel_ssize;
|
|
}
|
|
WARN_ON(vsid == 0);
|
|
vpn = hpt_vpn(addr, vsid, ssize);
|
|
rpte = __real_pte(__pte(pte), ptep);
|
|
|
|
/*
|
|
* Check if we have an active batch on this CPU. If not, just
|
|
* flush now and return. For now, we don global invalidates
|
|
* in that case, might be worth testing the mm cpu mask though
|
|
* and decide to use local invalidates instead...
|
|
*/
|
|
if (!batch->active) {
|
|
flush_hash_page(vpn, rpte, psize, ssize, 0);
|
|
put_cpu_var(ppc64_tlb_batch);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* This can happen when we are in the middle of a TLB batch and
|
|
* we encounter memory pressure (eg copy_page_range when it tries
|
|
* to allocate a new pte). If we have to reclaim memory and end
|
|
* up scanning and resetting referenced bits then our batch context
|
|
* will change mid stream.
|
|
*
|
|
* We also need to ensure only one page size is present in a given
|
|
* batch
|
|
*/
|
|
if (i != 0 && (mm != batch->mm || batch->psize != psize ||
|
|
batch->ssize != ssize)) {
|
|
__flush_tlb_pending(batch);
|
|
i = 0;
|
|
}
|
|
if (i == 0) {
|
|
batch->mm = mm;
|
|
batch->psize = psize;
|
|
batch->ssize = ssize;
|
|
}
|
|
batch->pte[i] = rpte;
|
|
batch->vpn[i] = vpn;
|
|
batch->index = ++i;
|
|
if (i >= PPC64_TLB_BATCH_NR)
|
|
__flush_tlb_pending(batch);
|
|
put_cpu_var(ppc64_tlb_batch);
|
|
}
|
|
|
|
/*
|
|
* This function is called when terminating an mmu batch or when a batch
|
|
* is full. It will perform the flush of all the entries currently stored
|
|
* in a batch.
|
|
*
|
|
* Must be called from within some kind of spinlock/non-preempt region...
|
|
*/
|
|
void __flush_tlb_pending(struct ppc64_tlb_batch *batch)
|
|
{
|
|
const struct cpumask *tmp;
|
|
int i, local = 0;
|
|
|
|
i = batch->index;
|
|
tmp = cpumask_of(smp_processor_id());
|
|
if (cpumask_equal(mm_cpumask(batch->mm), tmp))
|
|
local = 1;
|
|
if (i == 1)
|
|
flush_hash_page(batch->vpn[0], batch->pte[0],
|
|
batch->psize, batch->ssize, local);
|
|
else
|
|
flush_hash_range(i, local);
|
|
batch->index = 0;
|
|
}
|
|
|
|
void tlb_flush(struct mmu_gather *tlb)
|
|
{
|
|
struct ppc64_tlb_batch *tlbbatch = &get_cpu_var(ppc64_tlb_batch);
|
|
|
|
/* If there's a TLB batch pending, then we must flush it because the
|
|
* pages are going to be freed and we really don't want to have a CPU
|
|
* access a freed page because it has a stale TLB
|
|
*/
|
|
if (tlbbatch->index)
|
|
__flush_tlb_pending(tlbbatch);
|
|
|
|
put_cpu_var(ppc64_tlb_batch);
|
|
}
|
|
|
|
/**
|
|
* __flush_hash_table_range - Flush all HPTEs for a given address range
|
|
* from the hash table (and the TLB). But keeps
|
|
* the linux PTEs intact.
|
|
*
|
|
* @mm : mm_struct of the target address space (generally init_mm)
|
|
* @start : starting address
|
|
* @end : ending address (not included in the flush)
|
|
*
|
|
* This function is mostly to be used by some IO hotplug code in order
|
|
* to remove all hash entries from a given address range used to map IO
|
|
* space on a removed PCI-PCI bidge without tearing down the full mapping
|
|
* since 64K pages may overlap with other bridges when using 64K pages
|
|
* with 4K HW pages on IO space.
|
|
*
|
|
* Because of that usage pattern, it is implemented for small size rather
|
|
* than speed.
|
|
*/
|
|
void __flush_hash_table_range(struct mm_struct *mm, unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
int hugepage_shift;
|
|
unsigned long flags;
|
|
|
|
start = _ALIGN_DOWN(start, PAGE_SIZE);
|
|
end = _ALIGN_UP(end, PAGE_SIZE);
|
|
|
|
BUG_ON(!mm->pgd);
|
|
|
|
/* Note: Normally, we should only ever use a batch within a
|
|
* PTE locked section. This violates the rule, but will work
|
|
* since we don't actually modify the PTEs, we just flush the
|
|
* hash while leaving the PTEs intact (including their reference
|
|
* to being hashed). This is not the most performance oriented
|
|
* way to do things but is fine for our needs here.
|
|
*/
|
|
local_irq_save(flags);
|
|
arch_enter_lazy_mmu_mode();
|
|
for (; start < end; start += PAGE_SIZE) {
|
|
pte_t *ptep = find_linux_pte_or_hugepte(mm->pgd, start,
|
|
&hugepage_shift);
|
|
unsigned long pte;
|
|
|
|
if (ptep == NULL)
|
|
continue;
|
|
pte = pte_val(*ptep);
|
|
if (!(pte & _PAGE_HASHPTE))
|
|
continue;
|
|
if (unlikely(hugepage_shift && pmd_trans_huge(*(pmd_t *)pte)))
|
|
hpte_do_hugepage_flush(mm, start, (pmd_t *)pte);
|
|
else
|
|
hpte_need_flush(mm, start, ptep, pte, 0);
|
|
}
|
|
arch_leave_lazy_mmu_mode();
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
void flush_tlb_pmd_range(struct mm_struct *mm, pmd_t *pmd, unsigned long addr)
|
|
{
|
|
pte_t *pte;
|
|
pte_t *start_pte;
|
|
unsigned long flags;
|
|
|
|
addr = _ALIGN_DOWN(addr, PMD_SIZE);
|
|
/* Note: Normally, we should only ever use a batch within a
|
|
* PTE locked section. This violates the rule, but will work
|
|
* since we don't actually modify the PTEs, we just flush the
|
|
* hash while leaving the PTEs intact (including their reference
|
|
* to being hashed). This is not the most performance oriented
|
|
* way to do things but is fine for our needs here.
|
|
*/
|
|
local_irq_save(flags);
|
|
arch_enter_lazy_mmu_mode();
|
|
start_pte = pte_offset_map(pmd, addr);
|
|
for (pte = start_pte; pte < start_pte + PTRS_PER_PTE; pte++) {
|
|
unsigned long pteval = pte_val(*pte);
|
|
if (pteval & _PAGE_HASHPTE)
|
|
hpte_need_flush(mm, addr, pte, pteval, 0);
|
|
addr += PAGE_SIZE;
|
|
}
|
|
arch_leave_lazy_mmu_mode();
|
|
local_irq_restore(flags);
|
|
}
|