Promote the ASSERT(), which is quite dead code in KVM, into a KVM_BUG_ON()
for KVM's sanity check that CR4.PAE=1 if the vCPU is in long mode when
performing a walk of guest page tables. The sanity is quite cheap since
neither EFER nor CR4.PAE requires a VMREAD, especially relative to the
cost of walking the guest page tables.
More importantly, the sanity check would have prevented the true badness
fixed by commit 112e66017b ("KVM: nVMX: add missing consistency checks
for CR0 and CR4"). The missed consistency check resulted in some versions
of KVM corrupting the on-stack guest_walker structure due to KVM thinking
there are 4/5 levels of page tables, but wiring up the MMU hooks to point
at the paging32 implementation, which only allocates space for two levels
of page tables in "struct guest_walker32".
Queue a page fault for injection if the assertion fails, as both callers,
FNAME(gva_to_gpa) and FNAME(walk_addr_generic), assume that walker.fault
contains sane info on a walk failure. E.g. not populating the fault info
could result in KVM consuming and/or exposing uninitialized stack data
before the vCPU is kicked out to userspace, which doesn't happen until
KVM checks for KVM_REQ_VM_DEAD on the next enter.
Move the check below the initialization of "pte_access" so that the
aforementioned to-be-injected page fault doesn't consume uninitialized
stack data. The information _shouldn't_ reach the guest or userspace,
but there's zero downside to being paranoid in this case.
Link: https://lore.kernel.org/r/20230729004722.1056172-9-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>